Experimental Economics II: Political Economy T\&E Homework (19S)

For Risk and Time Preferences

Consider the relationship between Professor Joseph and Student Yu. Professor Joseph has expected utility function satisfying $u^{\prime}(x)=x^{-R}$ where $R>0$, while Student Yu has expected utility function satisfying $v^{\prime}(x)=x^{-r}$ with $r<R$. Consider the ten lottery choices of Holt and Laury (2002) listed below:

You will roll a ten-sided die and get paid according to your decision (choice A or B):

Decision	Lottery A	Lottery B	Your choice (A or B)
Question 1	$\begin{array}{r} 1: \text { Gain NT } \$ 200 \\ 2 \sim 10: \text { Gain NT } \$ 160 \end{array}$	$\begin{array}{r} 1: \text { Gain NT } \$ 385 \\ 2 \sim 10: \text { Gain NT } \$ 10 \end{array}$	
Question 2	$\begin{aligned} & 1 \sim 2: \text { Gain NT } \$ 200 \\ & 3 \sim 10: \text { Gain NT } \$ 160 \end{aligned}$	$\begin{gathered} 1 \sim 2: \text { Gain NT } \$ 385 \\ 3 \sim 10: \text { Gain NT } \$ 10 \end{gathered}$	
Question 3	$\begin{aligned} & 1 \sim 3: \text { Gain NT } \$ 200 \\ & 4 \sim 10: \text { Gain NT } \$ 160 \end{aligned}$	$\begin{gathered} 1 \sim 3: \text { Gain NT\$385 } \\ 4 \sim 10: \text { Gain NT\$10 } \end{gathered}$	
Question 4	$\begin{aligned} & 1 \sim 4: \text { Gain NT } \$ 200 \\ & 5 \sim 10: \text { Gain NT } \$ 160 \end{aligned}$	1~4: Gain NT\$385 5~10: Gain NT\$10	
Question 5	$\begin{aligned} & 1 \sim 5: \text { Gain NT } \$ 200 \\ & 6 \sim 10: \text { Gain NT } \$ 160 \end{aligned}$	$\begin{gathered} 1 \sim 5: \text { Gain NT\$385 } \\ 6 \sim 10: \text { Gain NT\$10 } \end{gathered}$	
Question 6	$\begin{aligned} & 1 \sim 6: \text { Gain NT } \$ 200 \\ & 7 \sim 10: \text { Gain NT } \$ 160 \end{aligned}$	1~6 : Gain NT\$385 7~10: Gain NT\$10	
Question 7	$\begin{aligned} & 1 \sim 7: \text { Gain NT } \$ 200 \\ & 8 \sim 10: \text { Gain NT } \$ 160 \end{aligned}$	1~7 : Gain NT\$385 8~10: Gain NT\$10	
Question 8	$\begin{aligned} & 1 \sim 8: \text { Gain NT } \$ 200 \\ & 9 \sim 10: \text { Gain NT } \$ 160 \end{aligned}$	1~8: Gain NT\$385 9~10: Gain NT\$10	
Question 9	$\begin{aligned} \hline 1 \sim 9 & : \text { Gain NT } \$ 200 \\ 10 & : \text { Gain NT } \$ 160 \end{aligned}$	$\begin{array}{r} 1 \sim 9: \text { Gain NT\$385 } \\ 10: \text { Gain NT\$ } 10 \end{array}$	
Question 10	1~10: Gain NT\$200	1~10: Gain NT\$385	

1. Show that both Professor Joseph and Student Yu exhibit constant relative risk aversion. Hence or otherwise, solve for their Von Neumann-Morgenstern utility functions $u(),. v($.$) ,$ and corresponding degree of relative risk aversion $R(x)$.
2. Show that a risk neutral person would choose lottery A for Questions 1~4 and lottery B otherwise.
3. Would Professor Joseph choose more or less lottery A's than a risk neutral person? Why or why not? What about Student Yu (compared to a risk neutral person and/or to Professor Joseph)?

Experimental Economics II: Political Economy T\&E Homework (19S)

4. Show that if Professor Joseph chooses lottery B in Question k, he would also choose lottery B in Question $(k+1)$.
5. Show that if a person follows expected utility theory and chooses lottery B in Question k, he would also choose lottery B in Question $(k+1)$.
6. What is the critical assumption required for the above statement to be true? Is expected utility theory really required? Why or why not?
