Homework 7: optional

(Political Economy: Spring 2018)

1. Verify the following two (approximate) equalities.

$$
\begin{equation*}
\frac{\operatorname{Pr}\left[\operatorname{Piv}_{A} \mid \alpha\right]+\operatorname{Pr}\left[\operatorname{Piv}_{B} \mid \alpha\right]}{\operatorname{Pr}\left[\operatorname{Piv}_{A} \mid \beta\right]+\operatorname{Pr}\left[\operatorname{Piv}_{B} \mid \beta\right]} \approx \frac{e^{2 n \sqrt{r(1-r)}}}{e^{2 n \sqrt{s(1-s)}}} \times K(r, s) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\operatorname{Pr}\left[\operatorname{Piv}_{A} \mid \alpha\right]}{\operatorname{Pr}\left[\operatorname{Piv}_{A} \mid \beta\right]}=\frac{e^{-n(1-r) p_{b}}}{e^{-n s p_{b}}} \times \frac{1+n(1-r) p_{b}}{1+n s p_{b}} \tag{2}
\end{equation*}
$$

2. Consider a jury model with $n=3$ voters and equal prior $\pi=1 / 2$. Also assume asymmetric signal precision;

$$
\operatorname{Pr}\left[\theta_{i}=1 \mid \omega=G\right]=p, \quad \operatorname{Pr}\left[\theta_{i}=0 \mid \omega=I\right]=q
$$

where $1>p>q>1 / 2$. We have utility $u(c \mid G)=u(a \mid I)=1$ and $u(c \mid I)=u(a \mid G)=0$. Each voter has a voting cost drawn (independently) from the uniform distribution on $[0,1]$, hence $F(x)=x$. You are asked to find a sincere voting equilibrium with voluntary participation in this environment.
(1) Write $x=p_{1}, y=p_{0}$ for the participation rates of those with signal $i=0,1$. Assuming sincere voting, derive expressions for $\operatorname{Pr}[c \mid \omega], \operatorname{Pr}[a \mid \omega]$ and also for $\operatorname{Pr}[T \mid \omega]$, $\operatorname{Pr}\left[T_{-1} \mid \omega\right], \operatorname{Pr}\left[T_{+1} \mid \omega\right], \omega=G, I$, where the events $T, T_{ \pm 1}$ are as defined in class. Hint. For a fixed number of voters, the probability of the event $(k, l) \mid \omega$, meaning k votes for "c" and l votes for "a" in state ω, is given by the multinomial probability

$$
\binom{n}{k+l}\binom{k+l}{k} \operatorname{Pr}[c \mid \omega]^{k} \operatorname{Pr}[a \mid \omega]^{l}(1-\operatorname{Pr}[c \mid \omega]-\operatorname{Pr}[a \mid \omega])^{n-k-l}
$$

where $n-k-l=\#$ abstainers.
(2) Combine the probabilities in part (1) to write the pivot probabilities $\operatorname{Pr}[\operatorname{Piv} \mid \omega]$, $\operatorname{Pr}\left[\operatorname{Piv}_{a} \mid \omega\right], \omega=G, I$, and state the individual rationality conditions $\left(I R_{1}\right),\left(I R_{0}\right)$ for the signals $i=0,1$ in terms of these pivot probabilities.
(3) Assume $p=0.9, q=0.6$ and solve the two equations $\left(I R_{1}\right)$, $\left(I R_{0}\right)$ for the equilibrium participation rates x^{*}, y^{*} (by using some mathematics package such as Mathematica or Matlab). Are these participation rates strictly positive? Which one is greater between x^{*} and y^{*} ?
(4) Finally, state the incentive compatibility conditions $\left(I C_{1}\right),\left(I C_{0}\right)$ for signals $i=$ 0,1 and verify that the above equilibrium participation rates x^{*}, y^{*} in part (3) indeed satisfy these incentive compatibility conditions.

