# Estimating Learning 估計學習理論模型

Joseph Tao-yi Wang (王道一) Experimetrics Module 7, EE-BGT

**Estimating Learning** 

Joseph Tao-yi Wang

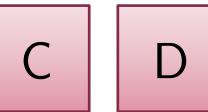
# Outline: Estimating Learning (Experimetrics, Ch. 18)

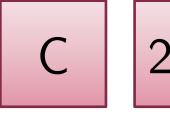
- 1. Directional Learning (DL): Selten and Stoecker (1986)
- 2. Reinforcement Learning (RL)
- 3. Belief Learning (BL)
- 4. EWA Learning: Camerer and Ho (ECMA 1999)
  - ► Experience-Weighted Attraction a Hybrid of RL and BL

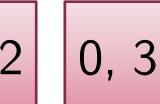
# Directional Learning Theory

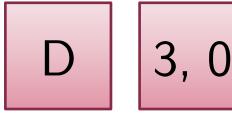
- Adjust behavior in response to previous outcome
  - Selten and Stoecker (1986)
  - Finitely Repeated Prisoner's Dilemma (PD)
  - SPE: Always Defect
- Stylized Facts

- Tacit Cooperation Until Close to End
- ▶ Want to Defect 1<sup>st</sup> (then Keep Defect)
- Decision: Which Round to Defect



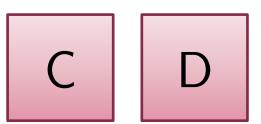


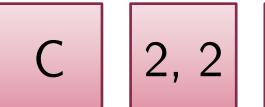




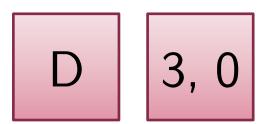
#### **Directional Learning Theory**

- $\blacktriangleright$  Play N Supergames with a different opponent each time
  - Adjust next intended deviation period:
- If Deviated First:
  - May gain if deviated later
- ► If Deviated Later:
  - May gain if deviate early
- ▶ If Deviate in the Same Round:
  - May gain if deviate 1 period earlier











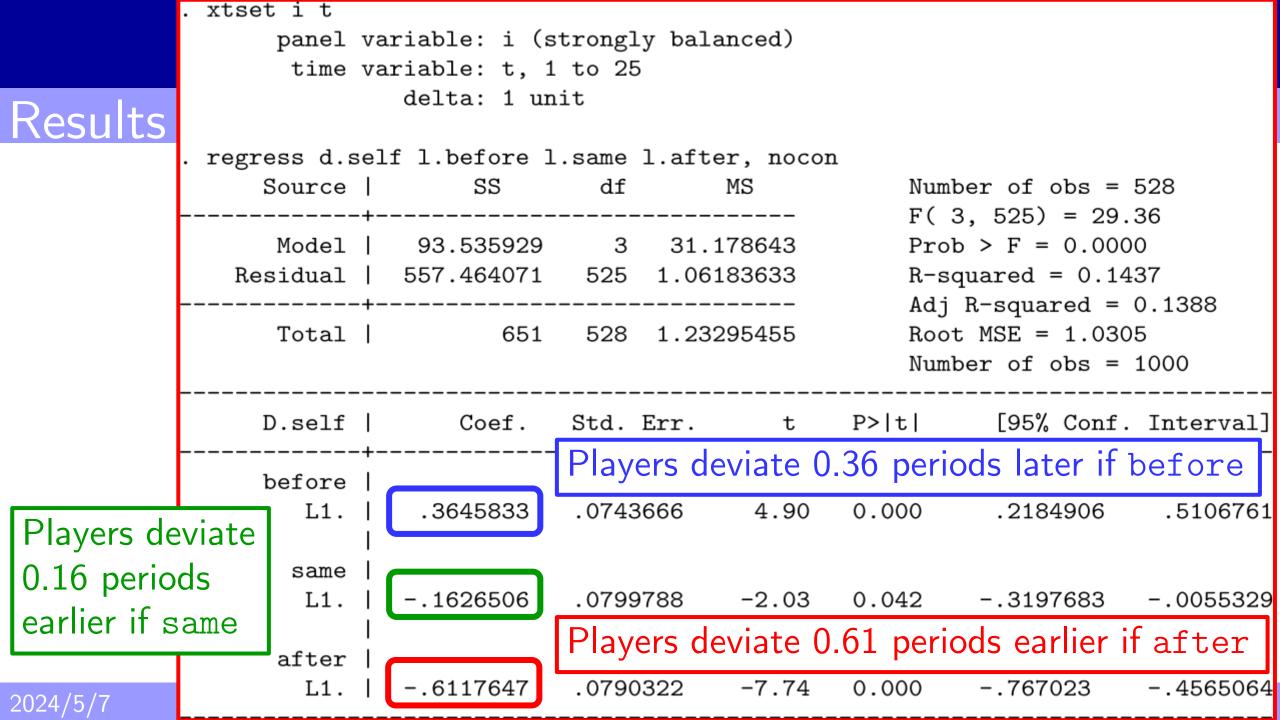
# The Data: Table B1 of Selten and Stoecker (1986)

- ▶ *n*=35 subjects play 25 supergames (of 10-round PD)
  - ▶ Play the same opponent within 10 rounds of PD, but
  - Randomly rematch in between: selten-stoecker.dta
- Intended Deviation Period of each supergame: self
  - self/other = 1-10 (period)
  - self/other = 11 (later than opponent, but unobserved)
  - self/other = 12 (never deviate)
- Deviate before/same/after their opponent

# Simple Linear Regression

- Predict difference in self with before/same/after
  - > d.self Difference in self
  - >l.before Lagged before
  - >l.same Lagged same
  - >l.after Lagged after
- **STATA** Command:
  - xtset i t

regress d.self l.before l.same l.after, nocon No constant term



# Pursue-Evade Game (Rosenthal et al. 2003)

- Data: 100 pairs of 50 rounds pursue\_evade\_sim.dta
- Payoff Table

Player 1 (Pursuer): L (left) or R (right)
y1 = 0 if Pursuer choose L; y1 = 1 if Pursuer choose R
Player 2 (Evader): L (left) or R (right)
y2 = 0 if Evader choose L; y2 = 1 if Evader choose R

# Pursue-Evade Game (Rosenthal et al. 2003)

- Find Two Players: i = 1, 2
- ▶ Rounds: t = 1, 2, ..., T = 50
- Five Actions:  $s_i^0 = \mathbf{L}$ ,  $s_i^1 = \mathbf{R}$ 
  - Relabel as
- Actions j = 0 (L) and j = 1 (R)
- Strategy of Players *i* in round *t* is  $s_i(t)$
- Strategy of Players -i in round t is  $s_{-i}(t)$
- Players *i*'s Payoff in round *t* is  $\pi_i(s_i(t), s_{-i}(t))$

1, -1

0.0

R

R

0, 0

2. -2

#### Learning

Attraction to action j = 0, 1 after round t is  $A_i^j(t)$ 

- Initial Attractions to action j = 0, 1 is  $A_i^j(0)$ 
  - Normalize one of initial attractions to 0 for each player
- Choice Probability obtained by logistic transformation

$$P_{i}^{j}(t) = \frac{\exp\left[\lambda A_{i}^{j}(t-1)\right]}{\exp\left[\lambda A_{1}^{j}(t-1)\right] + \exp\left[\lambda A_{0}^{j}(t-1)\right]} \bullet \text{Irrelevant } (\lambda = 0)$$
  
$$\bullet i = 1, 2; j = 0, 1; t = 1, 2, ..., T; \lambda = \text{Sensitivity to attractions}$$

JOSEDH

# Reinforcement Learning (RL)

- Erev and Roth (1998)
- Update attractions in response to previous payoffs
  - Choices "reinforced" only by previous payoffs

$$\underline{A_i^j(t)} = \phi \underline{A_i^j(t-1)} + I(s_i(t) = s_i^j) \pi_i(s_i^j, s_{-i}(t))$$

▶ 
$$i = 1, 2; j = 0, 1; t = 1, 2,...,T$$

Recency parameter:

 $\blacktriangleright \phi = 0$ : Only most recent payoff is remembered

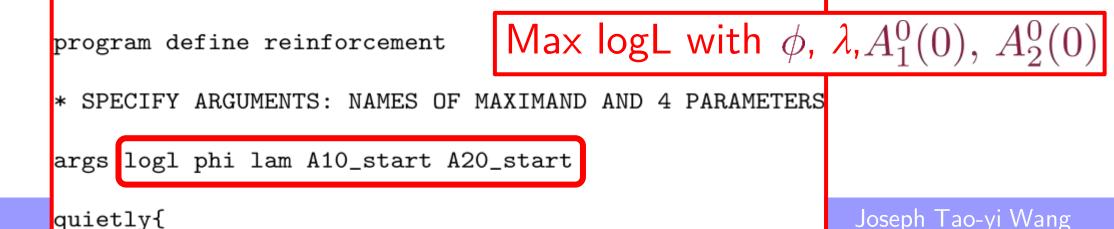
 $\blacktriangleright \phi = 1$ : All past payoffs have equal weight

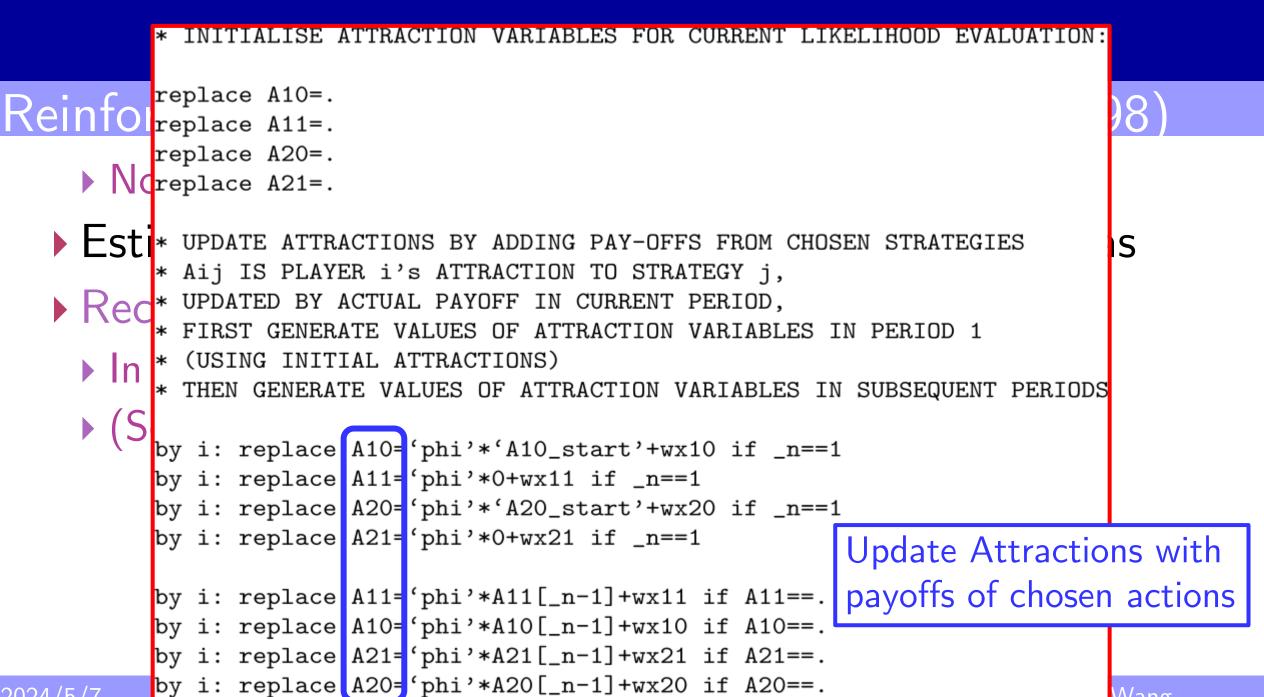
# Reinforcement Learning (RL)

- ▶ Normalize Initial Attractions  $A_1^1(0) = 0, A_2^1(0) = 0$
- Estimate Initial Attractions  $A_1^0(0), A_2^0(0)$ , as well as
- Recency parameter  $\phi$  and Sensitivity parameter  $\lambda$ 
  - In STATA using Maximum Likelihood
  - (See code in package)

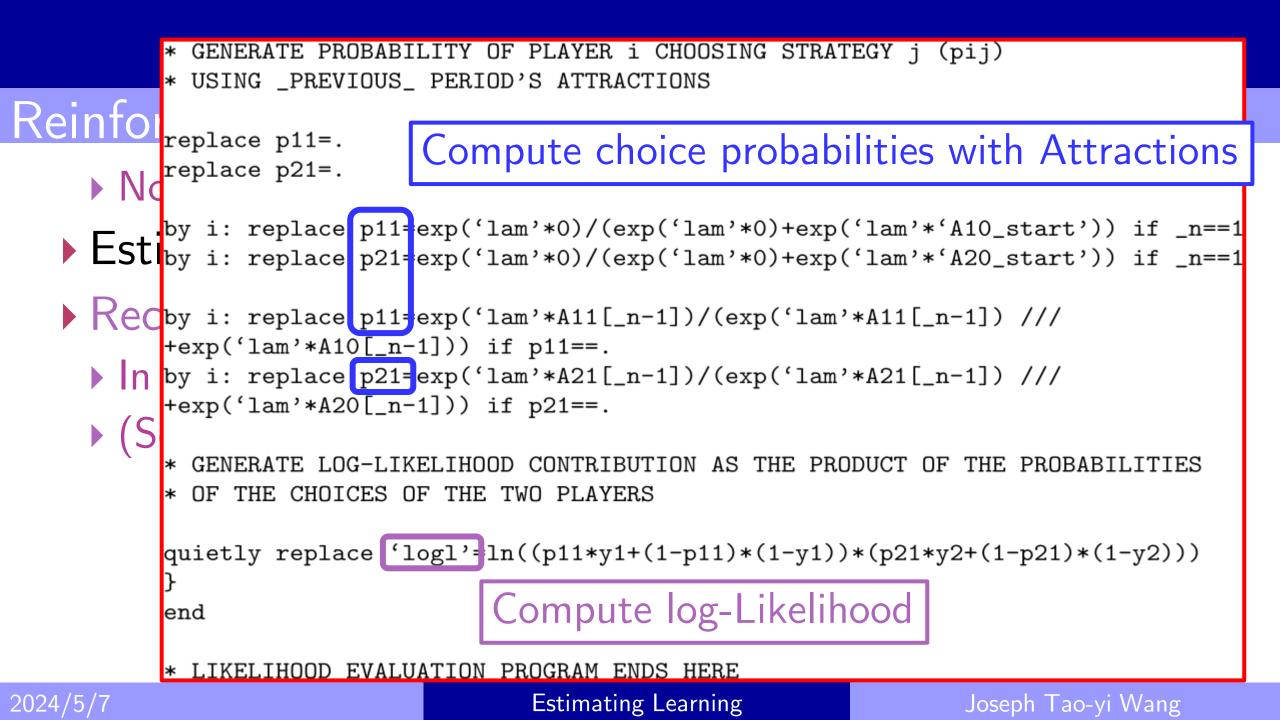
2024/5/7

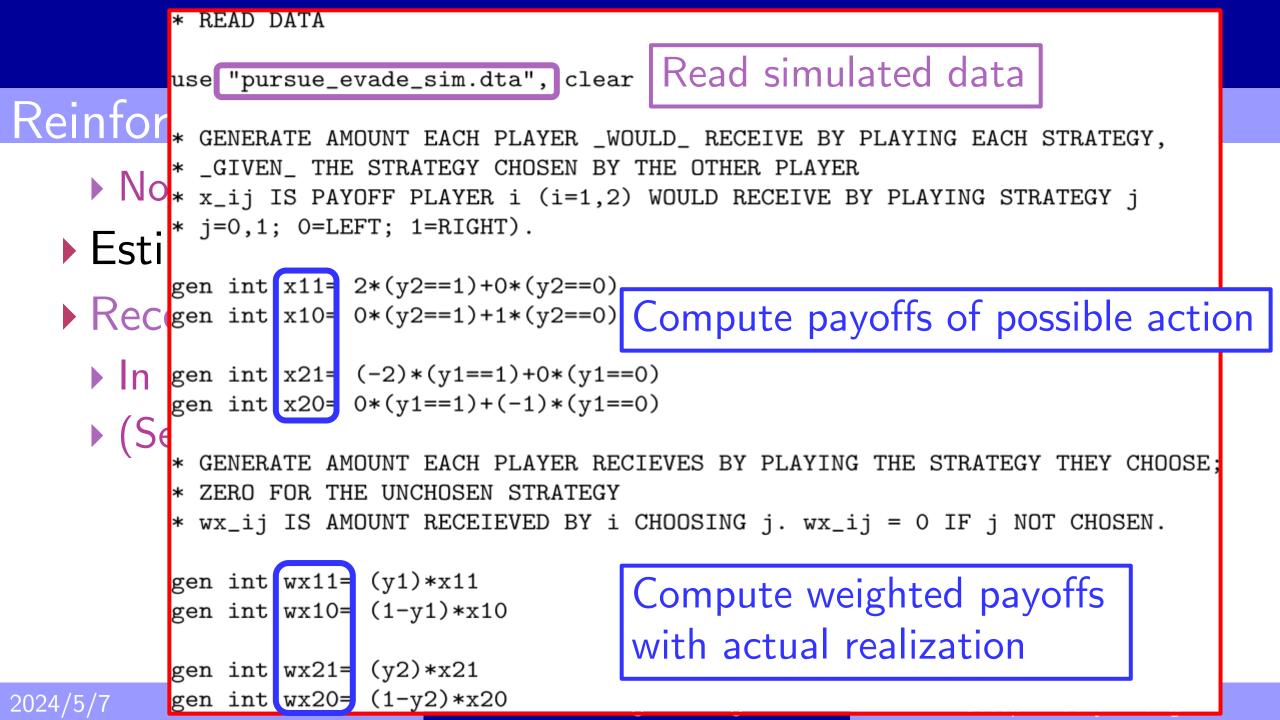
LIKELIHOOD EVALUATION PROGRAM STARTS HERE

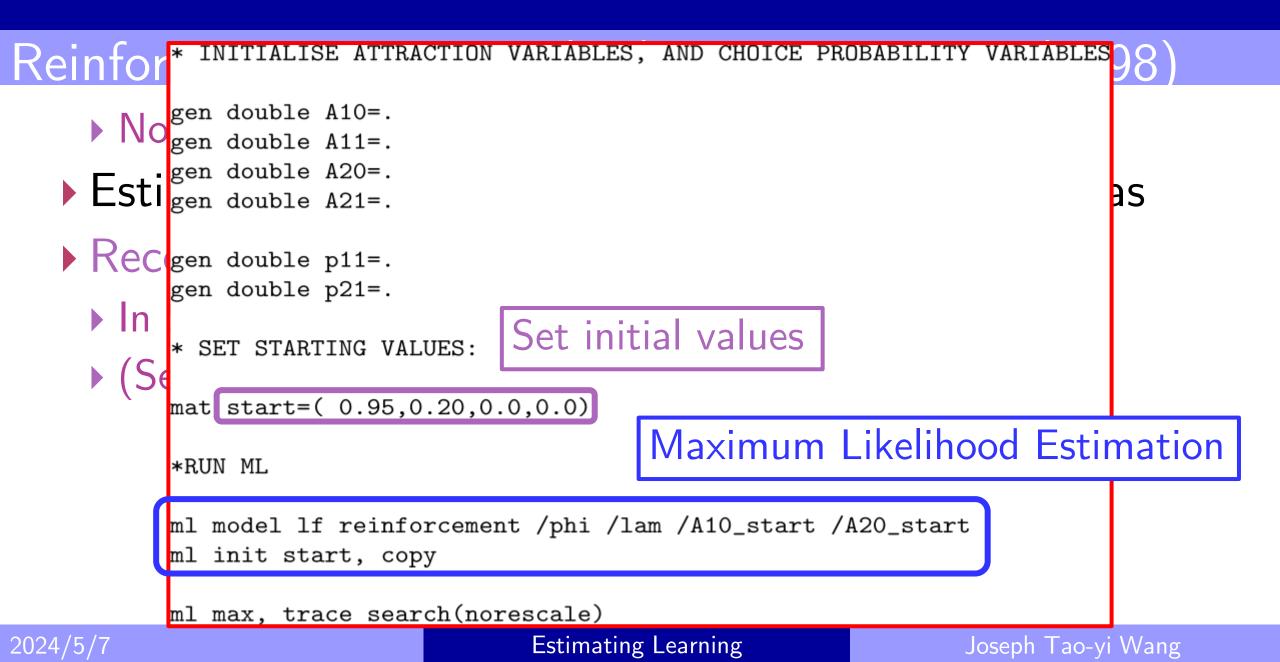


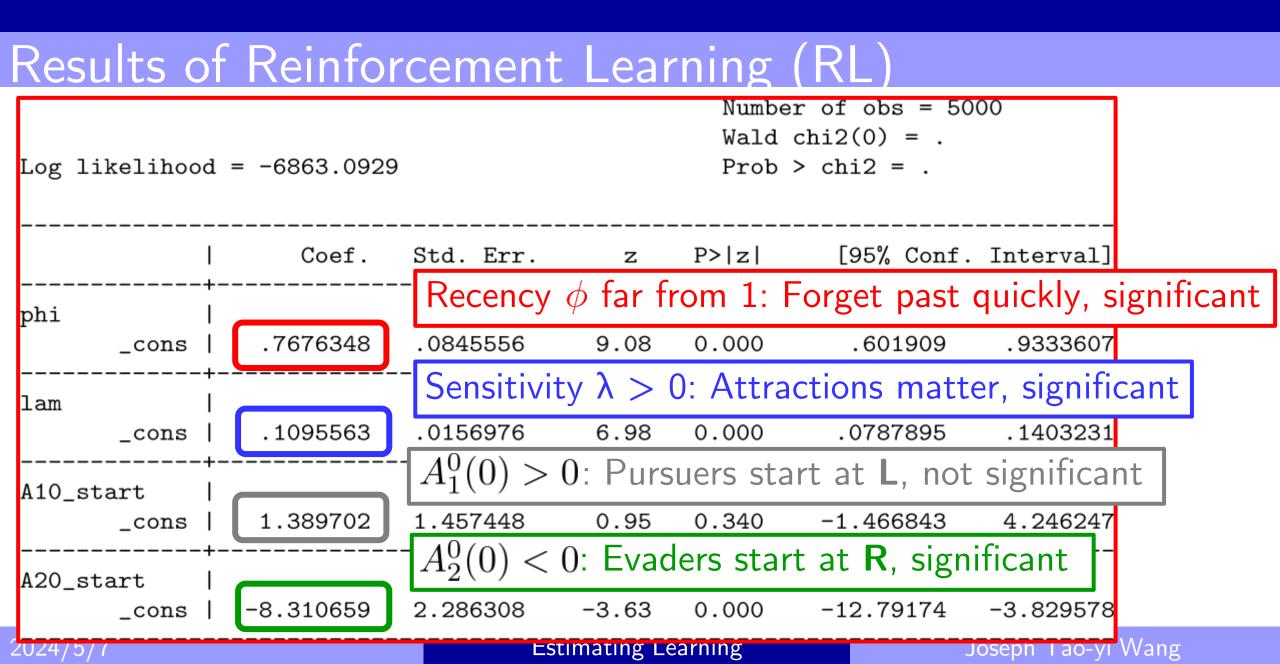


√ang









# Simple Belief Learning (BL): Cournot Learning

Cournot Learning: Attractions increase by actioncorresponding payoffs given opponent actions

BR to opponent action in previous round

$$A_{i}^{j}(t) = A_{i}^{j}(t-1) + \pi_{i}(s_{i}^{j}, s_{-i}(t))$$

▶ i = 1, 2; j = 0, 1; t = 1, 2,...,T

- ▶ Normalize Initial Attractions  $A_1^1(0) = 0, A_2^1(0) = 0$
- ▶ Only need to estimate Initial Attractions A<sup>0</sup><sub>1</sub>(0), A<sup>0</sup><sub>2</sub>(0) and λ using Maximum Likelihood (Too simple?!)

# Belief Learning (BL): Standard Fictitious Play

- Standard Fictitious Play: Attractions is actioncorresponding average payoffs
  - Counting cards and BR to opponent actions from all rounds
- All Initial Attractions are zero:  $A_i^j(0) = 0$ , j = 0, 1

$$A_i^j(1) = \pi_i \left( s_i^j, s_{-i}(1) \right), A_i^j(2) = \frac{1}{2} \left[ \pi_i \left( s_i^j, s_{-i}(1) \right) + \pi_i \left( s_i^j, s_{-i}(2) \right) \right]$$

$$A_i^j(3) = \frac{1}{3} \left[ \pi_i \left( s_i^j, s_{-i}(1) \right) + \pi_i \left( s_i^j, s_{-i}(2) \right) + \pi_i \left( s_i^j, s_{-i}(3) \right) \right]$$

• ..., 
$$A_i^j(t) = \frac{1}{t} \sum_{\tau=1}^t \pi_i(s_i^j, s_{-i}(\tau))$$

# Belief Learning (BL): Experience Weight

- Express Attractions based on Experience N(t)
  - $\blacktriangleright$  Observation Equivalents: Experience accumulated up to t
- Initial Experience is zero: N(0) = 0

- Iteratively define N(t) = N(t-1) + 1, t = 1,...,T
- All Initial Attractions are zero:  $A_i^j(0) = 0$  , j = 0, 1
- Iteratively define (for j = 0, 1; t = 1, ..., T)
  - $A_i^j(t) = \frac{1}{N(t)} \left[ N(t-1)A_i^j(t-1) + \pi_i \left( s_i^j, s_{-i}(t) \right) \right]$
  - Special Case of N(t) = t is Standard Fictitious Play!

# Belief Learning (BL): Weighted Fictitious Play

- Another Special Case is Weighted Fictitious Play
  - $\blacktriangleright$  With Recency parameter  $\phi$
- Initial Experience is zero: N(0) = 0
- Iteratively define  $N(t) = \phi N(t-1) + 1, t = 1, \cdots, T$
- All Initial Attractions are zero:  $A_i^j(0) = 0$  , j = 0, 1
- Iteratively define (for j = 0, 1; t = 1,...,T)

$$A_i^j(t) = \frac{1}{N(t)} \begin{bmatrix} \phi N(t-1)A_i^j(t-1) + \pi_i(s_i^j, s_{-i}(t)) \end{bmatrix}$$
  
Weights are 1,  $\phi$ ,  $\phi^2$ ,  $\phi^3$ , etc.

# Belief Learning (BL): Weighted Fictitious Play

- Weighted Fictitious Play: Attractions is actioncorresponding average payoffs weighted by recency (exponentially discounted)
- All Initial Attractions are zero:  $A_i^j(0) = 0$ , j = 0, 1  $A_i^j(1) = \pi_i(s_i^j, s_{-i}(1)),$   $A_i^j(2) = \frac{1}{\phi+1} \left[ \phi \pi_i(s_i^j, s_{-i}(1)) + \pi_i(s_i^j, s_{-i}(2)) \right]$  $A_i^j(3) = \frac{\phi^2 \pi_i(s_i^j, s_{-i}(1)) + \phi \pi_i(s_i^j, s_{-i}(2)) + \pi_i(s_i^j, s_{-i}(3))}{\phi^2 + \phi + 1}$ , etc.

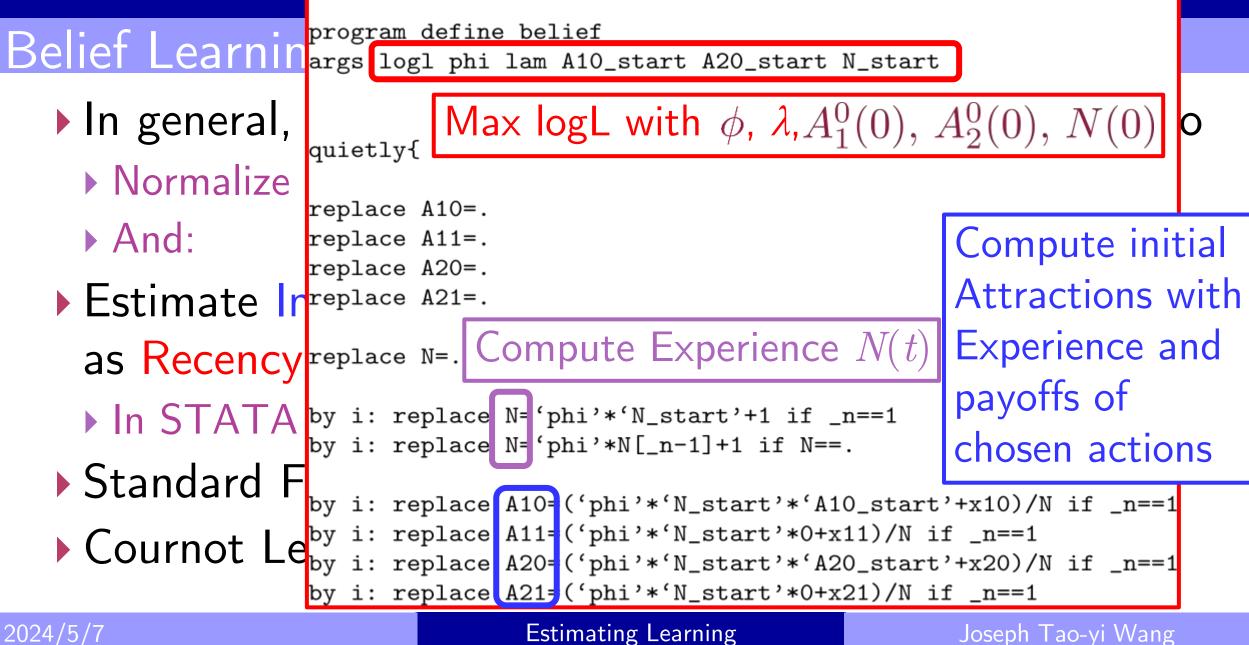
# Belief Learning (BL): Weighted Fictitious Play

- In general, initial attractions and N(0) need not be zero
  - ▶ Normalize Initial Attractions  $A_1^1(0) = 0, A_2^1(0) = 0$

And:

- Estimate Initial Attractions A<sup>0</sup><sub>1</sub>(0), A<sup>0</sup><sub>2</sub>(0), N(0) as well as Recency parameter φ and Sensitivity parameter λ
  In STATA using Maximum Likelihood (See code in package)
  Standard Fictitious Play if φ = 1
- Cournot Learning if  $\phi = 0$

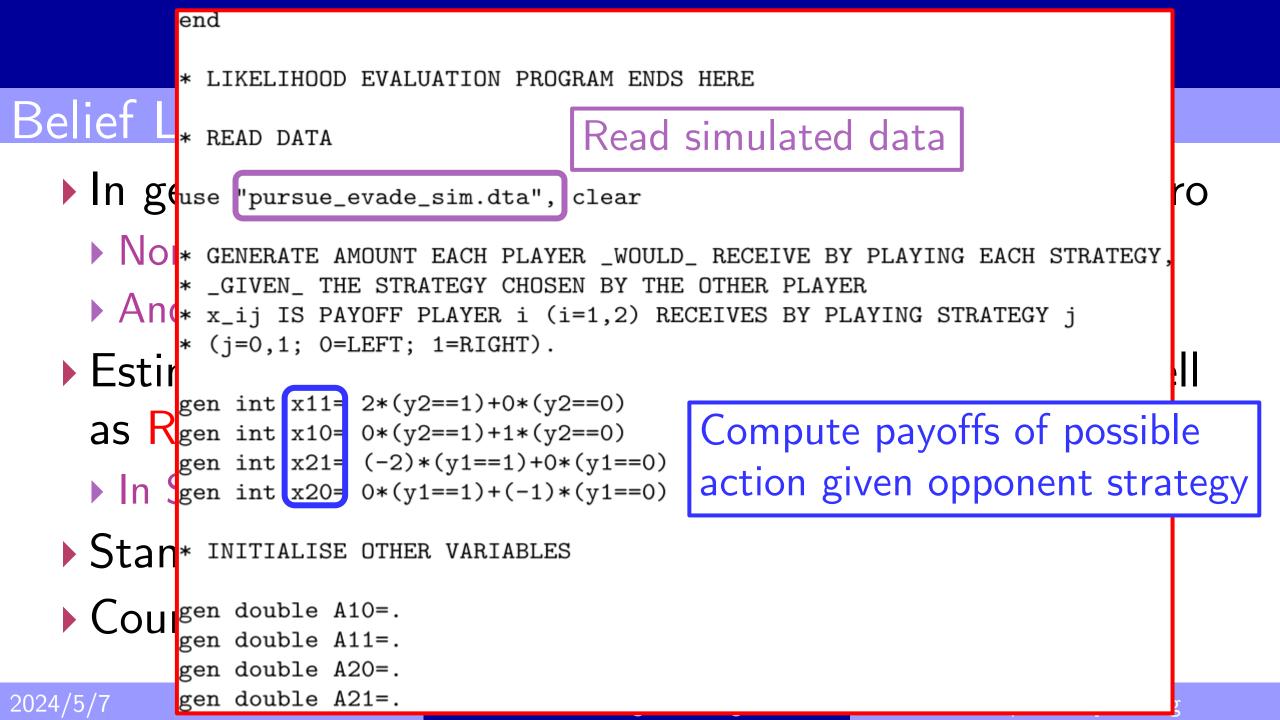
EVALUATION PROGRAM STARTS HERE

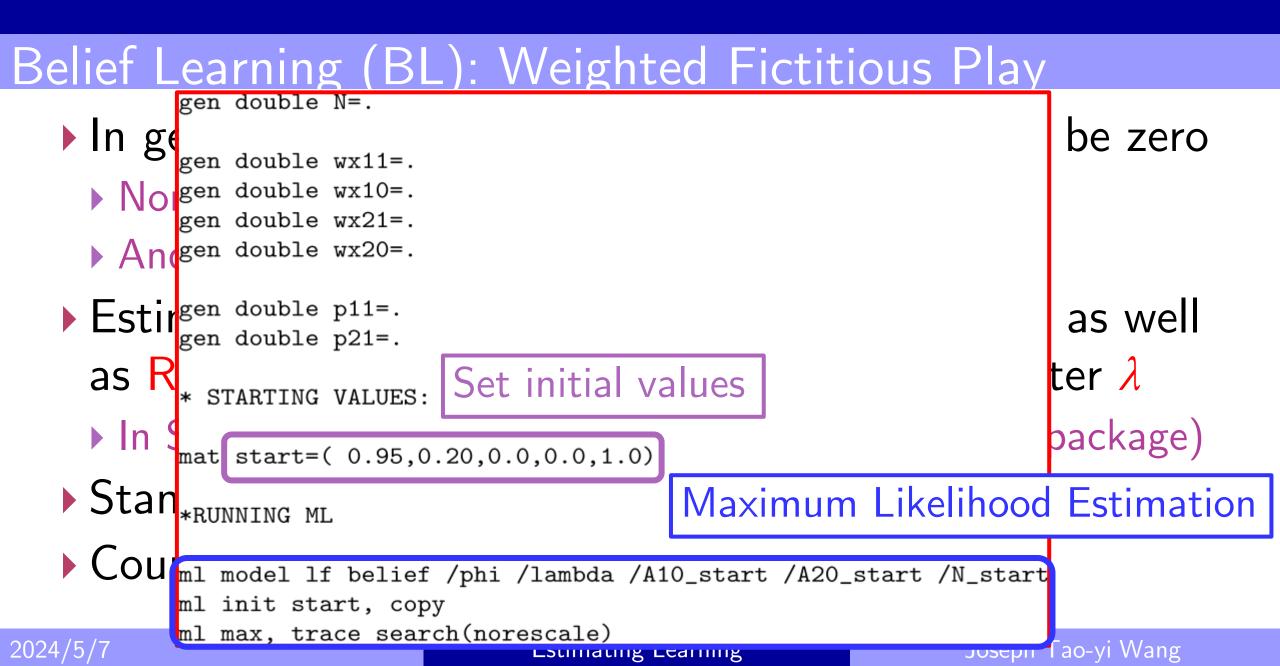


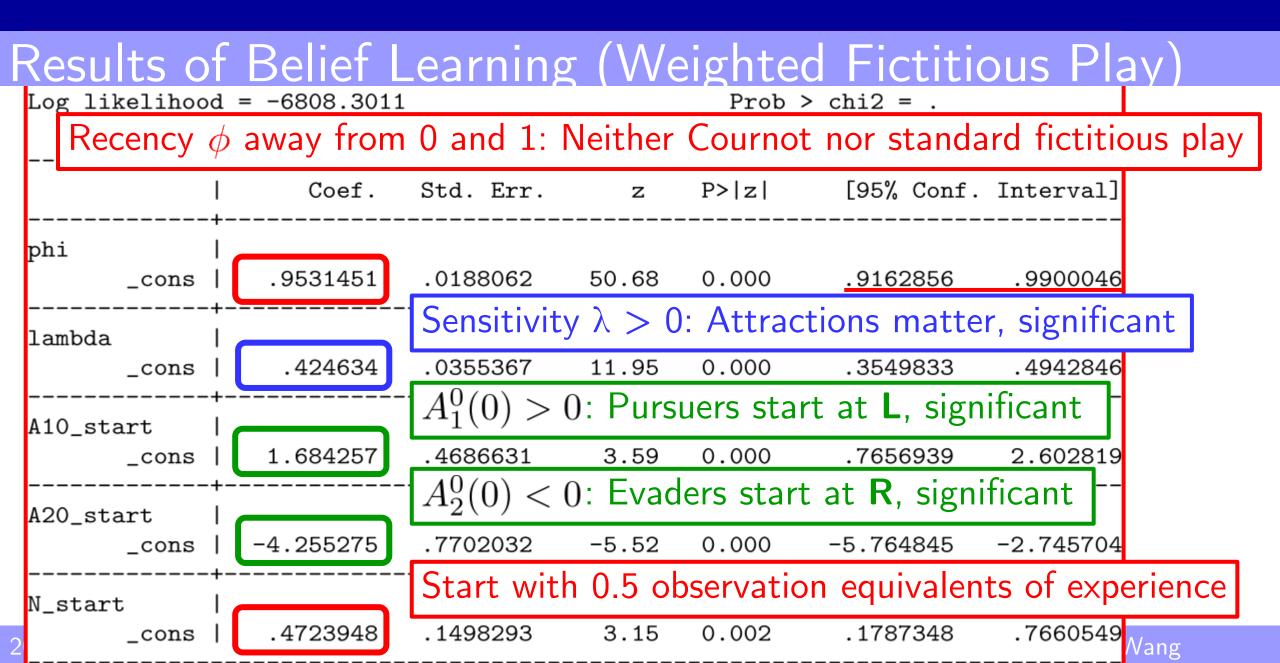
Estimating Learning

Joseph Tao-yi Wang

```
* Aij is the attraction, updated by payoff (either actual or hypothetical) in t,
     * to be used to determine choice probs in t+1
                                                              Update Attractions
    by i: replace A11=('phi'*N[_n-1]*A11[_n-1]+x11)/N if A11==.
Be by i: replace A10= ('phi'*N[_n-1]*A10[_n-1]+x10)/N if A10==.
                                                              with Experience
    by i: replace A21=('phi'*N[_n-1]*A21[_n-1]+x21)/N if A21==.
                                                              and payoffs of
   by i: replace A20=('phi'*N[_n-1]*A20[_n-1]+x20)/N if A20==.
                                                              chosen actions
    *pij are the probabilities player i choosing strategy j
    replace p11=.
                    Compute choice probabilities from Attractions
    replace p21=.
    by i: replace p11=exp('lam'*0)/(exp('lam'*0)+exp('lam'*'A10_start')) if _n==1
    by i: replace p21=exp('lam'*0)/(exp('lam'*0)+exp('lam'*'A20_start')) if _n==1
    by i: replace p11=exp('lam'*A11[_n-1])/(exp('lam'*A11[_n-1]) ///
    +exp('lam'*A10[_n-1])) if p11==.
    by i: replace p21=exp('lam'*A21[_n-1])/(exp('lam'*A21[_n-1]) ///
    +exp('lam'*A20[_n-1])) if p21==.
    replace 'logl'=ln((p11*y1+(1-p11)*(1-y1))*(p21*y2+(1-p21)*(1-y2)))
                    Compute log-Likelihood
2024/
```







#### Experience-Weighted Attraction (EWA) Learning Model

- EWA = Experience-Weighted + Attraction
- Has both Experience N(t) and Attractions  $A_i^j(t)$

Experience N(t) accumulated as Observation Equivalents
Initial Experience estimated: N(0)
Iteratively define N(t) = ρN(t-1) + 1, t = 1, ..., T

▶ Past Experience Depreciation Rate is  $\rho < 1$ 

# Experience-Weighted Attraction (EWA) Learning Model Initial Attractions estimated: $A_i^j(0)$ , j = 0, 1Attractions to different actions iteratively define $A_{i}^{j}(t) = \frac{\phi N(t-1)A_{i}^{j}(t-1) + \left[\delta + (1-\delta)I_{s_{i}(t)=s_{i}^{j}}\right]\pi_{i}(s_{i}^{j}, s_{-i}(t))}{s_{i}(t) + \left[\delta + (1-\delta)I_{s_{i}(t)=s_{i}^{j}}\right]\pi_{i}(s_{i}^{j}, s_{-i}(t))}$ N(t) $= \frac{\phi N(t-1)A_i^j(t-1) + 1 \cdot \pi_i(s_i^j, s_{-i}(t))}{N(t)} \text{ if } s_i^j \text{ chosen}$ $= \frac{\phi N(t-1)A_i^j(t-1) + \delta \cdot \pi_i(s_i^j, s_{-i}(t))}{N(t)} \text{ if not}$ $\mathsf{RL} \ (\delta = 0) \text{ vs. BL } (\delta = 1) \quad N(t) \quad (\text{for } j = 0, 1; t = 1, ..., T)$

Estimating Learning

2024/5/7

Joseph Tao-yi Wang

# Experience-Weighted Attraction (EWA) Learning Model

Choice Probability obtained by logistic transformation

$$P_i^j(t) = \frac{\exp\left[\lambda A_i^j(t-1)\right]}{\exp\left[\lambda A_1^j(t-1)\right] + \exp\left[\lambda A_0^j(t-1)\right]}$$

▶ 
$$i = 1, 2; j = 0, 1; t = 1, 2,...,T$$

 $\lambda =$ Sensitivity to attractions

- Firelevant ( $\lambda = 0$ )
- Important ( $\lambda$  large)

#### Experience-Weighted Attraction (EWA) Learning Model

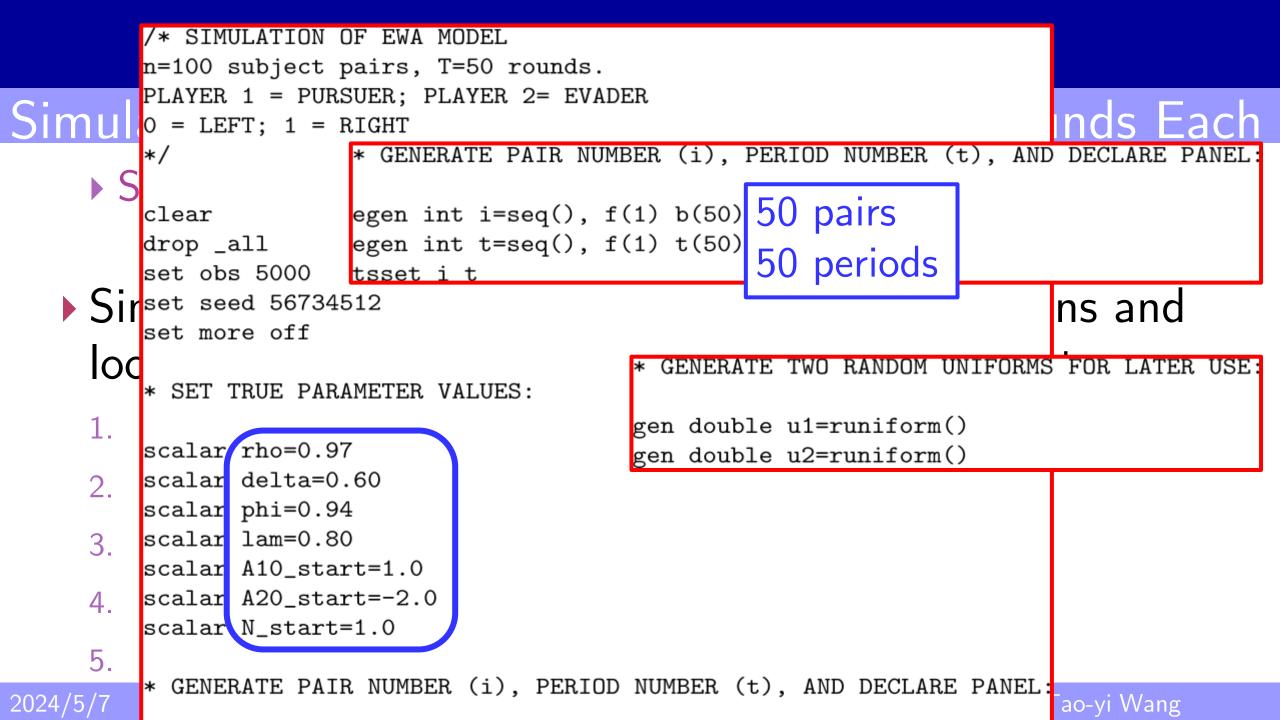
- Experience N(t)-weighted Attractions  $A_i^j(t)$  model generates choice probabilities  $P_i^j(t)$
- Estimate 7 parameters:  $\rho, \delta, \phi, \lambda, A_1^1(0), A_2^1(0), N(0)$
- $\delta$  distinguishes RL: ( $\delta = 0$ ) from BL ( $\delta = 1$ ):
- 1. BL:  $\delta = 1; \rho = \phi$
- 2. RL:  $\delta = 0; N_0 = 1; \rho = 0$ 
  - Note that  $A_1^1(0), A_2^1(0)$  not identified if  $N_0 = 0$
  - $\blacktriangleright$  Also, RL does not have depreciation  $\rho$

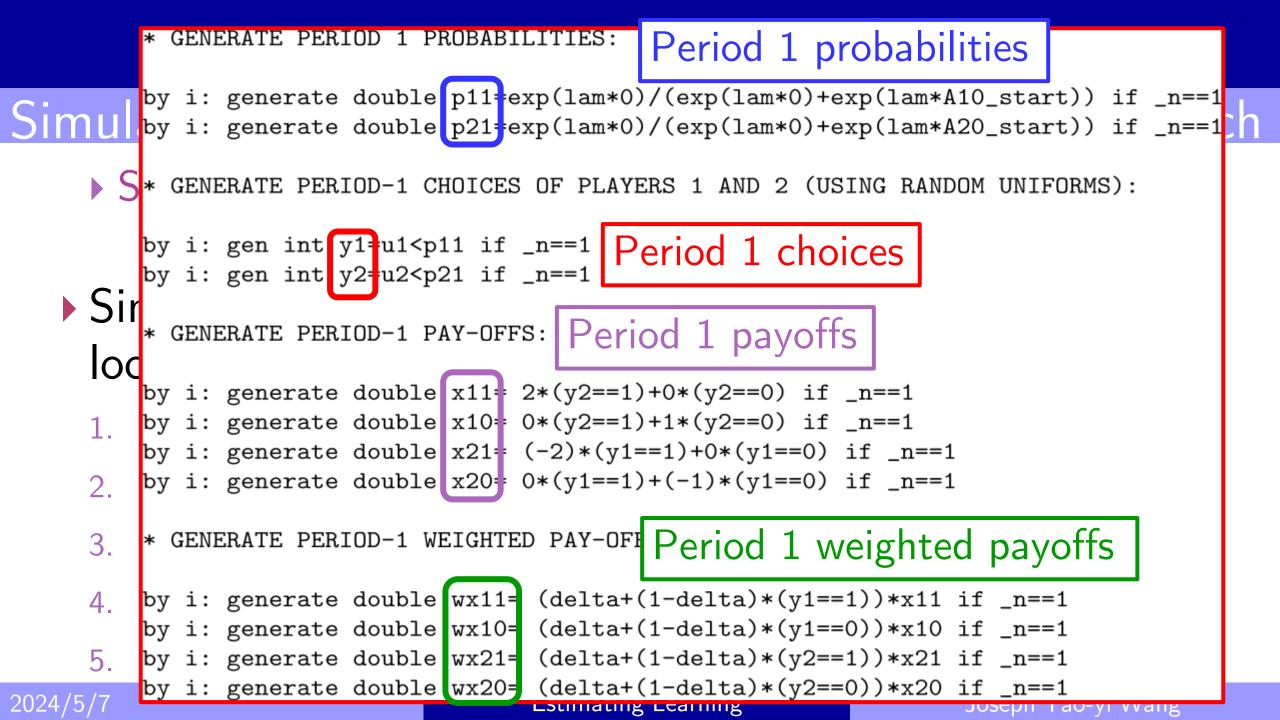
# Simulating EWA for 100 Subject Pairs, 50 Rounds Each

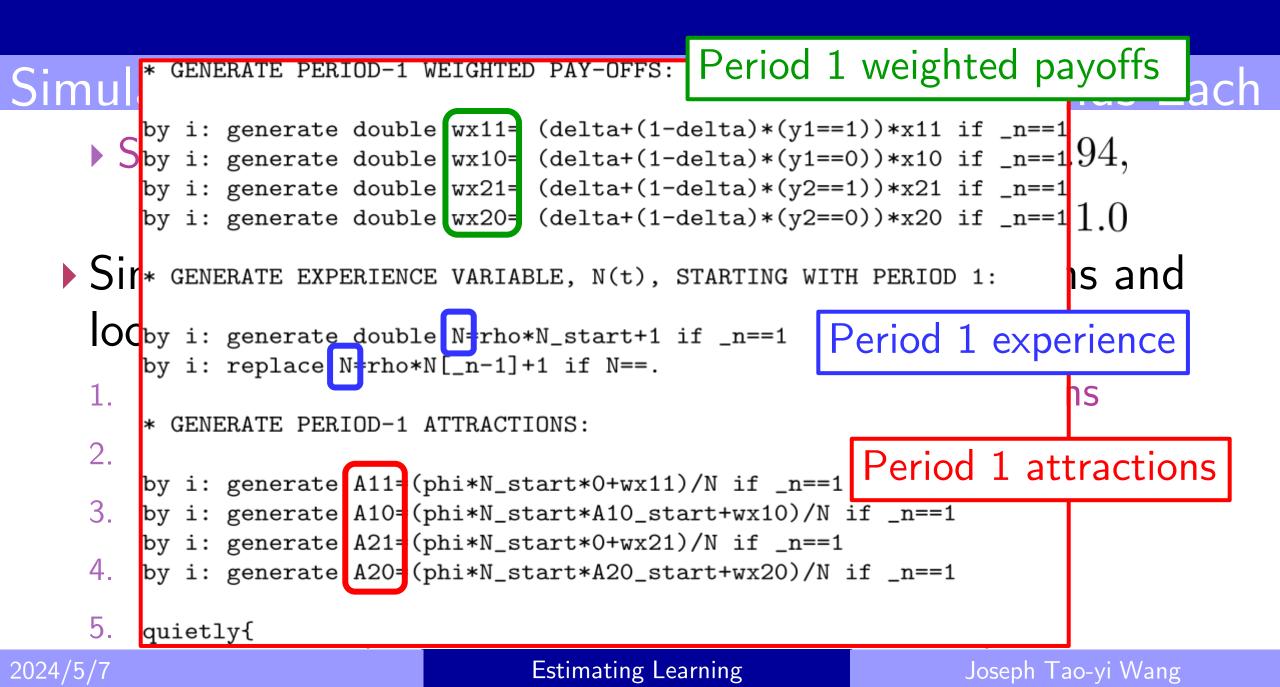
Simulate EWA model with:  $\rho = 0.97, \delta = 0.60, \phi = 0.94, \phi = 0.94$ 

 $\lambda = 0.80, A_1^0(0) = 1.0, A_2^0(0) = -2.0, N(0) = 1.0$ 

- Simulate round 1 choices and resulting attractions and loop over round 2-50 with forvalues to compute:
  - 1. Choice probability p11, p21 from previous attractions
  - 2. Actual choices from probabilities
  - 3. Payoffs for each possible action
  - 4. Payoffs weighted by actual realizations
  - 5. Attractions (for next round's choice probability)

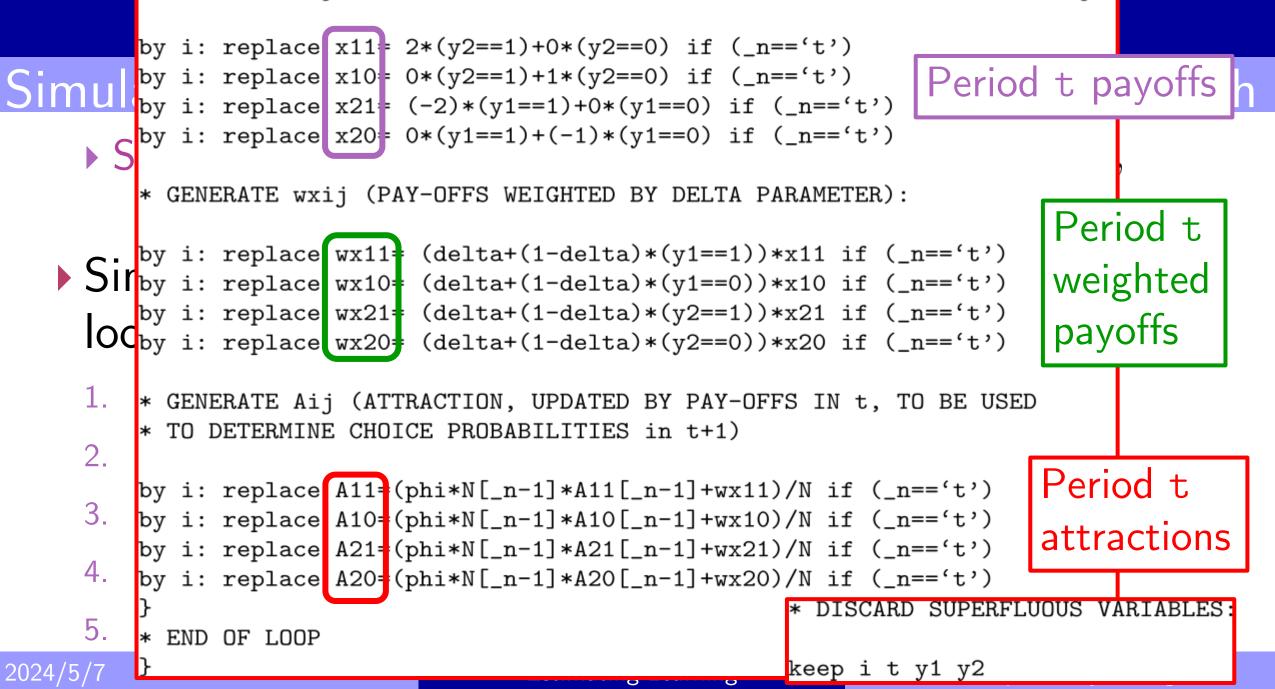






quietly{ \* LOOP OVER PERIODS STARTS HERE |Loop over t = 2-50forvalues t = 2(1)50 { GENERATE p11 AND p21 (PROBABILITIES OF PLAYERS 1 and 2 CHOOSING STRATEGY 1): Sir by i: replace p11=exp(lam\*A11[\_n-1])/(exp(lam\*A11[\_n-1])+exp(lam\*A10[\_n-1])) /// OC if  $(_n=-'t')$ by i: replace p21=exp(lam\*A21[\_n-1])/(exp(lam\*A21[\_n-1])+exp(lam\*A20[\_n-1])) /// if (\_n=='t') 1. Period t probabilities 2. \* GENERATE y1 AND y2 (CHOICES OF PLAYERS 1 AND 2) USING RANDOM UNIFORMS: 3. by i: replace y1=0 if (\_n=='t') by i: replace y1= (u1<p11) if (\_n=='t') 4. Period t choices by i: replace y2=0 if (\_n=='t') 5. by i: replace y2= (u2<p21) if (\_n=='t') 2024/5/7 Estimating Learning Joseph Tao-yi Wang

\* GENERATE xij (PAY-OFF PLAYER i WOULD HAVE RECEIVED WITH STRATEGY j):

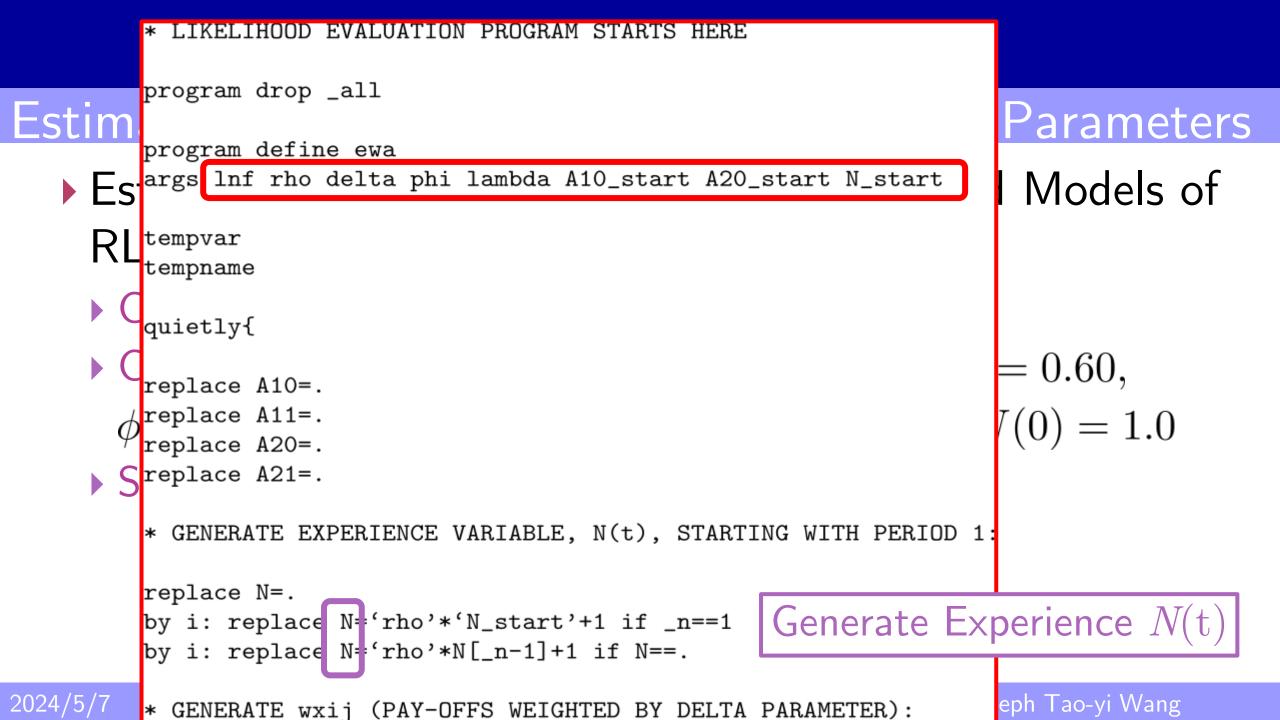


## Estimating the Full EWA Model to Recover Parameters

- Estimate the Full EWA Model, the Restricted Models of RL and BL, and:
  - Conduct LR Tests to see if EWA performs better
  - Compare uncovered parameters with:  $\rho = 0.97, \delta = 0.60,$

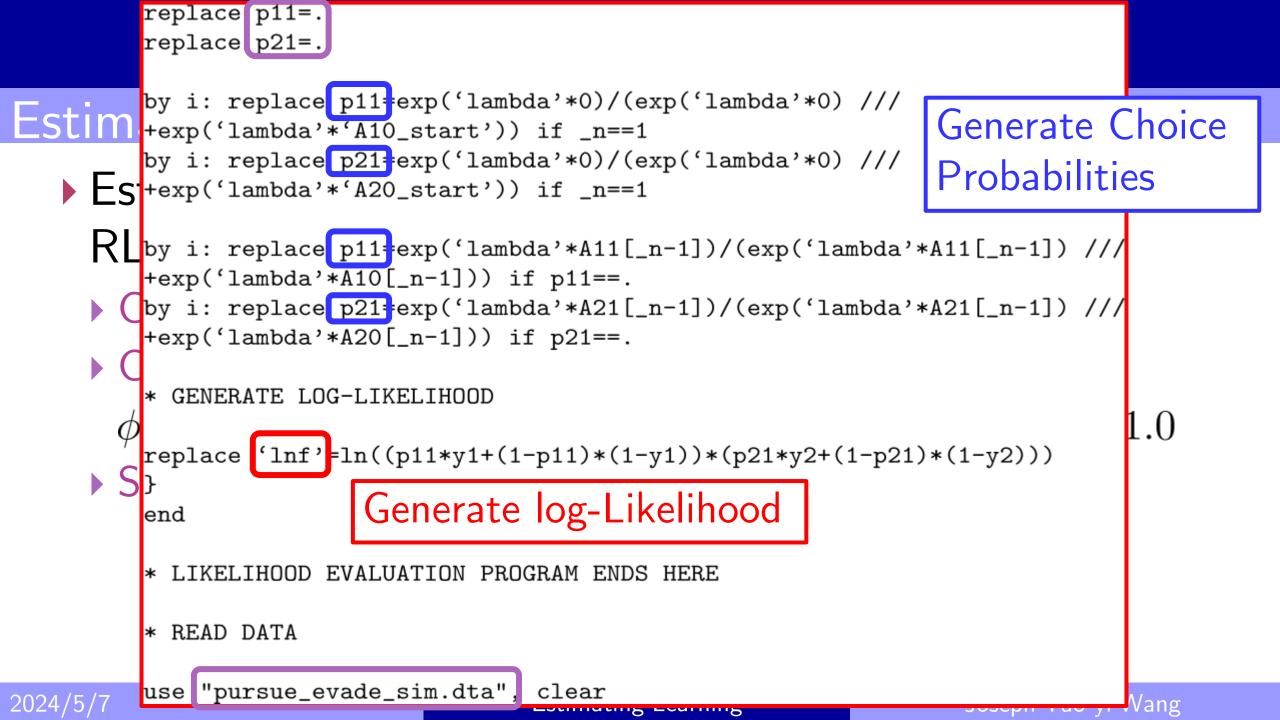
$$\phi = 0.94, \lambda = 0.80, A_1^0(0) = 1.0, A_2^0(0) = -2.0, N(0) = 1.0$$

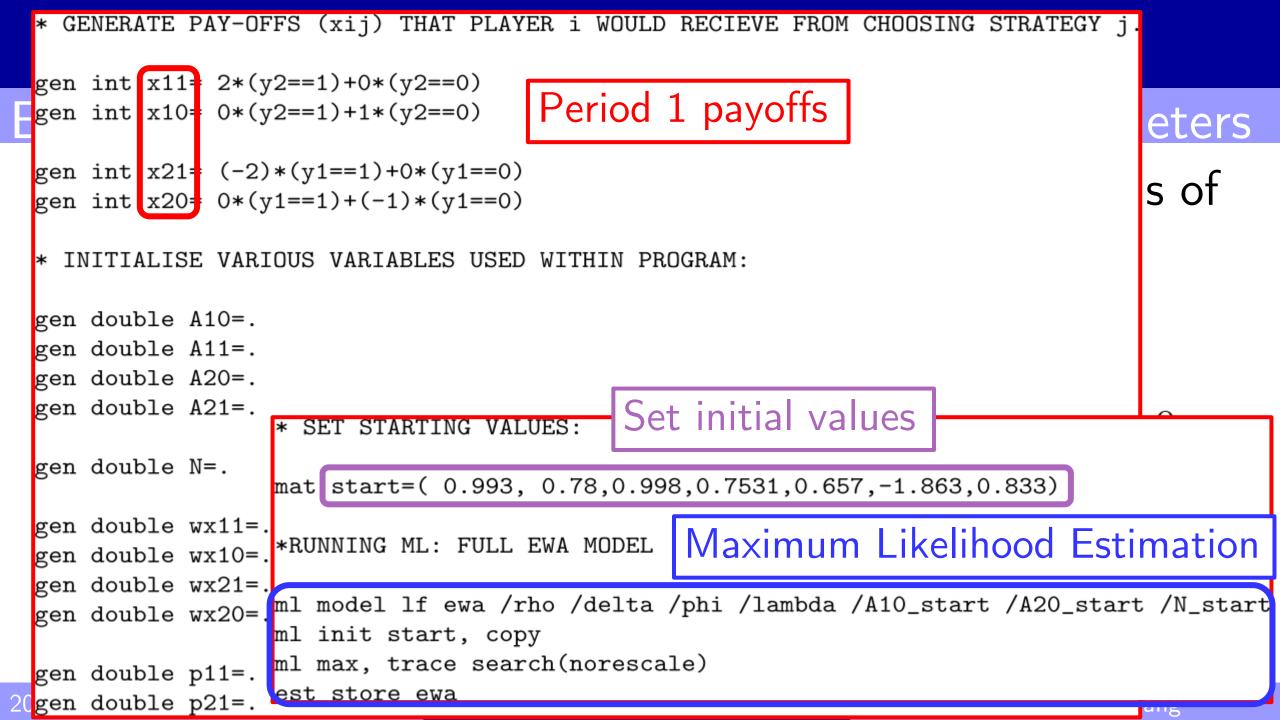
STATA Code



\* GENERATE wxij (PAY-OFFS WEIGHTED BY DELTA PARAMETER):

Generate replace wx11= ('delta'+(1-'delta')\*(y1))\*x11 replace wx10= ('delta'+(1-'delta')\*(1-y1))\*x10 Weighted replace wx21= ('delta'+(1-'delta')\*(y2))\*x21 replace wx20= ('delta'+(1-'delta')\*(1-y2))\*x20 Payoffs ► Es<sup>-</sup> \* GENERATE PERIOD-1 ATTRACTIONS: RI by i: replace A10 ('phi'\*'N\_start'\*'A10\_start'+wx10)/N if \_n==1 by i: replace A11+('phi'\*'N\_start'\*0+wx11)/N if \_n==1 by i: replace A20=('phi'\*'N\_start'\*'A20\_start'+wx20)/N if \_n==1 by i: replace A21=('phi'\*'N\_start'\*0+wx21)/N if \_n==1 Generate Attractions  $\mathcal{O}$  \* GENERATE ATTRACTIONS FOR t>1: >by i: replace A11=('phi'\*N[\_n-1]\*A11[\_n-1]+wx11)/N if A11==. by i: replace A10=('phi'\*N[\_n-1]\*A10[\_n-1]+wx10)/N if A10==. by i: replace A21=('phi'\*N[\_n-1]\*A21[\_n-1]+wx21)/N if A21==. by i: replace A20; ('phi'\*N[\_n-1]\*A20[\_n-1]+wx20)/N if A20==. \* GENERATE p11 AND p21 (PROBABILITIES OF PLAYERS 1 and 2 CHOOSING STRATEGY 1) Generate Choice Probabilities replace p11=. 2024/5/7



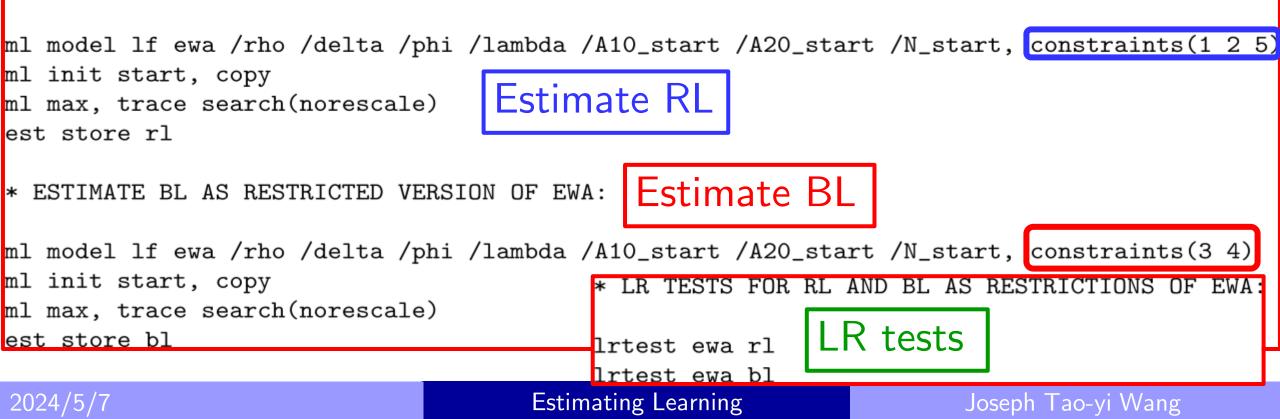


\* DEFINE CONSTRAINTS REQUIRED FOR RL AND BL:

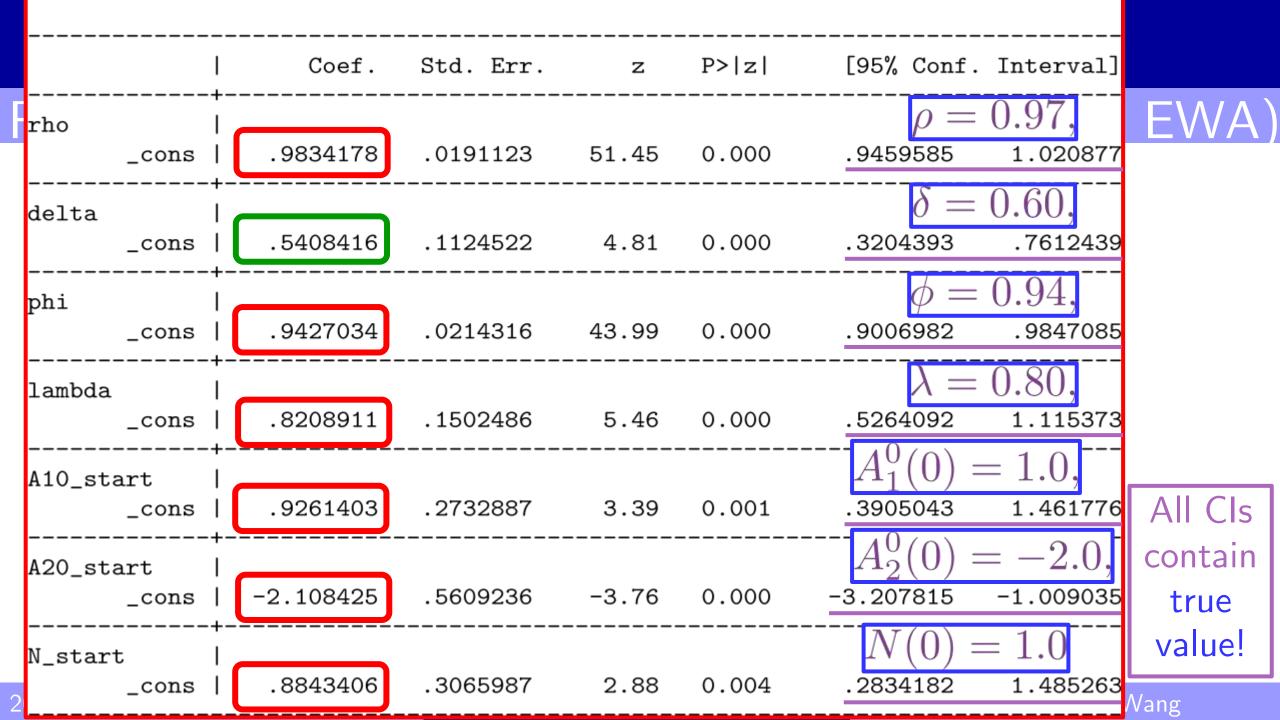
```
constraint 1 [delta]_b[_cons]=0.0
constraint 2 [rho]_b[_cons]=0.0
constraint 3 [delta]_b[_cons]=1
constraint 4 [rho]_b[_cons]=[phi]_b[_cons]
constraint 5 [N_start]_b[_cons]=1
```

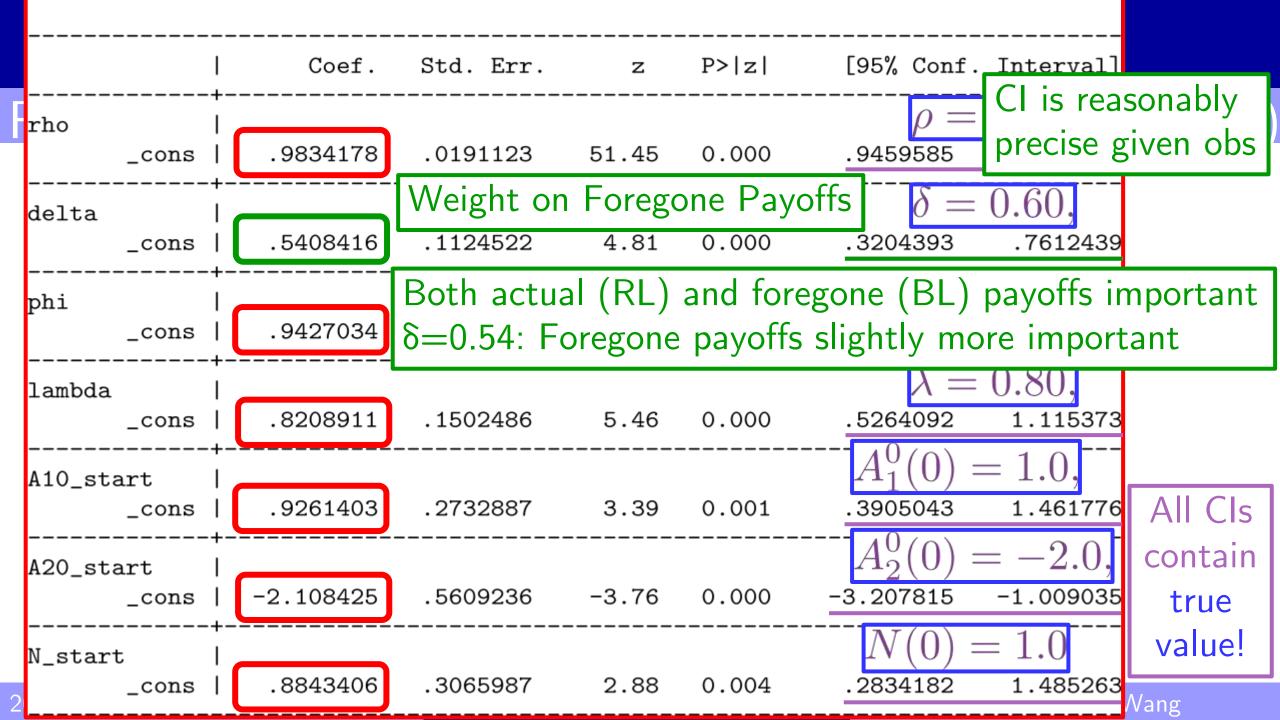


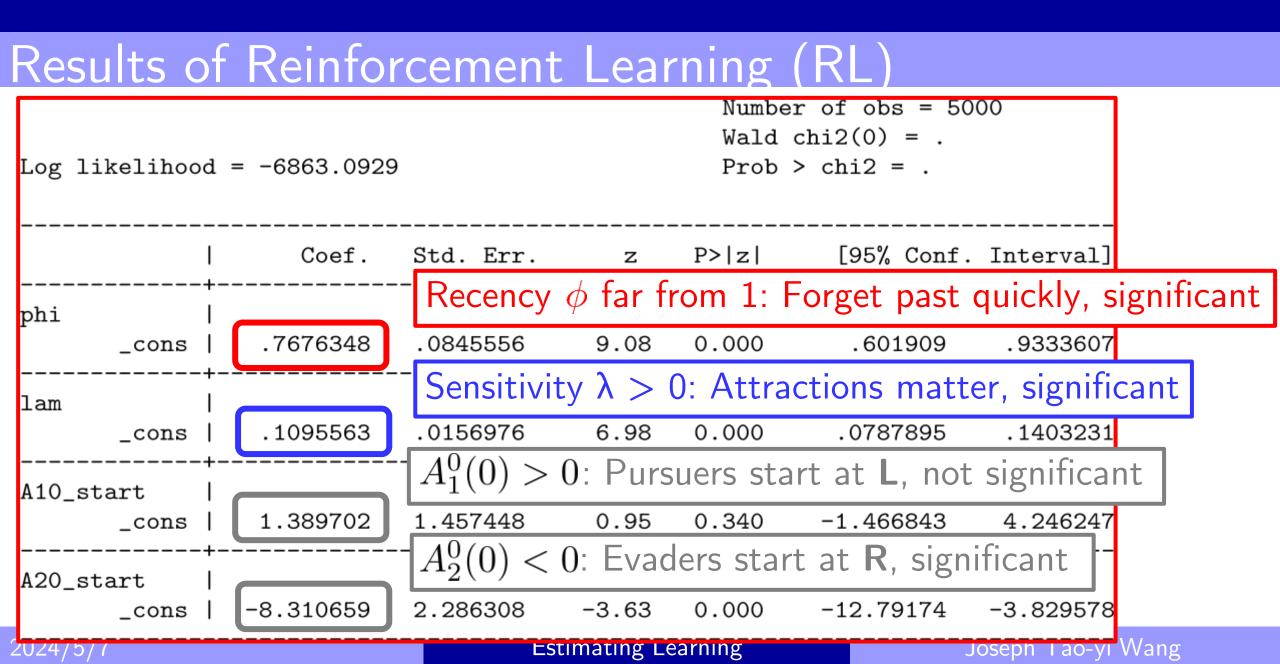
\* ESTIMATE RL AS RESTRICTED VERSION OF EWA:

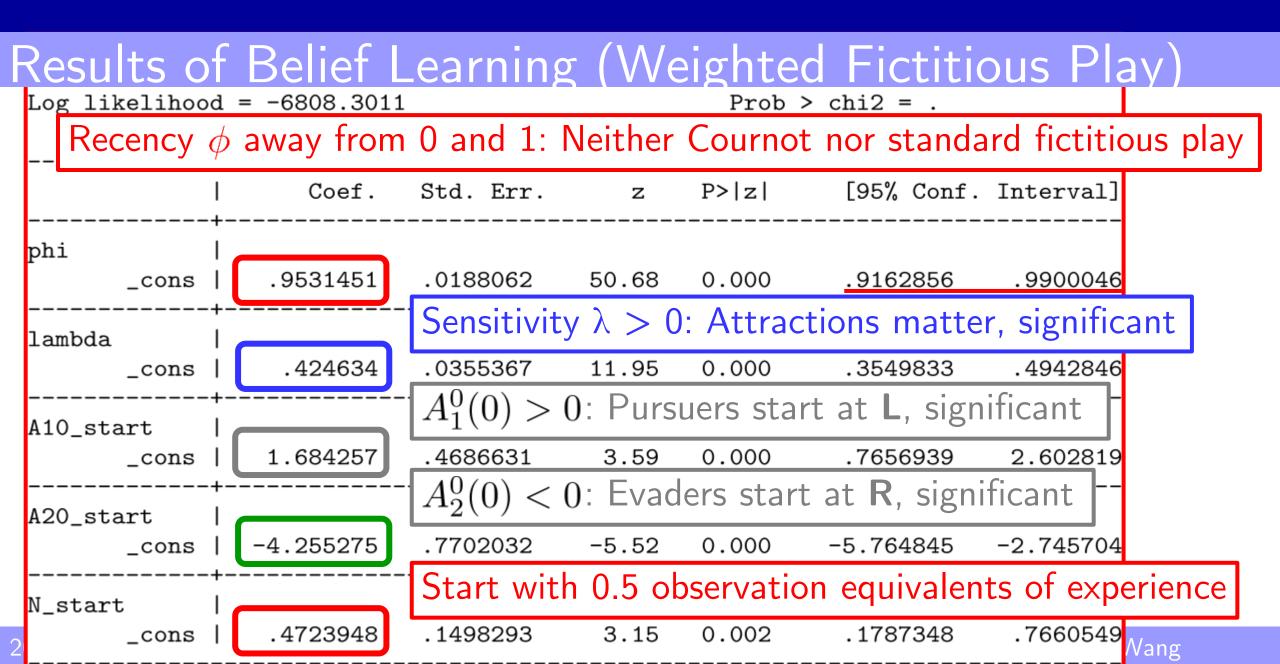


| F | Resul                       | ts of     | f Experie | enced-V                                                     | Veight | ed A  | ttraction  | s (Full   | EWA) |
|---|-----------------------------|-----------|-----------|-------------------------------------------------------------|--------|-------|------------|-----------|------|
|   | Log likelihood = -6800.9162 |           |           | Number of obs = 5000<br>Wald chi2(0) = .<br>Prob > chi2 = . |        |       |            |           |      |
|   |                             |           | Coef.     | Std. Err.                                                   | Z      | P> z  | [95% Conf. | Interval] |      |
|   | rho                         | <br>_cons | .9834178  | .0191123                                                    | 51.45  | 0.000 | .9459585   | 1.020877  |      |
|   | delta                       | <br>_cons | .5408416  | .1124522                                                    | 4.81   | 0.000 | .3204393   | .7612439  |      |
|   | phi                         | <br>_cons | .9427034  | .0214316                                                    | 43.99  | 0.000 | .9006982   | .9847085  |      |
|   | lambda                      | _cons     | .8208911  | .1502486                                                    | 5.46   | 0.000 | .5264092   | 1.115373  |      |
| 2 | 10 at at                    | +<br>~+   |           |                                                             |        |       |            |           | Nang |





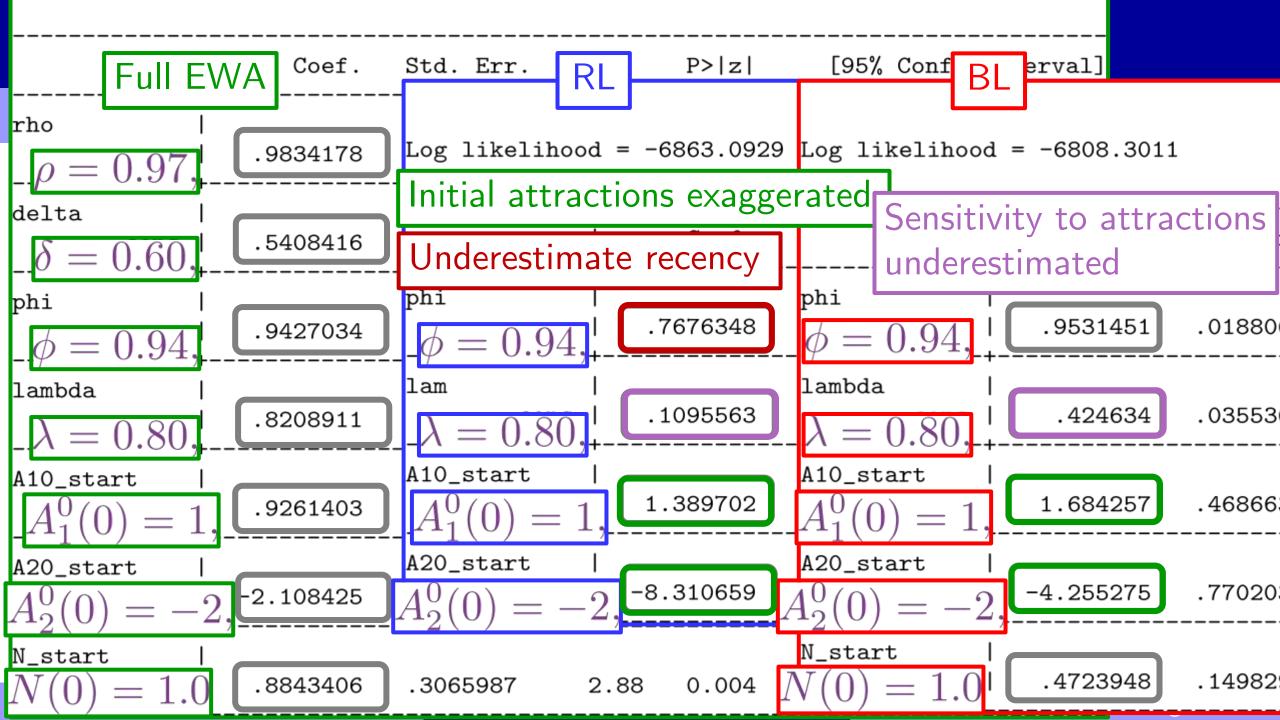




## LR Test Results

| Model | Log-L    | LR     | df | p-value |
|-------|----------|--------|----|---------|
| EWA   | -6800.92 |        |    |         |
| RL    | -6863.09 | 124.34 | 3  | 0.0000  |
| BL    | -6808.30 | 14.76  | 2  | 0.0006  |

Both RL and BL strongly rejected by LR test
Not surprising since we simulated EWA data with δ=0.6
In between RL and BL (but slightly closer to BL)



## Acknowledgment

- This presentation is based on
  - Section 18.1-18.5 of the textbook on Experimetrics,
- An extension of the mini-course taught by Peter G. Moffatt (UEA) at National Taiwan University in Spring 2019