Coordination 協調賽局

Joseph Tao-yi Wang (王道一) Lecture 10, EE-BGT

Outline

- Why is coordination important?
- Pure Coordination Game
 - ► GAMES magazine (1989)
 - Mehta et al. (AER 1994)
 - ▶ Mehta et al. (T&D 1994)
 - Bacharach and Bernasconi (GEB 1997)
- Battle of SexesCooper et al. (AER 1990)Blume et al.(AER98/GEB01)

- Market Entry Games Kahneman (like magic...)
- Stag Hunt
 Cooper et al. (AER 1990)
- Weak-Link Game Van Huyck et al. (AER1990)
- Apply to Market Adoption: Clemons & Weber (InfoSysR96)
- Apply to Culture: Camerer & Weber (MS 2003)

- Which Equilibrium to Select Among Many?
 - This requires Coordination!
- Examples of Coordination in Daily Life:
 - Language
 - Trading in Markets (Liquidity)
 - Industry Concentration

- Equilibrium Selection in Game Theory
- Desirable Features Approach:
 - ▶ Payoff-Dominance, Risk Dominance, etc.
- 2. Convergence via Adaptation/Learning
 - ▶ Weibull (1995), Fudenberg and Levine (1998)
- 3. Empirical Approach: Infer Principles by
 - Putting people in experiments and observe actual behavior/outcome

- ▶ Possible "Selection Principles":
 - Precedent, focal, culture understanding, etc.
- Why are observations useful?
- Schelling (1960, p.164):
 - "One cannot, without empirical evidence, deduce what understandings can be perceived in a nonzero-sum game of maneuver
 - any more than one can prove,
 - by purely formal deduction, that a particular joke is bound to be funny."

- Can't Communication Solve This?
 - ▶ Not always... (See Battle of Sexes below)
- Sometimes communication is not feasible:
 - Avoiding Traffic Jams
 - Speed Limits (useful because they reduce speed "variance", and hence, enhance coordination!)
- Miscommunication can have big inefficiency!

Examples of Coordination Impact

- US railroad tracks is 4 feet and 8.5 inch
 - Because English wagons were about 5 feet (width of two horses), and lead to
- Space Shuttle Rockets smaller than ideal
 - since they need to be shipped back by train...
- Industries are concentrated in small areas
 - Silicon Valley, Hollywood, Hsinchu Science Park
- Urban Gentrification
 - ▶ I want to live where others (like me) live

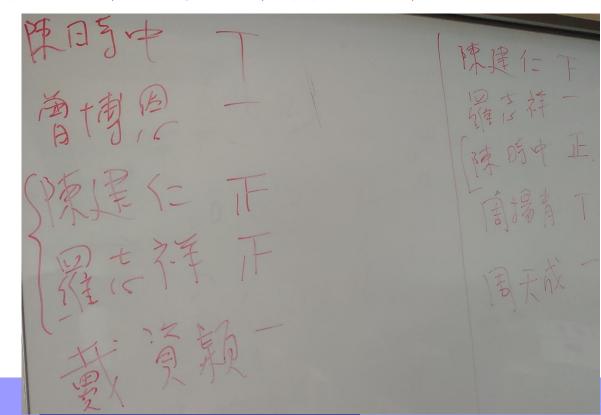
Examples of Coordination Impact:

Drive on Left/Right side of the Road

- Right: Asia, Europe (Same continent!)
- Left: Japan, UK, Hong Kong (Islands!)
- Sweden switched to Right (on Sunday morning)
- What about America? Right, to avoid
 - Hitting others with the whip on your right hand!
- Bolivians switch to Left in mountainous area
 - ▶ To see outer cliffside from (left) driver seat
- ▶ Pittsburgh left: 1st left-turner goes 1st at green
 - on two-lane streets to avoid blocking traffic

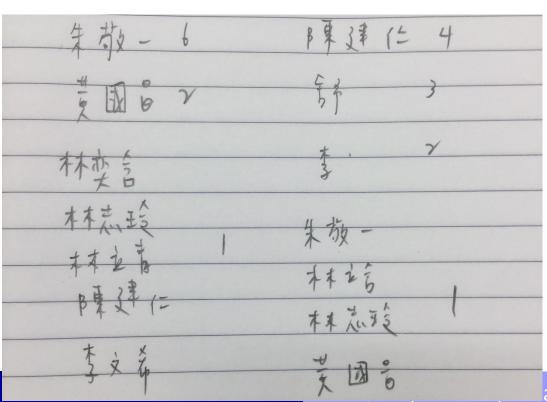
3 Types of Coordination Games

- Matching Games
 - Pure Coordination Game; Assignment Game
- Games with Asymmetric Payoffs
 - Battle of Sexes, Market Entry Game
- Games with Asymmetric Equilibria
 - Stag Hunt, Weak-Link Game
- Applications: Market Adoption and Culture
 - ▶ TBA


Examples of Coordination Impact

- Categorizing Products
 - Where should you find MCU? Disney or Action?
 - Find your favorite item at a new Costco store
- Common Language:
 - Internet promotes English
 - Some Koreans even get surgery to loosen their tongues, hoping to improve their pronunciation
- Key: Agreeing on something is better than not; but some coordinated choices are better

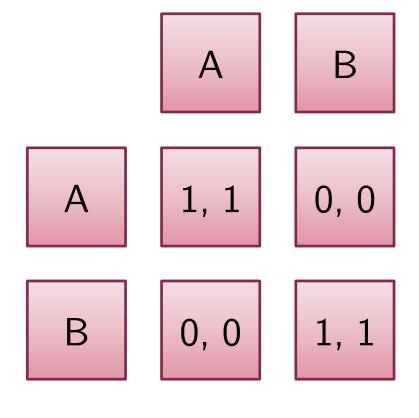
- ▶ Pick one celebrity (out of 9) for President, another for Vice-President:
 - Oprah Winfrey, Pete Rose,
 - Bruce Springsteen, Lee Jaccoca,
 - ▶ Ann Landers, Bill Cosby,
 - ▶ Sly Stallone, Pee-Wee Herman,
 - Shirley MacLaine
- One person is randomly awarded prize among those who picked most popular one


- ▶ Taiwanese example:
 - 戴資穎、周天成、羅志祥、周揚青、劉樂妍、 曾博恩、陳時中、黃秋生、陳建仁、黃安
- Prize?

Results...

- ▶ Taiwanese example:
 - ▶ 戴資穎、陳偉殷、黃國昌、朱敬一、陳建仁、 林立青、李來希、舒淇、林志玲、林奕含
- Prize?

Results... (Last Year)



- US Results:
- 1. Bill Cosby (1489): successful TV show
- 2. Lee lacocca (1155): possible US candidate
- 3. Pee-Wee Herman (656): successful TV show
- 4. Oprah Winfrey (437): successful TV show

. . .

9. Shirley MacLaine (196): self-proclaimed reincarnate

Pure Coordination Game

- Both get 1 if pick the same;
- ▶ Both get 0 if not
- Two pure NE,
- One mixed NE
- Which one will be played empirically?

Pure Coordination Game

- ▶ Mehta, Starmer and Sugden (AER 1994)
- Picking Condition (P): Just pick a strategy
- Coordinating Condition (C):
 - ▶ Win \$1 if your partner picks the same as you
- ▶ Difference between P and C = How focal
- Choices: Years, Flowers, Dates, Numbers, Colors, Boy's name, Gender, etc.

Pure Coordi	<u>nation G</u>	ame		
Category	Group P (n=88			
	Response	%		

Years

Flowers

Dates

Numbers

Colors

Boy's Name

1971

Rose

Blue

John

Group C (n=90)

8.0

Response

1990

Rose

Dec. 25

Red

John

Him

%

35.2 Dec. 25

44.4 40.0

58.9

50.0

61.1

66.7

5.7 11.4

38.6

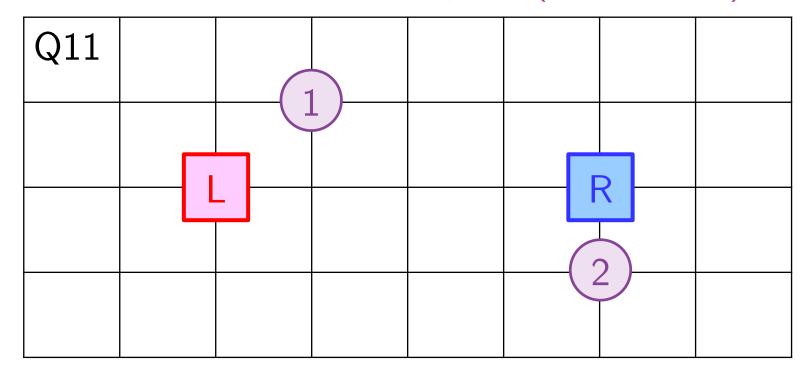
9.1

84.4 Joseph Tao-yi Wang

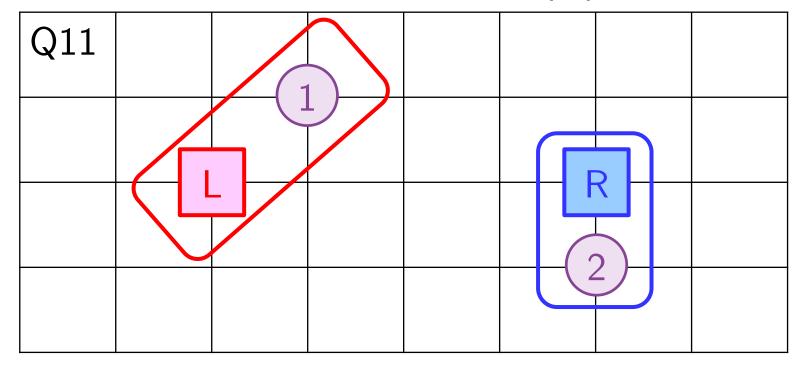
Pure Coordination Game: Follow-up 1

- ▶ Bardsley, Mehta, Starmer, Sugden (EJ 2010)
 - ▶ Incorporate (Replace?) Bardsley, et al. (wp 2001)
- ▶ 14 Games: One in choice set is distinctive
 - ▶ EX: {Bern, Barbodos, Honolulu, Florida}
- Add additional condition besides P and C:
 - Guess Condition (G): Guess partner's pick
- Design question: How do you avoid focality of physical location (first/last/top-left)?
 - ▶ Have things swim around the computer screen...

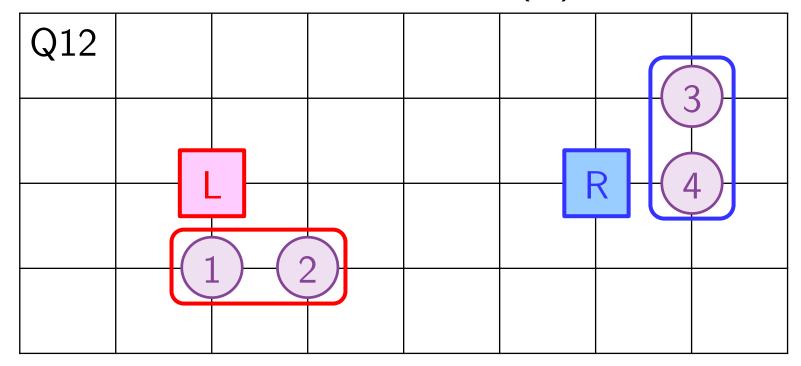
Pure Coordination Game: Follow-up 1

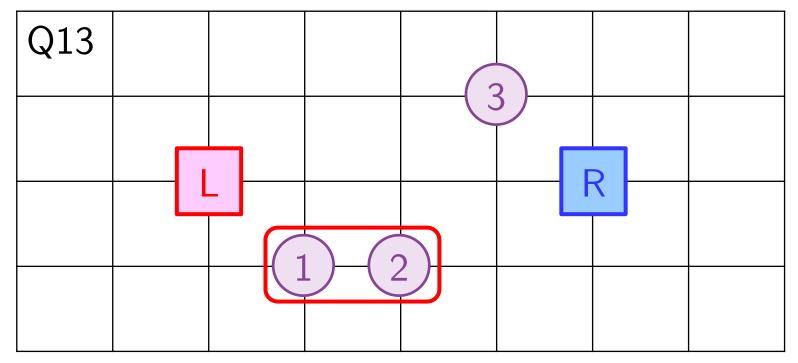

- ▶ EX: {Bern, Barbodos, Honolulu, Florida}
- ▶ Derivative Salience: P=G=C
 - (See how paper use) Cognitive Hierarchy Model
 - Ex: Choose Bern in C since Bern in P and G
- ▶ Schelling Salience: P=G≠C
 - ▶ Team Reasoning: Pick distinctive choice only in C
 - Ex: Choose Bern in C, but Florida in P and G
- Coordinate on this: Even though I would not pick this and I know you would not pick this!

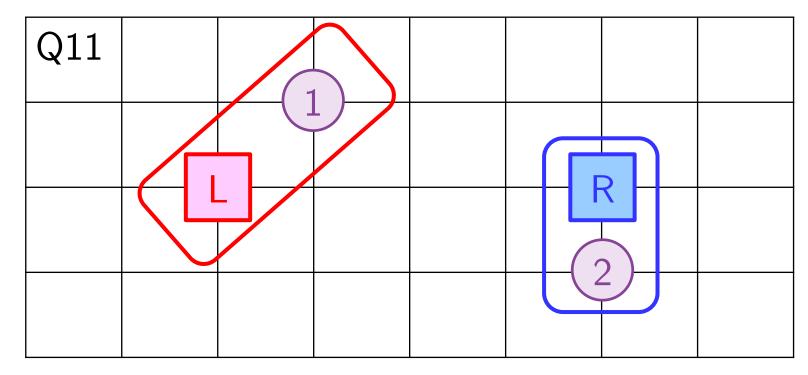
Pure Coordination Game: Follow-up 1

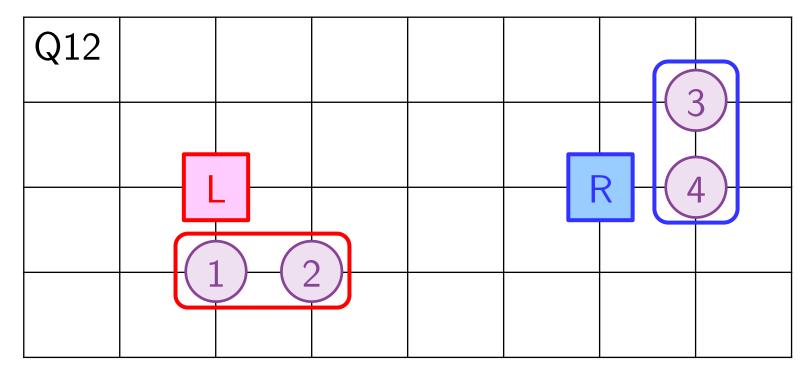

- ▶ Derivative Salience: P=G=C
- Schelling Salience: P=G≠C
- Schelling Salience wins here!
 - ▶ In 12 games (out of 14):
- ▶ Chose distinctive choice 60% in C (modal!)
 - But less often in P and G
- ▶ EJ 2010: Follow-up w/ Nottingham subjects
 - Both saliences rejected with subtle design differences (used to coordinate)

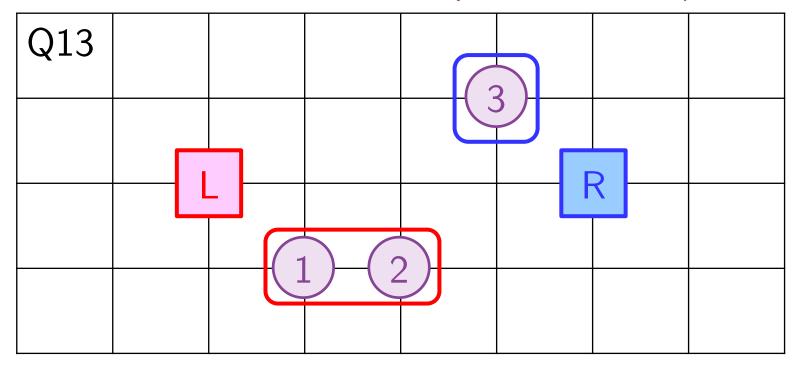
Assignment Game (Follow-up 2)


- ► Hume (1978/1740) Ownership conventions: spatial/temporal proximity, cultural, etc.
 - ▶ Mehta, Starmer and Sugden (T&D 1994)

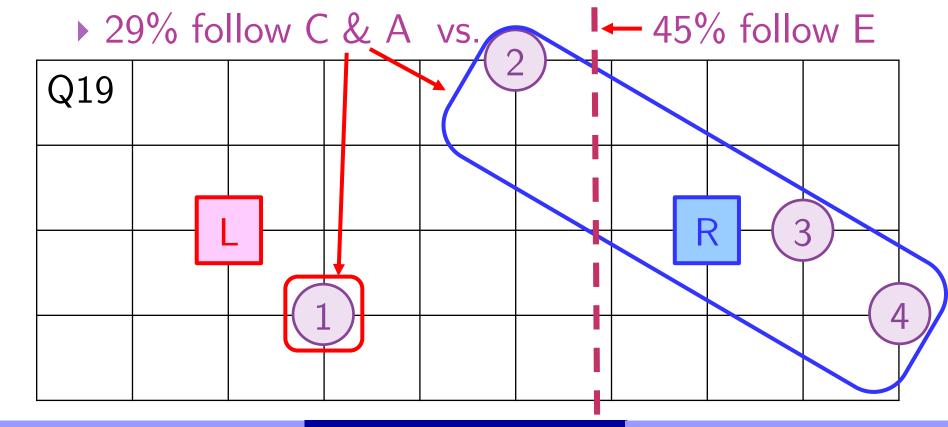

- Assign circles to L or R
- ▶ Earn \$\$ if all circles match partner assignment
- ▶ Focal Principle 1: Closeness (C)


- Assign circles to L or R
- ▶ Earn \$\$ if all circles match partner assignment
- ▶ Focal Principle 2: Equality (E)

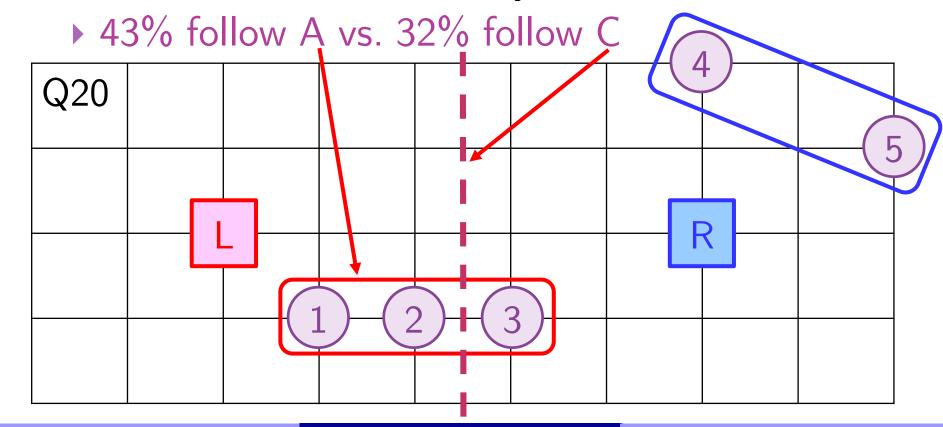

- Assign circles to L or R
- ▶ Earn \$\$ if all circles match partner assignment
- ▶ Focal Principle 3: Accession (A)


- How would you assign the circles?
- What about this? (C = A = E)
 - ▶ In fact, 74% chose this!

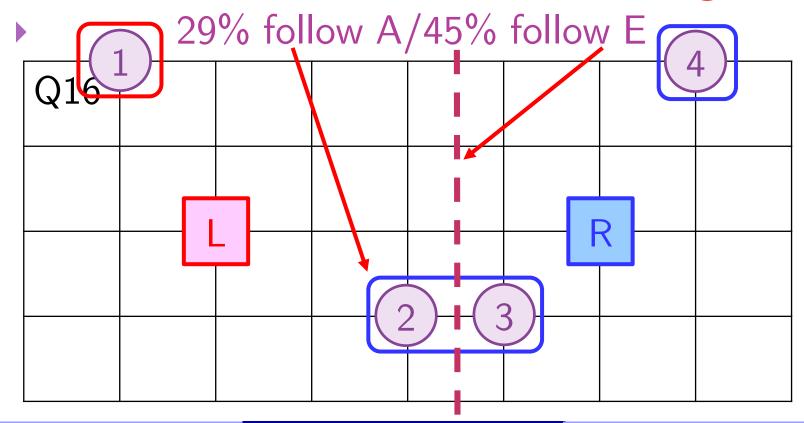
- How would you assign the circles?
- What about this? (C = A = E)
 - ▶ In fact, 68% chose this!



- How would you assign the circles?
- What about this? (Accession!)
 - ▶ In fact, 70% chose this! (What does C/E say?)


Assignment Game: C & A vs. Equality

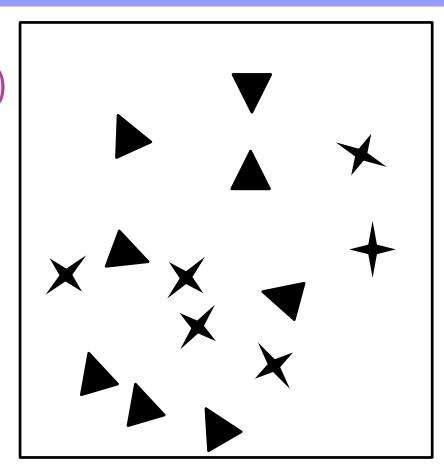
- What does Closeness/Accession say?
- What does Equality say about this?


Assignment Game: Accession vs. Closeness

- What does Accession say about this?
- What does Closeness say about this?


Assignment Game: Accession vs. Equality

- What does Accession say about this?
- What does Equality say about this?

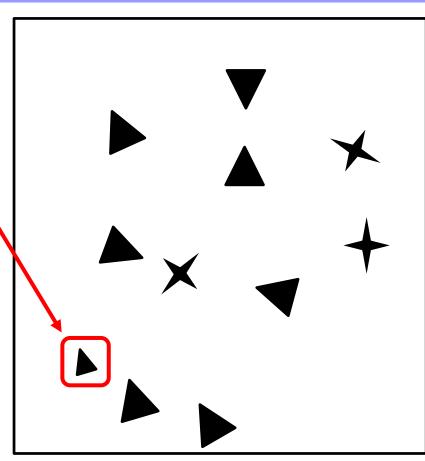

Equality > Accession > Closeness

- First Focal Principle: Equality 🙂
- ▶ Then Accession (if Equality satisfied/silent)

Unpacking Focality

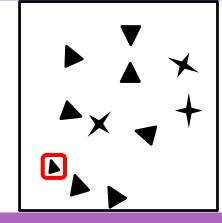
- Bacharach and Bernasconi (GEB 1997)
- Visual matching game
 - ▶ Pick one from picture:
- ▶ Test rarity preferences
 - ▶ 6 vs. 8
- Are Rare item chosen more frequently
 - As Rarity increases?
 - ▶ 6/8, 2/3, 6<u>/18, 1/15</u>

Unpacking Focality: Test Rarity



- Yes!
- As Rarity increases,
 - Frequency of rare choice increases!

	# of Rare/Frequent Items						
	6/8	2/3	6/18	1/15			
Rare	65%	76%	77%	94%			
Frequent	35%	24%	23%	6%			


Unpacking Focality: Test Trade-offs

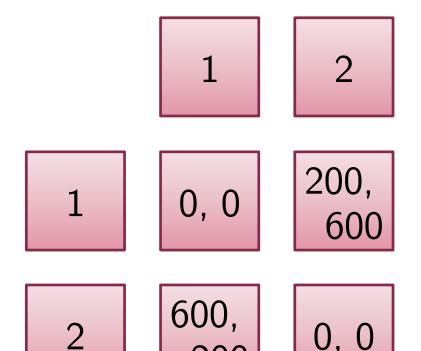
- ▶ Rarity (r=3 vs. n=8)
 - against
- Oddity (size or color)
 - ▶ p(F)= prob. of notice
 - Would you choose Oddity if p(F) > 1/r?
- Obvious Treatments:
 - p(F)=0.94 >> 1/3
- Subtle Treatments:
 - p(F)=0.40 > 1/3

Unpacking Focality: Test Trade-offs

- ▶ Violate p(F) > 1/r
 - Mostly chose Obvious Oddity
 - Less than half chose Subtle Oddity

r — #	Obvious Oddity (r)			2 3 4 5					
of Rare	2	3	4	5	2	3	4	5	6
Rare	14%	19%	9%	7%	77%	55%	45%	69%	55%
Oddity	83%	79%	91%	88%	23%	31%	45%	19%	20%
Other	2%	2%	0%	5%	0%	14%	10%	12%	25%
p(F)	0.95	0.91	0.95	0.93	0.55	0.40	0.62	0.25	0.25

2020/5/24


Coordination

Joseph Tao-yi Wang

Unpacking Focality

- Munro (wp 1999)
- Field study of coordination
- Narrow bike lanes in Japan
 - No center line
- Two bikes coming from opposite directions
 - ▶ Both ride close to middle
- How they avoid colliding?
 - ▶ Both move Left!

Asymmetric Players: Battle of Sexes

- ▶ 100 lottery tickets =
 - ▶ 10% chance to win \$1/\$2
- ▶ Pure NE: (1,2) and (2,1)
 - Players prefer equilibrium where they play strategy 2
- Mixed NE:
 - ▶ (1/4, 3/4) each
- Which would you pick?

Asymmetric Players: Battle of Sexes

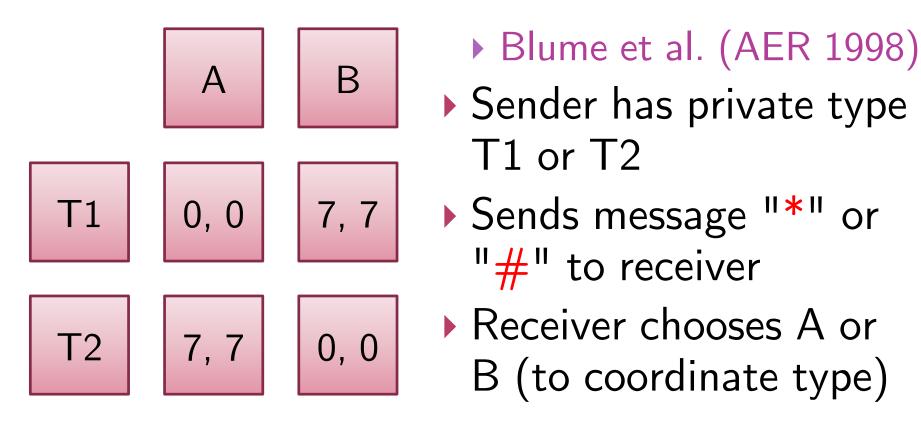
- ▶ Cooper, DeJong, Forsythe & Ross (AER 90')
- ▶ BOS: Baseline (MSE mismatch 62.5%)
- ▶ BOS-300: Row player has outside option 300
 - ▶ Forward induction predicts (2,1)
- ▶ BOS-100: Row player has outside option 100
 - Forward induction doesn't apply
- ▶ Compare BOS-100 and BOS-300 shows if "any outside option" works...

Battle of Sexes (Last 11 Periods)

Game	Outside	(1,2)	(2,1)	Other	# Obs
BOS	-	37(22%)	31(19%)	97(59%)	165
BOS-300	33	0(0%)	119(90%)	13(10%)	165
BOS-100	3	5(3%)	102(63%)	55(34%)	165
BOS-1W					165
BOS-2W					165
BOS-SEQ					165

Asymmetric Players: Battle of Sexes

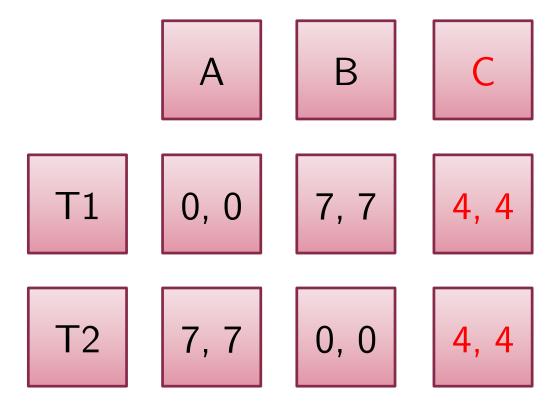
- ▶ Cooper, DeJong, Forsythe & Ross (AER 90')
- ▶ BOS-1W: 1 way communication by Row
- ▶ BOS-2W: 2 way communication by both
- ▶ BOS-SEQ: Both know that Row went first, but Column doesn't know what Row did
 - ▶ Information set same as simultaneous move
 - Would a sequential move act as an coordination device?


Battle of Sexes (Last 11 Periods)

Game	Outside	(1,2)	(2,1)	Other	# Obs
BOS	-	37(22%)	31(19%)	97(59%)	165
BOS-300	33	0(0%)	119(90%)	13(10%)	165
BOS-100	3	5(3%)	102(63%)	55(34%)	165
BOS-1W	_	1(1%)	158(96%)	6(4%)	165
BOS-2W	-	49(30%)	47(28%)	69(42%)	165
BOS-SEQ	-	6(4%)	103(62%)	56(34%)	165

Where Does Meaning Come From?

- Communication can help us coordinate
- But how did the common language for communication emerge in the first place?
- Put people in a situation of no meaning and see how they create it!
- ▶ Blume, DeJong, Kim & Sprinkle (AER 98')
 - ▶ See also BDKS (GEB 2001) which is better!


Evolution of Meaning: Game 1 (Baseline)

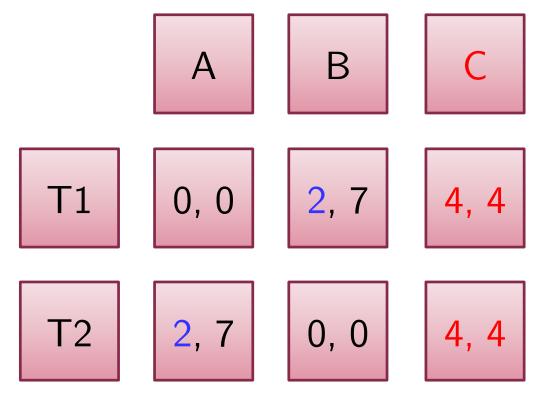
Evolution of Meaning

- ▶ Blume et al. (AER 1998)
- ▶ Game 1: Baseline as above
- ▶ Game 1NH: See only history of own match
- ▶ Game 2: Receiver can choose C (safe action) that gives (4,4) regardless of T1/T2
 - ▶ Theory: Pooling or Separating Equilibrium

Evolution of Meaning: Game 2

▶ Game 2: Receiver can choose C (safe action) that gives (4,4) regardless of T1/T2

Percentage Consistent with Separating


Game \ Period	1	5	10	15	20
1st Session					
Game 1	48	65	74	89	95
2nd Session					
Game 1	49	72	61	89	100
Game 1NH	55	55	28	55	72
Game 2					
Separating	44	88	88	88	94
Pooling	39	05	00	05	05

2020/5/24

Evolution of Meaning

- ▶ Blume et al. (AER 1998)
- ▶ Game 1: Baseline as above
- ▶ Game 1NH: See only history of own match
- ▶ Game 2: Receiver can choose C (safe action) that gives (4,4) regardless of T1/T2
 - ▶ Theory: Pooling or Separating Equilibrium
- ▶ Game 3: Coordinate payoffs become (2,7)
 - So sender wants to disguise types to force receiver to choose C (safe action)
 - ▶ Allowed to send 2 or 3 messages...

Evolution of Meaning: Game 3

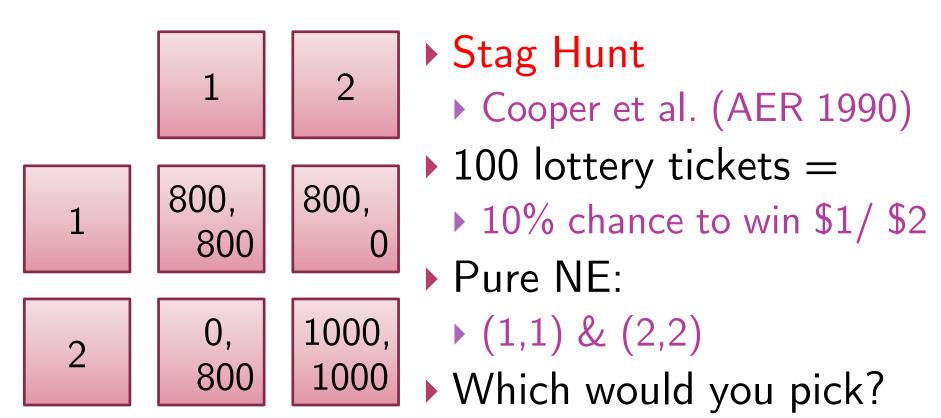
▶ Game 3: Coordinate payoffs become (2,7)

Results of Game 3: 2 vs. 3 messages

# of Messages	1-10	11-20	21-30	31-40	41-50	51-60
2-Separating	43	53	38	39		
2-Pooling	33	34	41	43	2 nd Se	ession
3-Separating	43	38	33	24		
3-Pooling	33	37	42	60		
2-Separating	39	27	23	24	24	23
2-Pooling	39	48	51	60	63	61
3-Separating	23	22	23	25	22	24
3-Pooling	55	61	58	56	57	61
					1st Se	ession

2020/5/24 Coordination Joseph Tao-yi Wang

Example of Asymmetric Payoffs


- Market Entry Game
 - n players decide to enter market with capacity c
 - Payoffs declines as number of entrants increase;
 o if number > c (= capacity)
- ▶ Kahneman (1988): Number close to equil.
 - "To a psychologist, it looks like magic."
- ▶ See BI-SAW paper by Chen et al. (2012)...

Market Entry Game Results

Market capacity	1	3	5	7	9	11	13	15	17	19
MSE	0	2.1	4.2	6.3	8.4	10.5	12.6	14.7	16.8	18.9
all data	1.0	3.7	5.1	7.4	8.7	11.2	12.1	14.1	16.5	18.2
1 st block	1.3	5.7	9.7	6.7	3.7	14.0	11.3	11.3	16.0	18.0

▶ Sundali, Rapoport and Seal (OBHDP 1995)

Games with Asymmetric Equilibria

Games with Asymmetric Equilibria

- Cooper et al. (AER 1990)
- CG: Baseline Stag Hunt
- ▶ CG-900: Row has outside option 900 each
 - ▶ Forward induction predicts (2,2)
- ▶ CG-700: Row has outside option 700 each
 - Forward induction won't work
- ▶ CG-1W: 1 way communication by Row
- ▶ CG-2W: 2 way communication by both

Stage Hunt (Last 11 Periods)

Game	Outside	(1,1)	(2,2)	Other	# Obs
CG	-	160(97%)	0(0%)	5 (3%)	165
CG-900	65	2(2%)	77(77%)	21(21%)	165
CG-700	20	119(82%)	0(0%)	26(18%)	165
CG-1W	-	26(16%)	88(53%)	51 (31%)	165
CG-2W	_	0(0%)	150(91%)	15(9%)	165

Van Huyck, Battalio and Beil (AER 1990)

- lacktriangle Each of you belong to a team of n players
- ▶ Each of you can choose effort $X_i = 1-7$
- ▶ Earnings depend on your own effort and the smallest effort $min{X_i}$ of your team
 - Each person has to do his/her job for the whole team project to fly
- ▶ Payoff = $60 + 20 * min{X_j} 10 * X_i$

Team Project Payoff

Cost of Effort X

Van Huyck, Battalio and Beil (AER 1990)

▶ Payoff = $60 + 10 * min\{X_j\} - 10 * (X_i - min\{X_j\})$

	Your	Smallest X_i in the team								
	X_{i}	7	6	5	4	3	2	1		
	7	130	110	90	70	50	30	10		
	6	-	120	100	80	60	40	20		
	5	-	-	110	90	70	50	30		
	4	-	-	-	100	80	60	40		
	3	-	-	-	-	90	70	50		
	2	-	-	-	-	-	80	60		
C	1	-	-	-	-	-	-	70		

Van Huyck, Battalio and Beil (AER 1990)

- What is your choice when...
 - ▶ Group size = 2?
 - ▶ Group size = 3?
 - ▶ Group size = 20?

Can some kind of communication help coordinate everyone's effort?

Classroom Experiment: 書群之馬

最弱環節賽局 (Weak-Link Game)

Weak-Link Game (最弱環節賽局)

- ▶ Each DM chooses effort X=1-4
 - ▶ Spade = 4, Heart = 3, Diamond = 2, Club = 1
- ▶ DM (Decision Maker) = a team of two
 - ▶ 每組每回合都會有四張撲克牌,分別為黑桃(4)、 紅心(3)、方塊(2)、梅花(1)
 - ▶ 主持人會跟每組收一張牌
 - 交出來的花色代表你們花多少時間排練
 - ▶ 你們的努力程度: 黑桃 = 4小時、紅心 = 3小時、方塊 = 2小時、梅花 = 1小時
 - ▶ 各組要討論屆時交出哪一張牌...

Payoff = $3 * min\{X_i\} - 1 * X_i$

Team Project Payoff

Cost of Effort X

▶「花最少時間排練那一組的排練時數」,每一小時的排練 大家都會得到3分。各組自己每花一小時排練,就少1分。

Your X _i	min{X _j } (最低那組時數)					
(本組時數)	4	3	2	1		
4	8	5	2	-1		
3	-	6	3	0		
2	_	-	4	1		
1	-	_	_	2		

- 1. How much would you earn if all DM choose X=4?
 - 8
 - ▶ 如果所有各組都花四小時排練,這樣各組會拿幾分?8分!

Your X _i (本組時數)	mir	$1\{X_{j}\}$ (康	人 低那組時	數)
(本組時數)	4	3	2	1
4	8	5	2	-1
3	_	6	3	0
2	_	-	4	1
1	_	_	_	2

- 2. How much would you earn if you choose X=3 while others choose X=4?
 - ▶ 6 (< 8, not worth it!)
 - ▶ 如果別組都花四小時排練,但你們這組只花三小時排練,這樣你們會 拿幾分?你們這麼做值得嗎?6分!小於8分所以不值得!

Your X _i (本組時數)	mir	min{X _j } (最低那組時數)					
(本組時數)	4	3	2	1			
4	8	5	2	-1			
3	-	6	3	0			
2	-	-	4	1			
1	-	-	-	2			

- 3. How much would you earn if you choose X=2 while some other DM choose X=1?
 - ▶ 1 (< 2, if you also choose X=1!)
 - ▶ 如果有某一組只花一小時排練,你們這組如果花兩小時排練,值得嗎?不值得,因為只得1分,但如果也花一小時就會跟他們一樣得到2分!

Your X _i	min{X _j } (最低那組時數)					
(本組時數)	4	3	2	1		
4	8	5	2	-1		
3	-	6	3	0		
2	-	-	4	1		
1	-	-	-	2		

Weak-Link Game (最弱環節賽局)

- ▶ Please decide now and we will see the results...
- 6. Are you satisfied with the results? How can you encourage cooperation next time?
 - ▶ 你對結果滿意嗎?如果你希望大家都更好,該怎麼鼓勵大家合作?讓我們再來做一次...

Your X _i	min{X _j } (最低那組時數)					
(本組時數)	4	3	2	1		
4	8	5	2	-1		
3	-	6	3	0		
2	-	-	4	1		
1	_	_	-	2		

Weak-Link Game (最弱環節賽局)

- In reality, people would see each other's effort and increase effort gradually
- Let's try again by committing hour-by-hour!
 - ▶ 現實中你們彼此多半清楚大家的排練情況,而且時數可以 逐步加碼。這次我們採一小時、一小時逐步加碼方式進行

本組排練時數	最低那組排練時數					
	4	3	2	1		
4	8	5	2	-1		
3	-	6	3	0		
2	-	_	4	1		
1	-	_	_	2		

Van Huyck, Battalio and Beil (AER 1990)

▶ Payoff = $60 + 10 * min\{X_j\} - 10 * (X_i - min\{X_j\})$

	Your	Smallest X_i in the team							
	X_{i}	7	6	5	4	3	2	1	
	7	130	110	90	70	50	30	10	
	6	-	120	100	80	60	40	20	
	5	-	-	110	90	70	50	30	
	4	-	-	-	100	80	60	40	
	3	-	-	-	-	90	70	50	
	2	-	-	-	-	-	80	60	
C	1	-	-	-	-	-	-	70	

Weak-link Game: Large Group (${ m n}{=}14{ ext{-}}16?$)

▶ S	tart at $X_i = 4-7$, but quickly drop to $X_i = 1-2!$

Start at $X_i = 4-7$, but quickly drop to $X_i = 1-2!$	

Period

Weak-link Game: Large Group (Extensions)

- No penalty above min: 83% choose 7 in 1st period

P No penalty above min. 65 /6 choose / in 1° penod	
Show distribution: Accelerate race to bottom	

Weak-link Game: Small Group (n=2)

▶ Start at $X_i = 1$ or 7, but quickly converge to $X_i = 7!$

• Wait a couple periods for partner if choose $X_i = 7$.

\mathbf{v} .	Period							
X_{i}	1	2	3	4	5	6	7	
7	9	13	13	17	19	19	21	
6	0	1	4	2	1	1	0	
5	4	1	1	1	0	0	0	
4	0	1	2	0	1	1	0	
3	1	2	1	1	0	0	0	
2	1	2	0	0	0	0	1	
1	8	4	3	3	3	3	2	

2020/5/2

Weak-link Game: Small Group (Extension)

▶ Random Matching: Start high (4-7), but drop to 1!

	\mathbf{v}	Period						
	$\Delta_{ m i}$	1	2	3	4	5	6	7
	7	9	13	13	17	19	19	21
	6	0	1	4	2	1	1	0
	5	4	1	1	1	0	0	0
	4	0	1	2	0	1	1	0
	3	1	2	1	1	0	0	0
	2	1	2	0	0	0	0	1
2020/5/2	1	8	4	3	3	3	3	2