Experimental Economics I: Behavioral Game Theory Homework (18S)

For BGT4

- Unstructured bargaining game (Roth and Malouf, Psych Rev 1979): Two players bargain over 100 lottery tickets, each representing 1% chance of winning a prize. In one treatment, the prize is \$1 for both players, while player 1 and 2 earn \$1.25 and \$3.75, respectively, in the other treatment.
 - a. Show that in both case, 50-50 satisfies the four axioms of the Nash bargaining solution: Pareto Optimality, Symmetry, Independence of Irrelevant Alternatives (IIA), and Independence from affine utility transformation.
 - b. Explain how players' risk attitude would affect their behavior (assuming they can reduce compound lotteries.
 - c. Would showing players their opponent's prize affect the experimental results? Why or why not?
- 2. Nash demand game: Two players each state their demand x_1 , x_2 (between 0 and
 - 100), and are paid accordingly if $x_1 + x_2 \le 100$. Otherwise, they both earn 0.
 - a. What is the Nash equilibrium of this game?
 - b. Suppose players can instead only state either $(x_1, x_2) = (50, 50)$ or $(x_1, x_2) = (h, 100 h)$. What is the mixed-strategy equilibrium of this game? What is the equilibrium disagreement rate?
- 3. **2-period bargaining game**: Player 1 offers how to split a pie of \$100 with player 2; player 2 can accept the offer (and split accordingly), or reject it. If player 2 rejects, the pie shrinks to \$25 and player 2 gets to offer how to split it with player 1. Player 1 can accept the offer (split accordingly), or reject it (both earn zero).
 - a. What is the Nash equilibrium of the subgame after player 2 rejects?
 - b. What is the subgame perfect Nash equilibrium of this game?
- 4. Random termination bargaining game: Player 1 and player 2 alternative between making offers to split \$30, which the other player can either accept (split accordingly) or reject (go to the next round).
 - a. First assume that there is a chance (1 p) that the game ends if an offer is rejected, so the continuation probability is p. Show that the subgame perfect Nash equilibrium for p = 0.90, 2/3, and 1/6 involves accepting first-round offers of 14.21, 12, and 4.29, respectively.
 - b. Now assume that there is a fixed cost of \$0.20 and \$3 for player 1 and 2, respectively. What is the subgame perfect Nash equilibrium of this game?