Bargaining （議價談判）

Joseph Tao－yi Wang（王道一） Lecture 5，EE－BGT

Bargaining（議價談㓥）

－Bargaining（就是「討價還價」！）
－Process by which economic agents agree on the terms of a deal（佃體問討論佟件，達成交易的過程）
－Common even in competitive markets
－The pit market in NYSE／market experiments

- （即使在完全嫴悉市場也很常見，例如細羓股市的交易坑市場）
- Edgeworth Box（原本是用來研究談判！）was created to show range of possible bargaining outcomes
－Have you ever bargained with someone？
－你有豤別人談判過嗎？

Bargaining（議儹談判

－Nash（1950，1951）：

- （Cooperative）Nash Bargaining Solution（萗評談判解）
- （Non－cooperative）Nash Equilibrium（䒬許均衡）
－Nash could have won two Nobels．．．
－Nash Program：Is NBS the NE／SPE of a particular game？（奈話問：NBS是否為某賴居的NE／SPE？） －Yes：Binmore，Rubinstein and Wolinsky（1986）
－References（桀䓔章節）：
－BGT，Ch．4，HEE，Ch．4，MGS，Ch． 23

2 Bargaining Experiments（郦穗談判賔驗

－Cooperative NBS vs．Non－cooperative NE
－對應合作賽局NBS和非合作賽局NE，也有兩種談判實驗：
1．Unstructured Bargaining Experiments
－Free form procedure determined by players
－Closer to naturally occurring bargaining
－自由談判䨘驗：雙方自行決定談判形式過程，較接近實務上談判
2．Structured Bargaining Experiments
－Procedure specified by experimenter
－Game theory makes specific predictions
＞制式談判實驗：形式過程由實驗者決定，賽局論能做出明確預測

Negotiation Research in Applied Psychology

3．Negotiation Research：Bazerman et al．（2000）
－Bazerman，Magliozzi and Neale（1985）
－Negotiate over several issues（ex：price／quantity）
－Free form communication with fixed deadline
－Private point schedule（dep．on each issue）
－應用心理學研究：雙方各自知道自己的報酬計分方式，在一定時限自由溝通討論，最後須在價格數量等多層面（連續或類別）上達成協議
－Results：Deals not Pareto－efficient
－Affected by systematic heuristics and other cognitive variables（unrelated to game）
－結果：達成的協議不都有效率且受到無關的經驗法則與認知因素影響

Negotiation Research（勃睘談判研究）

－Why not much overlap？（為何没有交集？）
－Game theory assumes too much rationality
－Solvable games are too simplified
－Hard to apply to Negotiation games
－賽局論假設完全理性，解得出來賽局又太簡單，很難用在協商研究
－Like 2 traditions of experimental economics
－Game experiments are too simplified
－Hard to apply to market experiments

- 正如賽局論實驗太過簡單，很難用賽局論來預測市場實驗的結果
- But research questions are the same！（研㐾闠－䟿）

Unstructured Bargaining（主由談判

－Test：Nash Bargaining Solution（NBS）
－The point maximizing the product of utility gains（beyond the disagreement point）
－奈許談判解（NBS）：與談判破裂相較讓雙方效用增加量的乘積最大的解
－Only point satisfying 4 axioms：

2．Symmetry（對袻，不受效用平移偶緥影響）
3．Independence of Irrelevant Alternatives（IIA）
4．Independence from affine utility transformation

Nash Bargaining Solution（NBS

$S^{*}=\arg \max _{\left(x_{1}, x_{2}\right) \in S}\left(x_{1}-d_{1}\right)\left(x_{2}-d_{2}\right)$
$=\arg \max _{\left(x_{1}, x_{2}\right) \in S}\left[u_{1}\left(x_{1}\right)-u_{1}\left(d_{1}\right)\right]\left[u_{2}\left(x_{2}\right)-u_{2}\left(d_{2}\right)\right]$

Satisfies：

$$
\left(x_{1}, x_{2}\right) \in S
$$

1．Pareto Optimality（效率性）：$\forall x \in S^{*}, \nexists y \in S, y>x$
2．Symmetry（對稱）：

$$
\Leftrightarrow y_{i} \geq x_{i} \forall i, y_{j}>x_{j}
$$

$$
d_{1}=d_{2},\left(x_{1}, x_{2}\right) \in S^{*} \Rightarrow\left(x_{2}, x_{1}\right) \in S^{*}
$$

3．\｜｜A（Independence of Irrelevant Alternatives；不受額外無關選項影響） S^{*} solves (T, d) if S^{*} solves (S, d) and $S^{*} \subset T \subset S$
4．IAT（Independence from affine utility transformation，不受效用平移伸縮影響）：

$$
u_{1}(x)=A x+B, u_{2}(x)=C x+D
$$

Unstructured Bargaining（主目談判）

－Roth and Malouf（Psych Rev 1979）
－Player bargain over 100 lottery tickets
－Risk neutral if can reduce compound lottery
－雙方談判如何分配 100 張彩券（每張 $=1 \%$ 機率贏得獎金）。用彩券可讓人風險中立地決策（假設人們會把複合機率簡化成單一機率）
－ 1 ticket $=1 \%$ chance winning a big prize
－Equal（\＄1）vs．Unequal Prize（\＄1．25／\＄3．75）
－Full vs．Partial（know own prize）Info．

- NBS：50－50 split（NBS預則：50－50 對分）
- 2×2 實驗設計：獎金相同／不同，資訊透明／不透明

Unstructured Bargaining（主目談判）

－Results：Agreements cluster at 50－50

－14\％Disagree when both know inequality
－Divide tickets or \＄\＄\＄payoffs equally
－Sensitive to \＄\＄\＄payoffs
－Violate IAT（indep．of affine transformation）

- 雙方清楚知道獎金不平等時，有 14% 末達成協議（彩券 vs．金錢平分）
- 結果受金錢多寡影響，違反「不受效用平移伸縮影響」公設
－Rawlsian Bargaining Solution explains this
－Followup：Roth \＆Murnighan（ECMA 1982）

Rawlsian Bargaining Solution（羅斯談判解

$S^{*}=\arg \max _{\left(x_{1}, x_{2}\right) \in S}\left(x_{1}-d_{1}\right)\left(x_{2}-d_{2}\right)$

Satisfies：

$=\arg \max _{\left(x_{1}, x_{2}\right) \in S}\left[u_{1}\left(x_{1}\right)-u_{1}\left(d_{1}\right)\right]\left[u_{2}\left(x_{2}\right)-u_{2}\left(d_{2}\right)\right]$
1．Pareto Optimality（效率性）：$\forall x \in S^{*}, \nexists y \in S, y>x$
2．Symmetry $\left(d_{1}=d_{2},\left(x_{1}, x_{2}\right) \in S^{*} \Rightarrow\left(x_{2}, x_{1}\right) \in S^{*}\right.$
3．\｜IA $\left(S^{*}\right.$ solves (T, d) if S^{*} solves (S, d) and $\left.S \subset T\right)$
4．Independence of utility transformation preserving preference order \＆which player has larger gain

$$
\underline{x_{i} \geq y_{i}} \stackrel{x_{1}-d_{1} \geq x_{2}-d_{2} \Leftrightarrow u_{i}\left(x_{1}-d_{1}\right) \geq u_{i}\left(x_{2}-d_{2}\right)}{\Leftrightarrow u_{i}\left(x_{i}\right) \geq u_{i}\left(y_{i}\right)}
$$

Unstructured Bargaining（主由談判）

－Review earlier studies to find：（回願先前實験絟現） －Murnighan，Roth \＆Schoumaker（JRU 1988）
－Pairs settle＠final minutes（of 9－12 min） －Convey private info（Stubbornness／Delay Cost）？

－Follow－up：Roth \＆Schoumaker（AER 1983）
－First play against computer that gives you a lot
－Expect \＆get this from later human players
－Strong Reputation（如果有人先跟軟弱的電腹談判，被訓铼䁲得自己該拿比䡛多，接下來面對真人態度也亶䡈强硬，並且真的拿比軟多）

Unstructured Bargaining（主由談判）

－Mehta，Starmer and Sugden（bk chp．1992）

- Nash Demand Game（䒬㸺需求責酸）： 2 Players
- Each state demand（兩人分別列出自己的需求金頙）
－Get their demand If sum $<=£ 10,0$ otherwise．
－如果總和 $<=10$ 英鎊就會得到所求，不然都得 0
－Focal point：Players split 4 Aces +4 deuces
－Before bargain，players were told：＂4 aces worth $£ 10$ together，so to earn $\$ \$$ you have to pool your aces and agree on how to divide the £10．＂ －（兩人抽八張牌，其中四張A，四張2）

Unstructured Bargaining（主由談判）

－Results：被告知四張 A 合起來值十英縍，因此要㻩銤就得把四張 A 合起

－Aces split 2－2：
－Agree 50－50 Split （各雨張 A 部街分）

- Aces 1－3：（－張／三張）
- Half 50－50，（ - 半對分）
－Half 25－75；
－ 22% disagree
（另一半要求 $25-75,22 \%$ 爆掉）

Demand	1 A	2 A	3 A
$£ 2.50$	11	0	0
$£ 3.00-4.50$	5	1	1
$£ 5.00$	16	40	17
$£ 5.50-7.00$	0	1	11
$£ 7.50$	0	0	4
N	32	42	33

Can BGT Explain This？（行為埌局論解釋？

－Roth（1985）explains as Coordination Game －Two sides simultaneously propose to split tickets either 50－50 or h－（100－h）

－MSE：

$$
h-50
$$

$$
h-50
$$

$$
p_{1}=\frac{}{150-h} \quad p_{2}=\frac{}{h+50}
$$

$$
(h-50)^{2}
$$

$$
\overline{(150-h)(50+h)}
$$

Can BGT Explain This？（行為暳局論解釋？

－Roth（bk chp 1985）
－Disagreement rates $=$

$$
(h-50)^{2}
$$

$$
\overline{(150-h)(50+h)}
$$

－Predicted to be $0 \% \rightarrow 7 \% \rightarrow 10 \%$ －For $h=50,75,80$ in pervious experiments
Data： $7 \% \rightarrow 18 \% \rightarrow 25 \%$（Direction is right！）
－Murnighan et al．（JRU 1988） －$h=60,70,80,90$ predict $1 \%, 4 \%, 10 \%, 19 \%$
－Actual data not as good：Constant across h

－Cause of Disagreement：Self－Serving Bias（自利扁誤） ＂＂What is better for me＂＝＂Fair＂（殏我有利才叫公平）
－Add this to the above coordination game －Can explain higher disagreement rate in data
－Same in Kagel，Kim and Moser（GEB 1996）： －Ultimatum over 100 tickets（P／R value differently）
－Not know P value H／L \rightarrow Propose 45\％／30\％ －Know P value higher，R rejects 40% ，wants $>50 \%$ （最後通牒談判分配100張（價値不同的）彩券，對方不知道價値時提議者提議55－45（價値高）$/ 70-30$（價値低）。知道對方價値較高時回應者會要求比 $50-50$ 更好，拒絶 40% 的提議）

Babcock et al．（AER 1995，Law\＆Social Inquiry 1997）

－Self－serving bias Exp：Loewenstein et al．（JLS 93＇）
－Read 27－page actual legal case（瀆27頁奙宗／䜘判和确） －Motorcyclist sues driver：\＄100，000 injury damage －Bargain for 30 min ．to settle it for ？？dollars －\＄5000 legal fees for every 5 －min delay －Retired judge imposes award if no agreement
－First Guess what judge would award －US\＄1（or 1 Grade Point）for every \＄10，000
 －事先預測和解不成法官咱如何判（實殓中 $\$ 10,000=-$ 美金或 1 GPA ）

Gap of E（judgment）Predicts Disagreement

－Baseline： 70% cases settled at period 3－4（out of 6）
－E（judgment）differ by $\$ 20,000$（ 20% of $\$ 100,000$ ）

- 控制粗結果： 70% 的組在第 $3-4$ 回合達成和解（䌐共 6 （回合）
- 雙方預期判決結果的落差在\＄20，000左右（訴訟金額的20\％）

Information

Control：Babcock 97＇ $26654.08(0.46) \$ 21,783(3,956)$

More Pairs Settled (and More Rapidly) if...

- Don't know role @ reading: 94\% (in 2.51 pds) - Or, before bargaining, 1st tell about bias and
- List Weakness of own case: 96\% (in 2.39 pds)

Information Settlement Stat. E(judgmt) Gap N \% periods (s.e.) mean (s.e.)

Summary for Unstructured Bargaining

- Focal points affect bargaining outcome
- Chip value affect bargaining outcome - Violate IAT Axiom of NBS
- BGT Explanation: Bargainers try to coordinate under multiple focal points
- Self-serving bias predict costly delay/settle - "Outcome favoring me is more likely/fair"
- Caused by knowing my role when reading case

Structured Bargaining（制式談判

－Finite Alternating－Offer Game（有限回交互提案）
－Binmore，Shaked \＆Sutton（1985）： 2 period
－ 1 offers a division of 100 p to 2
－If 2 rejects，makes counteroffer dividing 25p

- 成員甲提諥如何分配100p，成員乙回㦄。若拒絶則由他提議分配25p
- SPE：Offer 25－75（子賔局完全均䲢：成員甲提鈊25－75）
－Experimental Results：mode at 50－50，some 25－75 and others in between
－實驗結果：提議分配的衆數在50－50，有些在25－75，其他在兩者之間

Structured Bargaining（制式談判

－Neelin，Sonnenschein and Spiegel（1988） －Economics undergrads yield different results
－Are they taught backward induction？Also，

－Binmore：＂YOU WOULD BE DOING US A FAVOR IF YOU SIMPLY SET OUT TO MAXIMIZE YOUR WINNINGS．＂
－Neelin：＂You would be discussing the theory this experiment is designed to test in class．＂

Structured Bargaining（制式談判

－Social Preference or Limited Strategic Thinking？（是因為人們有社霜偏好，還是理性思考有限制？）
－Johnson，Camerer，Sen \＆Rymon（2002）， II Detecting Failures of Backward Induction： Monitoring Information Search in Economic Theory， 104 （1），16－47．
－Some do not even look at the last stage payoffs in 3－stage bargaining games！ －三回合談判，有人「不看」 最後一回合

Structured Bargaining（制式談判

－Random Termination vs．Discounting
－Zwick，Rapoport and Howard（ToD 1992）
－Divide $\$ 30$ with random termination
－Continuation probabilities 0．90，0．67， 0.17
－SPE：14．21，12， 4.29
－Accepted final offers：14．97，14．76， 13.92
－Close to discounting results（50－50 \＆SPE）
－14．90，14．64， 13.57

Structured Bargaining（制式談判

－Fixed Delay Cost in Bargaining
－Lost wages，profits，etc．
－SPE：Strong side（lower delay cost）gets all
－Rapoport，Weg and Felsenthal（ToD 1990）
－Divide 30 shekels（pseudo－infinite horizon） －Fixed Cost： 0.10 vs． 2.50 or 0.20 vs． 3.00
－Strong support for SPE：In the 1st round， －Strong P offer 4．4－7．9，weak R accept 60－80\％ －Weak P offer low，strong R accept 30% ，but later quickly settle in $2^{\text {nd }}(35 \%)$ or $3^{\text {rd }}-4^{\text {th }}(22 \%)$

Outside Option and Threat Points

- Binmore, Shaked and Sutton (QJE 1989) - Two players bargain over £7, discount - Player 2 has outside option of $£ 0, £ 2$, or $£ 4$
- Split-the-difference (NBS): 47\%, 64\%, 76\% - Divide surplus beyond the threat points
- Deal-me-out (SPE): 47\%, 47\%,57\%(=4/7) ${ }_{\delta}$
- Options matter only if is credible; ignore if $<\frac{\delta}{1-\delta}$
- BGT, Figure 4.4: Deal-me-out wins - £0, £2: spike around 50\% / £4: cluster @ 57%

Incomplete Information（資訊不透明

－Add Asymmetric Information to bargaining
－More realistic，but
－Hard to bargain for a bigger share AND convey information at the same time
－Might need to turn down an offer to signal patience or a better outside option

Seller Make Offer to Informed Buver

- Rapoport, Erve, and Zwick (MS 1995)
- Seller: Own item (worthless to herself)
- Buyer: Private reservation price is unif.[0,1]
- Seller makes an offer each period
- Common discount factor δ

Seller Make Offer to Informed Buver

- Unique Sequential Equilibrium:
- Seller Offer:

$$
p_{0}=\gamma \cdot \frac{1-\delta}{1-\gamma \cdot \delta}, \quad \gamma=\frac{1-\sqrt{1-\delta}}{\delta}
$$

- Subsequently: $p_{t}=p_{0} \cdot \gamma^{t}$
, Buyer Accepts if $p_{t} \leq v \cdot \frac{1-\delta}{1-\gamma \cdot \delta}$

Seller Make Offer to Informed Buver

- Complicate Strategy: Depend on δ
- Price discriminate high/low-value buyers
- Price declines slow enough so high-value buyers will not want to wait
- Can subjects get these in experiments? - Different δ : H (0.90), M (0.67), L (0.33)
- Opening p_{0} : H (0.24), M (0.36), L (0.45)
- Discount γ : H (0.76), M (0.68), L (0.55)

Seller Make Offer to Informed Buyer

Seller Make Offer to Informed Buver

- Can subjects get these in experiments?
- Different $\delta: \mathrm{H}(0.90), \mathrm{M}(0.67), \mathrm{L}(0.33)$
- Opening p_{0} : H (0.24), M (0.36), L (0.45)
- Discount γ : H (0.76), M (0.68), L (0.55)
- Buyers accept the $1^{\text {st }}$ or $2^{\text {nd }}$ offer below v - Accept offers too soon
- Sellers ask for higher prices (than equil.) - But discount $\gamma: \mathrm{H}(0.81), \mathrm{M}(0.68), \mathrm{L}(0.55)$

Strikes and 1-Sided Information

- Forsythe, Kennan and Sopher (AER 1991)
- Only Informed bargainer I sees pie size - Either large (π_{g}) or small (π_{b})
- Free-form bargaining
- Uninformed U can strike to shrink pie by γ
- Can we predict what happens?

Strikes and 1-Sided Information

- Forsythe, Kennan and Sopher (AER 1991) - Only Informed bargainer I sees pie size π_{g} or π_{b}
- Uninformed U can strike to shrink pie by γ
- Can we predict what happens?
- Free-form bargaining
- Myerson (1979): Revelation Principle
- I announces true state
- U strikes to shrink pie by γ_{g} or γ_{b}
- I gives U (based on true state) x_{g} or x_{b}

Strikes and 1-Sided Information

- IC requires:
$\left(\gamma_{g}-\gamma_{b}\right) \pi_{b} \leq x_{g}-x_{b} \leq\left(\gamma_{g}-\gamma_{b}\right) \pi_{g}$
- Interim Incentive Efficiency requires:

$$
\gamma_{g}=1, x_{g}-x_{b}=\left(1-\gamma_{b}\right) \pi_{g}
$$

- Strike $\left(\gamma_{\mathrm{b}}<1\right)$ if and only if $p \pi_{g}>\pi_{b}$
- Deriving this is complicated...
- Could ANY subject get close to this?

Strikes and 1-Sided Information

- Random Dictator (RD) Axiom:
- Agree fair mix between each being dictator to propose mechanism
- Then:

$$
\begin{aligned}
& \gamma_{g}=1, x_{g}=\frac{\pi_{g}}{2}, \gamma_{b}=\frac{1}{2}, x_{b}=0 \text { if } p \pi_{g}>\pi_{b} \\
& \gamma_{g}=1, x_{g}=\frac{\pi_{b}}{2}, \gamma_{b}=1, x_{b}=\frac{\pi_{b}}{2} \text { if } p \pi_{g}<\pi_{b}
\end{aligned}
$$

Strikes and 1-Sided Information

- This is a win-win experiment:
- Success if theory predictions are close - If not, will point to which assumption fails
- Forsythe et al. (AER 1995):
- 10 minute sessions; written messages
- Is Myerson (1979) confirmed?
- Surprisingly yes, though not perfect...

Strike Condition Off
 $p \pi_{g}<\pi_{b}$

Game	p	State	π	π_{u}	π	Total	\% Strike
III	0.5	b	2.80				
		g	4.20				
		aver.	3.50	1.50	1.80	3.29	6.0\%
		pred.		1.40	2.10	3.50	0.0\%
IV	0.25	b	2.40				
		g	6.80				
		aver.	350	1.21	2.04	3.24	7.4\%
		pred.		1.20	2.30	3.50	0.0\%

Strike Condition On
 $p \pi_{g}>\pi_{b}$

\section*{| Game | p | State | π | π_{U} | π_{\perp} | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Sealed-Bid in Bilateral Bargaining

- Both buyers and sellers have private information
- Sealed-Bid Mechanism
- Both write down a price
- Trade at the average if $p_{b}>p_{s}$
- Call Market: Many buyers vs. many sellers
- Two-Person Sealed-Bid Mechanism
- One form of bilateral bargaining

Sealed-Bid in Bilateral Bargaining

- Two-Person Sealed-Bid Mechanism
- Buyer V: unif.[0,100]; Seller C : unif.[0,100]
- Piecewise-linear equilibrium: (not unique) - Chatterjee and Samuelson (1983)
- Max. ex ante gains (Myerson \& Satterthwaite 83)

$$
\begin{aligned}
& p_{b}=\left\{\begin{array}{cl}
V & \text { if } V<25 \\
\frac{25}{3}+\frac{2}{3} V & \text { if } V \geq 25
\end{array}\right. \\
& p_{s}=\left\{\begin{array}{cl}
25+\frac{2}{3} C & \text { if } C<75 \\
C & \text { if } C \geq 75
\end{array}\right.
\end{aligned}
$$

Sealed-Bid in Bilateral Bargaining

- Radner and Schotter (JET 1989): 8 sessions
- 1, 2, 8: Baseline as above
- 3: Trade at price $(\mathrm{v}+\mathrm{c}+50) / 3$ if $\mathrm{v}>\mathrm{c}+25$ - Should bid their values $\mathrm{v}=V, \mathrm{c}=C$
- 4: Price $=\mathrm{v}$, (Buyers should bid $\mathrm{v}=\mathrm{V} / 2$)
- 5,6: Alternative distribution for more learning
- Distribution w/ more trade (for learning): $\mathrm{m}=0.438$
- 7: Face-to-face bargaining

		uver	Bid F	ncti	Sl	
	Belo	Cutoff		Above	utoff	
Session	B	β	t-stat	B	$\hat{\beta}$	t-stat
1	1	1.00	(0.01)	0.67	0.85*	(4.14)
2	1	0.91	(-0.52)	0.67	1.06	(1.28)
8	1	0.91	(-0.14)	0.67	0.80*	(2.32)
3	1	0.92	(-0.88)	1	0.73*	(-2.64)
4	0.5	0.55	(0.66)	0.5	0.58*	(2.32)
5	1	0.80*	(-4.17)	0.438	0.50	(1.12)
6 (-20)	1	0.85	(-1.40)	0.438	0.40	(0.56)
6 (21-)	1	1.11	(0.70)	0.438	0.32	(-1.55)
2019/4/26			Bargaining		erem	We

Estimated Seller Bid Function Slope

Below Cutoff

Above Cutoff

Session	β	β	t-stat	β	β	t-stat
1	0.67	0.58	(-1.38)	1	0.97	(-0.32)
2	0.67	0.74	(1.28)	1	1.07	(0.14)
8	0.67	0.75	(1.65)	1	1.07	(0.17)
3	1	1.06	(1.04)	1	0.67	(-0.58)
5	0.438	0.48	(0.87)	1	1.00	(0.60)
6 (-20)	0.438	0.57*	(2.16)	1	0.97	(-0.79)
6 (21-)	0.438	0.52	(1.20)	1	0.95	(-0.69)

Sealed-Bid in Bilateral Bargaining

- Face-to-face yields efficiency 110%

- Some truthfully reveal; others do not
- Radner and Schotter (1989, p.210):
- The success of the face-to-face mechanism, if replicated, might lead to a halt in the search for better ways to structure bargaining in situations of incomplete information.
- It would create, however, a need for a theory of such structured bargaining in order to enable us to understand why the mechanism is so successful.

Sealed-Bid in Bilateral Bargaining

- Follow-up Studies:
- Schotter, Snyder and Zheng (GEB 2000) - Add agents
- Rapoport and Fuller (1995)
- Strategy method; asymmetric value dist.
- Daniel, Seale and Rapoport (1998)
- Asymmetric value distribution (20 vs. 200)
- Rapoport, Daniel and Seale (1998)
- Flip buyer-seller asymmetry; fixed pairing

Communication vs. Sealed-Bid

- Valley et al. (GEB 2002): Communication
- Buyer/Seller Values/Costs: uniform[0, \$50]
- Bargain by stating bids; 7 periods; no rematch
- Half had no feedback
- No communication: Sealed-bid in 2 minutes
- Written communication: Exchange messages for 13 minutes before final bid
- Face-to-face: Pre-game communication

Communication vs. Sealed-Bid

A. No communication

- NO TRADE
- TRADE
$\longrightarrow \mathrm{Vb}=\mathrm{Vs}_{s}$
$\longrightarrow \mathrm{Vb}=\mathrm{Vs}+12.5$

Communication vs. Sealed-Bid

B. Written communication

- NO TRADE
- TRADE
$\longrightarrow \mathrm{Vb}=\mathrm{Vs}$
$\longrightarrow \mathrm{Vb}=\mathrm{Vs}+12.5$

Communication vs. Sealed-Bid

C. Face-to-face communication

ㅁ NO TRADE

- TRADE
$\longrightarrow \mathrm{Vb}=\mathrm{Vs}$
$-\mathrm{Vb}=\mathrm{Vs}+12.5$

Communication vs. Sealed-Bid

- Empirical bid function slope $=0.7(\sim 0.67)$
- Why are there "gains of communication"?
- Slope of buyer bids against seller bids=0.6
- Buyers bid higher when seller bids higher - Mutual bidding of values (common in students) - Mutual revelation of values (com. in students) - Coordinating on a price (40% written; 70% face)

Communication vs. Sealed-Bid

- Coordinating on a price
- Happens 40% in written, 70% in face-to-face
- Not truth-telling (only $1 / 3$)
- TT not coordinated (4\% written, 8\% face)
- Feel each other out; give enough surplus - Modal - equal split of surplus
- Variance of surplus doubles (by mismatch)

Conclusion

- Unstructured Bargaining
- Focal divisions; competing focal points
- Self-serving bias (erased by veil of ignorance or stating weakness of own case)
- Structured Bargaining
- Deviate toward equal splits
- Social preference models could explain this
- But Johnson et al. (JET 2002) suggest limited look-ahead as reason for such deviations

Conclusion

- Outside options affect bargaining divisions only if threats are credible
- Lower fixed cost player gets everything
- Information Asymmetry: One-Sided
- Revelation Principle + Random Dictator: Good
- Bazaar mechanism:
- Offers decline as theory predicts, but start too high and respond to δ wrongly
- Buyers accept too early

Conclusion

- Bilateral Bargaining: Two-Sided
- Sealed-bid mechanism: between truthful revelation and piecewise-linear equilibrium
- Players over-reveal values in face-to-face - Too honest, but "more efficient"
- Communication \rightarrow agree on a single price
- Why theory does better in sealed-bid than alternative-offer bargaining?
- Is sealed-bid cognitively more transparent?

致謝

感謝 Management Science還有以下三位教授讓我們在第47

張投影片使用下述論文的圖片：－Amnon Rapoport，Ido Erev，and Rami Zwick（1995），＂An Experimental Study of Buyer－Seller Negotiation with One－ Sided Incomplete Information and Time Discounting，＂ Management Science，41（3），377－394．
感謝Games and Economic Behavior 還有以下四位教授讓我們在 $77,78,79$ 這三張投影片中使用以下文章的一張圖表：
－Kathleen Valley，Leigh Thompson，Robert Gibbons，Max H． Bazerman（2002），＂How Communication Improves Efficiency in Bargaining Games，＂Games and Economic Behavior，38（1）， 127－155．

