Experimental Economics I Jury Voting

Instructor: Sun-Tak Kim
National Taiwan University

Spring 2018

Jury Voting Model

- Three jurors $N=\{1,2,3\}$ responsible for deciding whether to convict or acquit a defendant.
- Collectively they choose an outcome $x \in\{c, a\}$.
- The jurors simultaneously cast ballots $v_{i} \in S_{i}=\{c, a\}$.
- The outcome is chosen by majority rule.
- Each juror is uncertain whether or not the defendant is guilty (G) or innocent (I).
- So the set of state variables is $\Omega=\{G, I\}$.
- Each juror assigns prior prob. $\pi>1 / 2$ to state G.
- If the defendant is guilty, the jurors receive 1 unit of utility from convicting and 0 from acquitting; if the defendant is innocent, the jurors receive 1 unit from acquitting and 0 from convicting;

$$
\begin{aligned}
& u(c \mid G)=u(a \mid I)=1 \\
& u(a \mid G)=u(c \mid I)=0
\end{aligned}
$$

Jury Voting Model

- Absent any additional information, each juror receives an expected utility of π from a guilty verdict and $1-\pi$ from an acquittal.
- Because $\pi>1 / 2$, the Nash equ'm that survives the elimination of weakly dominated strategies is the one where each juror votes guilty.
- Now, before voting, each juror receives a private signal about the defendant's guilt $\theta_{i} \in\{0,1\}$.
- The signal is informative so that a juror is more likely to receive the signal $\theta_{i}=1$ when the defendant is guilty than when the defendant is innocent.
- Assume the prob. of receiving a "guilty" signal $\left(\theta_{i}=1\right)$ when the defendant is guilty is the same as that of receiving an "innocent" signal $\left(\theta_{i}=0\right)$ when the defendant is innocent.
- Formally, let $\operatorname{Pr}\left(\theta_{i}=1 \mid \omega=G\right)=\operatorname{Pr}\left(\theta_{i}=0 \mid \omega=I\right)=p>1 / 2$ so that $\operatorname{Pr}\left(\theta_{i}=0 \mid \omega=G\right)=\operatorname{Pr}\left(\theta_{i}=1 \mid \omega=I\right)=1-p$.
- Conditional on a state, each signal for an individual is independent with each other (signals are "conditionally independent").

Sincere Voting Strategy

- After receiving her signal, voter i selects her vote $v\left(\theta_{i}\right)$ to maximize the prob. of a correct decision - conviction of the guilty and acquittal of the innocent.
- Suppose that each voter uses the sincere strategy $v_{i}(1)=c$ and $v_{i}(0)=a$.
- The sincere strategy calls for a vote to convict upon receipt of a guilty signal and a vote to acquit upon an innocent signal.
- Sincere strategies constitute a Bayesian Nash equ'm (BNE) only if voter 1 is willing to use this strategy when she believes that voters 2 and 3 also use it.
- Given these conjectures, the expected utility (EU) of voting to convict is

$$
\begin{aligned}
& \operatorname{Pr}\left(\theta_{2}=1, \theta_{3}=0 ; \omega=G \mid \theta_{1}\right)+\operatorname{Pr}\left(\theta_{2}=0, \theta_{3}=1 ; \omega=G \mid \theta_{1}\right) \\
& +\operatorname{Pr}\left(\theta_{2}=1, \theta_{3}=1 ; \omega=G \mid \theta_{1}\right)+\operatorname{Pr}\left(\theta_{2}=0, \theta_{3}=0 ; \omega=I \mid \theta_{1}\right) \text {. }
\end{aligned}
$$

Sincere Voting Strategy

- The EU of voting to acquit is

$$
\begin{aligned}
\operatorname{Pr}\left(\theta_{2}=1, \theta_{3}=0 ; \omega=I \mid \theta_{1}\right) \quad+\quad \operatorname{Pr}\left(\theta_{2}=0, \theta_{3}=1 ; \omega=I \mid \theta_{1}\right) \\
+\operatorname{Pr}\left(\theta_{2}=0, \theta_{3}=0 ; \omega=I \mid \theta_{1}\right) \quad+\quad \operatorname{Pr}\left(\theta_{2}=1, \theta_{3}=1 ; \omega=G \mid \theta_{1}\right)
\end{aligned}
$$

- The last two terms of each sum are the same, hence these terms cancel out when comparing utilities.
- Accordingly, voting to convict is a best response if \& only if

$$
\begin{aligned}
& \operatorname{Pr}\left(\theta_{2}=1, \theta_{3}=0 ; \omega=G \mid \theta_{1}\right)+\operatorname{Pr}\left(\theta_{2}=0, \theta_{3}=1 ; \omega=G \mid \theta_{1}\right) \\
\geq \quad & \operatorname{Pr}\left(\theta_{2}=1, \theta_{3}=0 ; \omega=I \mid \theta_{1}\right)+\operatorname{Pr}\left(\theta_{2}=0, \theta_{3}=1 ; \omega=I \mid \theta_{1}\right) .
\end{aligned}
$$

- Because these expressions depend on the conditional prob. of observing combinations of the state variable and the signals of the other jurors, juror 1 uses Bayes' rule to evaluate each term.

Sincere Voting Strategy

- Suppose that juror 1 receives $\theta_{1}=1$.
- In this case, Bayes' rule yields

$$
\begin{aligned}
& \operatorname{Pr}\left(\theta_{2}=1, \theta_{3}=0 ; \omega=G \mid \theta_{1}=1\right) \\
= & \operatorname{Pr}\left(\theta_{2}=0, \theta_{3}=1 ; \omega=G \mid \theta_{1}=1\right)=\frac{\pi p^{2}(1-p)}{\pi p+(1-\pi)(1-p)}
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{Pr}\left(\theta_{2}=1, \theta_{3}=0 ; \omega=I \mid \theta_{1}=1\right) \\
= & \operatorname{Pr}\left(\theta_{2}=0, \theta_{3}=1 ; \omega=I \mid \theta_{1}=1\right)=\frac{(1-\pi) p(1-p)^{2}}{\pi p+(1-\pi)(1-p)}
\end{aligned}
$$

- Thus, $v_{i}(1)=c$ is optimal for juror 1 if

$$
2 \frac{\pi p^{2}(1-p)}{\pi p+(1-\pi)(1-p)} \geq 2 \frac{(1-\pi) p(1-p)^{2}}{\pi p+(1-\pi)(1-p)}
$$

Sincere Voting Strategy

- After simplifying and rearranging, this inequality becomes

$$
\frac{\pi p^{2}(1-p)}{\pi p^{2}(1-p)+(1-\pi) p(1-p)^{2}} \geq \frac{1}{2}
$$

- LHS is just the conditional prob. of guilt given two signals of $\theta=1$ and one signal of $\theta=0$.
- In other words, agent 1 wants to vote to convict if she believes that the defendant is more likely to be guilty than innocent, conditional on her signal and the belief that she is pivotal.
- Similarly, the requirement for a vote of innocence conditional on a signal of 0 is

$$
\frac{\pi p(1-p)^{2}}{\pi p(1-p)^{2}+(1-\pi) p^{2}(1-p)} \leq \frac{1}{2}
$$

- To sum, in any BNE in which voting corresponds to the private signals,

1. Conditional on the supposition that i is pivotal and observes $\theta_{i}=1$, the posterior prob. of guilt is greater than $1 / 2$; and
2. Conditional on the supposition that i is pivotal and observes $\theta_{i}=0$, the posterior prob. of guilt is less than $1 / 2$.

Asymmetric Signal

- Thus, if sincere voting is incentive compatible, then

$$
\frac{1-p}{p} \leq \frac{\pi}{1-\pi} \leq \frac{p}{1-p}
$$

- E.g., if $\pi>p$, then sincere voting is not incentive compatible.
- Under majority rule and symmetric signal precision (and equal prior $\pi=1 / 2$), sincere voting obtains in equ'm (if $p>1 / 2$).
- Alternative way to obtain an insincere/strategic voting equ'm is to introduce asymmetric signal:

$$
\begin{array}{rll}
p \equiv \operatorname{Pr}\left(\theta_{i}=1 \mid \omega=G\right), & & q \equiv \operatorname{Pr}\left(\theta_{i}=0 \mid \omega=l\right) \\
1-p & =\operatorname{Pr}\left(\theta_{i}=0 \mid \omega=G\right), & \\
1-q=\operatorname{Pr}\left(\theta_{i}=1 \mid \omega=l\right)
\end{array}
$$

and we have here $1>p>q>1 / 2$.

- Then, the posterior probabilities (with equal prior $\pi=1 / 2$) are

$$
\operatorname{Pr}\left[\omega=G \mid \theta_{i}=1\right]=\frac{p}{p+(1-q)}, \operatorname{Pr}\left[\omega=I \mid \theta_{i}=0\right]=\frac{q}{(1-p)+q}
$$

Strategic Voting Equ'm

- Define $\sigma(s) \equiv$ prob. of voting one's signal, $s=0,1$.
- Typically, we have in equ'm; $\sigma(1) \in(0,1)$ and $\sigma(0)=1$.
- Then,

$$
\begin{aligned}
\operatorname{Pr}[c \mid \omega=G] & =p \sigma(1)+(1-p)(1-\sigma(0))=p \sigma(1) \\
\operatorname{Pr}[a \mid \omega=G] & =p(1-\sigma(1))+(1-p) \sigma(0)=p(1-\sigma(1))+(1-p) \\
\operatorname{Pr}[c \mid \omega=I] & =(1-q) \sigma(1)+q(1-\sigma(0))=(1-q) \sigma(1) \\
\operatorname{Pr}[a \mid \omega=I] & =(1-q)(1-\sigma(1))+q \sigma(0)=(1-q)(1-\sigma(1))+q
\end{aligned}
$$

- Since the equ'm strategy requires randomization upon signal $s=1$,

$$
\operatorname{Pr}\left[\omega=G \mid \theta_{i}=1\right] \operatorname{Pr}[\operatorname{Piv} \mid \omega=G]-\operatorname{Pr}\left[\omega=I \mid \theta_{i}=1\right] \operatorname{Pr}[\operatorname{Piv} \mid \omega=I]=0
$$

where $\operatorname{Pr}[\operatorname{Piv} \mid \omega]$ is the prob. a vote is pivotal at state ω :

$$
\begin{aligned}
\operatorname{Pr}[\operatorname{Piv} \mid \omega=G] & =\binom{2}{1} \operatorname{Pr}[c \mid \omega=G] \operatorname{Pr}[a \mid \omega=G] \\
& =[p \sigma(1)][p(1-\sigma(1))+(1-p)]
\end{aligned}
$$

Strategic Voting Equ'm

$$
\begin{aligned}
\operatorname{Pr}[\operatorname{Piv} \mid \omega=I] & =\binom{2}{1} \operatorname{Pr}[c \mid \omega=I] \operatorname{Pr}[a \mid \omega=I] \\
& =[(1-q) \sigma(1)][(1-q)(1-\sigma(1))+q]
\end{aligned}
$$

- Thus we solve for $\sigma(1)$ from the above equation.
- Since $\sigma(0)=1$, we finally check whether

$$
\operatorname{Pr}\left[\omega=I \mid \theta_{i}=0\right] \operatorname{Pr}[\operatorname{Piv} \mid \omega=I]-\operatorname{Pr}\left[\omega=G \mid \theta_{i}=0\right] \operatorname{Pr}[\operatorname{Piv} \mid \omega=G]>0
$$

when $\operatorname{Pr}[\operatorname{Piv} \mid \omega]$ is evaluated at $\sigma(1)$ that solves the indifference condition.

- For example, when $p=0.9$ and $q=0.6, \sigma(1)=0.9774$
- Under fixed $(p, q), \sigma(1)$ typically decreases as n gets larger.

Remarks

- Austen-Smith \& Banks (1996) show that in many cases the sincere strategy is inconsistent with equilibrium behavior.
- It is easy to find parameters π and p for which one of the necessary conditions does not hold.
- There are alternative strategies jurors might choose.
- Jurors can randomize for some signals, vote the same way regardless of their signal, or use different strategies than other jurors use.
- Feddersen \& Pesendorfer (1998) consider the properties of equ'a of this game when one varies the voting rule and number of jurors.

Jury Voting with a Continuum of Signals

- Instead of receiving a binary signal, each juror now receives a signal $\theta_{i} \in[0,1]$ where θ_{i} is drawn from a conditional distribution $F\left(\theta_{i} \mid \omega\right)$.
- This distribution function is associated with a different density function $f\left(\theta_{i} \mid \omega\right)$ that satisfies the monotone likelihood ratio condition.
- A conditional density function satisfies the strict monotone likelihood ratio condition (SMLR) if $\frac{f\left(\theta_{i} \mid G\right)}{f\left(\theta_{i} \mid l\right)}$ is a strictly monotone function of θ_{i} on $[0,1]$.
- To see why this assumption is important, note that Bayes' rule implies that

$$
\begin{aligned}
\operatorname{Pr}\left(G \mid \theta_{i}\right) & =\frac{f\left(\theta_{i} \mid G\right) \pi}{f\left(\theta_{i} \mid G\right) \pi+f\left(\theta_{i} \mid I\right)(1-\pi)} \\
& =\frac{\frac{f\left(\theta_{i} \mid G\right)}{f\left(\theta_{i} \mid l\right)} \pi}{\frac{f\left(\theta_{i} \mid G\right)}{f\left(\theta_{i} \mid l\right)} \pi+(1-\pi)}
\end{aligned}
$$

- Accordingly, $\operatorname{Pr}\left(G \mid \theta_{i}\right)$ is increasing in θ_{i} if \& only if $f\left(\theta_{i} \mid G\right) / f\left(\theta_{i} \mid I\right)$ is increasing in θ_{i}.
- Thus, the SMLR conditioin implies that higher signals correspond to higher posterior probabilities that $\omega=G$.

Jury Voting with a Continuum of Signals

- To keep matters simple, we focus exclusively on symmetric strategies where voters who receive the same signal choose the same strategy.
- A symmetric strategy profile is, therefore, a mapping $v_{i}\left(\theta_{i}\right):[0,1] \rightarrow\{c, a\}$.
- As in the binary signal case, BNE strategies are those that are optimal when each agent acts conditionally on her private information and the conjecture that she is pivotal.
- An agent votes to convict if she thinks the prob. of guilt is no less than $1 / 2$ and she votes to acquit if she thinks the prob. of guilt is no more than $1 / 2$.
- Because higher signals are better indicators of guilt, a natural conjecture is that the strategy must be weakly increasing.
- For low values of θ_{i} an acquittal vote is cast and for high values of θ_{i} a conviction vote is cast.

Cut Point Strategy

- A monotone strategy of this form can be characterized by a cut point $\hat{\theta} \in[0,1]$.
- Assume that agents $i \in N \backslash i$ use the monotone strategy

$$
v_{i}\left(\theta_{i}\right)= \begin{cases}c & \text { if } \theta_{i} \geq \hat{\theta} \\ a & \text { if } \theta_{i}<\hat{\theta}\end{cases}
$$

- If all players other than i use this cut point strategy, the posterior prob. of $\{\omega=G\}$ given signal θ_{i} and the event that i is pivotal is given by

$$
\begin{aligned}
& \operatorname{Pr}\left(G \mid \text { piv }, \theta_{i} ; \hat{\theta}\right) \\
= & \frac{\pi f\left(\theta_{i} \mid G\right) F(\hat{\theta} \mid G)^{N-r}[1-F(\hat{\theta} \mid G)]^{r-1}}{\pi f\left(\theta_{i} \mid G\right) F(\hat{\theta} \mid G)^{N-r}[1-F(\hat{\theta} \mid G)]^{r-1}+(1-\pi) f\left(\theta_{i} \mid I\right) F(\hat{\theta} \mid I)^{N-r}[1-F(\hat{\theta} \mid I)]^{r-1}}
\end{aligned}
$$

- This prob. is a function of the parameter $\hat{\theta}$.
* Here we assume r-rule, so we require r or more votes for conviction (majority rule if $r=(N+1) / 2$ and unanimity rule if $r=N$).

Cut Point Equilibrium

- In this model the existence of a symmetric equ'm in which voters use a cut point hinges on finding a value of $\hat{\theta}$ s.t.

$$
\operatorname{Pr}(G \mid p i v, \hat{\theta} ; \hat{\theta})=\frac{1}{2}
$$

and demonstrating that $\operatorname{Pr}\left(G \mid\right.$ piv, $\left.\theta_{i} ; \hat{\theta}\right) \leq \frac{1}{2}$ if $\theta_{i}<\hat{\theta}$ and $\operatorname{Pr}\left(G \mid p i v, \theta_{i} ; \hat{\theta}\right) \geq \frac{1}{2}$ if $\theta_{i}>\hat{\theta}$.

- Although analysis of examples is cumbersome, it is easy to derive conditions on the primitives of the game to ensure that such a $\hat{\theta} \in(0,1)$ exists.
- First, $\operatorname{Pr}\left(G \mid p i v, \theta_{i} ; \hat{\theta}\right) \geq \frac{1}{2}$ if \& only if

$$
\begin{aligned}
& \frac{\pi f\left(\theta_{i} \mid G\right) F(\hat{\theta} \mid G)^{N-r}[1-F(\hat{\theta} \mid G)]^{r-1}}{(1-\pi) f\left(\theta_{i} \mid I\right) F(\hat{\theta} \mid I)^{N-r}[1-F(\hat{\theta} \mid I)]^{r-1}} \\
= & \frac{f\left(\theta_{i} \mid G\right)}{f\left(\theta_{i} \mid I\right)} \frac{\pi F(\hat{\theta} \mid G)^{N-r}[1-F(\hat{\theta} \mid G)]^{r-1}}{(1-\pi) F(\hat{\theta} \mid I)^{N-r}[1-F(\hat{\theta} \mid I)]^{r-1}} \geq 1 .
\end{aligned}
$$

Existence of Cut Point Equilibrium

- SMLR then implies that if $\operatorname{Pr}(G \mid$ piv, $\hat{\theta} ; \hat{\theta})=1 / 2$ then $\theta_{i}<\hat{\theta}$ implies $\operatorname{Pr}\left(G \mid\right.$ piv, $\left.\theta_{i} ; \hat{\theta}\right) \leq 1 / 2$ and $\theta_{i}>\hat{\theta}$ implies $\operatorname{Pr}\left(G \mid\right.$ piv, $\left.\theta_{i} ; \hat{\theta}\right) \geq 1 / 2$.
- If $\operatorname{Pr}(G \mid p i v, 0 ; 0) \leq 1 / 2 \leq \operatorname{Pr}(G \mid p i v, 1 ; 1)$ then the intermediate value theorem implies that such a cut point exists b / c the function $\operatorname{Pr}(G \mid p i v, \cdot ; \cdot)$ is continuous.
- For a large class of games these boundary conditions are satisfied.
- In the simple binary signal model, equ'a where everyone uses the same rule and voting is determined by private information may not exist.
- This type of equ'm generally exists in the continuum model, however.
- Using the binary model, Feddersen \& Pesendorfer (1998) show that the unanimity rule is a uniquely bad way to aggregate information for large populations b / c in equ'm voters condition on the assumption that everyone else is voting to convict.
- In the continuum model, Meirowitz (2002) shows that the unanimity rule often turns out to be as good as the other voting rules.

Voluntary Voting Model

- Two candidates, A and B , in majority voting election.
- Two equally likely states of nature, α and β.
- \mathbf{A} is the better choice in state α and \mathbf{B}, in state β.
- In state α, payoff is 1 if A is elected and 0 if B is elected; vice versa in state β.
- The size of the electorate is a random variable, distributed according to a Poisson distribution with mean n .
- The probability that there are exactly m voters is $e^{-n} n^{m} / m!$.
- Prior to voting, each voter receives a private signal S_{i} regarding the true state of nature, either a or $\mathrm{b} ; \operatorname{Pr}[a \mid \alpha]=r$ and $\operatorname{Pr}[b \mid \beta]=s$; the posteriors given by

$$
q(\alpha \mid a)=\frac{r}{r+(1-s)}, \quad q(\beta \mid b)=\frac{s}{s+(1-r)} .
$$

- $r \geq s>1 / 2$ implies $q(\alpha \mid a) \leq q(\beta \mid b)$.

Pivotal Events

- Event $(j, k), \mathrm{j}$ votes for A and k votes for B .
- An event is pivotal for A if a single additional vote for A changes the outcome, written Piva.
- Under majority rule, one additional vote for A makes a difference only if (i) there is a tie; or (ii) A has one vote less than B.
$T=\{(k, k): k \geq 0\}, \quad T_{-1}=\{(k-1, k): k \geq 1\}, \quad \operatorname{Piv}_{A}=T \cup T_{-1}$
- Similarly, Piv $_{B}=T \cup T_{+1}, T_{+1}=\{(k, k-1): k \geq 1\}$.
- σ_{A}, σ_{B} are the expected number of votes for A, B in state $\alpha ; \tau_{A}, \tau_{B}$ are the expected number of votes for A, B in state β.
- With abstention allowed, $\sigma_{A}+\sigma_{B} \leq n, \tau_{A}+\tau_{B} \leq n$ (equality w/o abstention).

Pivotal Events

- If the realized electorate is of size m with k votes for A and $/$ votes for B ($m-k-l$ abstention),

$$
\operatorname{Pr}[(k, l) \mid \alpha]=e^{-\sigma_{A}} \frac{\sigma_{A}^{k}}{k!} e^{-\sigma_{B}} \frac{\sigma_{B}^{l}}{l!} .
$$

* For the probability of the event (k, I) in state β, replace σ by τ.

$$
\begin{aligned}
\operatorname{Pr}[T \mid \alpha] & =e^{-\sigma_{A}-\sigma_{B}} \sum_{k=0}^{\infty} \frac{\sigma_{A}^{k}}{k!} \frac{\sigma_{B}^{k}}{k!} \\
\operatorname{Pr}\left[T_{-1} \mid \alpha\right] & =e^{-\sigma_{A}-\sigma_{B}} \sum_{k=1}^{\infty} \frac{\sigma_{A}^{k-1}}{(k-1)!} \frac{\sigma_{B}^{k}}{k!}, \\
\operatorname{Pr}[\operatorname{Piv} \mid \alpha] & =\frac{1}{2} \operatorname{Pr}[T \mid \alpha]+\frac{1}{2} \operatorname{Pr}\left[T_{-1} \mid \alpha\right]
\end{aligned}
$$

where $\operatorname{Piv}_{A}=T \cup T_{-1}$ is the set of events where one additional vote for A is decisive, and we have the coefficient $1 / 2$ because the additional vote for A breaks a tie or leads to a tie.

Pivotal Events

- Similarly,

$$
\operatorname{Pr}\left[\operatorname{Piv}{ }_{B} \mid \beta\right]=\frac{1}{2} \operatorname{Pr}[T \mid \beta]+\frac{1}{2} \operatorname{Pr}\left[T_{+1} \mid \beta\right]
$$

where $\operatorname{Piv}_{B}=T \cup T_{+1}$ is the set of events where one additional vote for B is decisive.

- Define modified Bessel functions

$$
I_{0}(z)=\sum_{k=0}^{\infty} \frac{(z / 2)^{k}}{k!} \frac{(z / 2)^{k}}{k!}, \quad I_{1}(z)=\sum_{k=1}^{\infty} \frac{(z / 2)^{k-1}}{(k-1)!} \frac{(z / 2)^{k}}{k!}
$$

and rewrite the probabilities of close elections in terms of these functions

$$
\begin{aligned}
\operatorname{Pr}[T \mid \alpha] & =e^{-\sigma_{A}-\sigma_{B}} I_{0}\left(2 \sqrt{\sigma_{A} \sigma_{B}}\right) \\
\operatorname{Pr}\left[T_{ \pm 1} \mid \alpha\right] & =e^{-\sigma_{A}-\sigma_{B}}\left(\frac{\sigma_{A}}{\sigma_{B}}\right)^{ \pm 1 / 2} I_{1}\left(2 \sqrt{\sigma_{A} \sigma_{B}}\right)
\end{aligned}
$$

- For z large, we also have

$$
I_{0}(z) \approx \frac{e^{z}}{\sqrt{2 \pi z}} \approx I_{1}(z)
$$

Compulsory Voting

- By compulsory voting each voter must cast a vote for either A or B.
- Vote sincerely in compulsory voting equilibrium?
- Given sincere and compulsory voting, $\sigma_{A}=n r, \sigma_{B}=n(1-r)$, $\tau_{A}=n(1-s), \tau_{B}=n s$.
- As n increases, both $\sigma \rightarrow \infty, \tau \rightarrow \infty$, and so the previous approximations for $I_{0}(z), I_{1}(z)$ imply

$$
\frac{\operatorname{Pr}\left[\operatorname{Piv_{A}} \mid \alpha\right]+\operatorname{Pr}\left[\operatorname{Piv}_{B} \mid \alpha\right]}{\operatorname{Pr}\left[\operatorname{Piv}_{A} \mid \beta\right]+\operatorname{Pr}\left[\operatorname{Piv}_{B} \mid \beta\right]} \approx \frac{e^{2 n \sqrt{r(1-r)}}}{e^{2 n \sqrt{s(1-s)}}} \times K(r, s)
$$

where $K(r, s)$ is positive and independent of n.

- $r>s>1 / 2$ also implies $s(1-s)>r(1-r)$ and so RHS goes to zero as n increases.

Compulsory Voting

- This implies that, when n is large and a voter is pivotal, state β is infinitely more likely than state α.
- Thus, voters with a signals will not wish to vote sincerely.

Proposition 1: Suppose $r>s$. If voting is compulsory, sincere voting is not an equilibrium in large elections.

- This result also holds for a fixed number of voters (Feddersen \& Pesendorfer APSR 1998).

Voluntary Voting

- Costly voting: one's cost of voting is private info and an independent draw from a continuous distribution F with support $[0,1]-F$ admits a density $f>0$ on $[0,1)$.
- Voting costs are independent of the signals.
- There exists an equilibrium of this voluntary (and costly) voting game with the following features;
(i) There exists a pair of positive threshold costs c_{a}, c_{b} s.t. a voter with cost c and signal $i=a, b$ votes (does not abstain) if \& only if $c \leq c_{i}$. The threshold costs determine differential participation rates $F\left(c_{a}\right)=p_{a}, F\left(c_{b}\right)=p_{b}$.
(ii) All those who vote do so sincerely - i.e., all those with signal a vote for A and those with signal b vote for B.

Equ'm Participation Rates

- We show that when all those who vote do so sincerely, there is an equ'm in cutoff strategies.
- There exists a threshold cost $c_{a}>0\left(c_{b}>0\right)$ s.t. all voters with signal i and cost $c \leq c_{a}\left(c \leq c_{b}\right)$ go to the polls and vote for $A(B)$.
- These then determine participation probabilities $p_{a}=F\left(c_{a}\right)$, $p_{b}=F\left(c_{b}\right)$ for voters with signal a, b, respectively.
- Now the expected numbers of votes for A, B in state α are $\sigma_{A}=n r p_{a}, \sigma_{B}=n(1-r) p_{b}$; and those in state β are $\tau_{A}=n(1-s) p_{a}, \tau_{B}=n s p_{b}$, respectively.
- We look for participation rates p_{a}, p_{b} s.t. a voter with signal a and $\operatorname{cost} c_{a}=F^{-1}\left(p_{a}\right)$ is indifferent b / w going to the polls and staying home;

$$
(I R a) \quad U_{a}\left(p_{a}, p_{b}\right) \equiv q(\alpha \mid a) \operatorname{Pr}\left[\operatorname{Piv}_{A} \mid \alpha\right]-q(\beta \mid a) \operatorname{Pr}[\operatorname{Piv} A \mid \beta]=F^{-1}\left(p_{a}\right)
$$

Equ'm Participation Rates

where the pivot probabilities are determined using the expected vote totals σ, τ.

- Similarly, a voter with signal b and cost $c_{b}=F^{-1}\left(p_{b}\right)$ must also be indifferent;
$(I R b) \quad U_{b}\left(p_{a}, p_{b}\right) \equiv q(\beta \mid b) \operatorname{Pr}[\operatorname{Piv} \mid \beta]-q(\alpha \mid b) \operatorname{Pr}\left[\operatorname{Pi} v_{B} \mid \alpha\right]=F^{-1}\left(p_{b}\right)$.

Proposition 2: There exist participation rates $p_{a}^{*} \in(0,1)$ and $p_{b}^{*} \in(0,1)$ that simultaneously satisfy (IRa) and (IRb).

- Intuition for positive participation rates: assume $p_{a}=0$.
- Then the only pivotal events are $(0,0)$ and $(0,1)$.

Equ'm Participation Rates

- Hence conditional on being pivotal

$$
\frac{\operatorname{Pr}\left[\operatorname{Piv}_{A} \mid \alpha\right]}{\operatorname{Pr}\left[\operatorname{Piv}_{A} \mid \beta\right]}=\frac{e^{-n(1-r) p_{b}}}{e^{-n s p_{b}}} \times \frac{1+n(1-r) p_{b}}{1+n s p_{b}}
$$

- The ratio of the exponential terms favors state α while the ratio of the linear terms favors state β; and the exponential terms always dominate.
- Since state α is perceived more likely than β by a voter with signal a who is pivotal, the payoff from voting is positive.
- We also have

Lemma 1: If $r>s$, then any solution to (IRa) and (IRb) satisfies $p_{a}^{*}<p_{b}^{*}$, with equality if $r=s$.

Sincere Voting

- Given the (equ'm) participation rates, we can show that it is a best-response for every voter to vote sincerely.
- We begin with a lemma;

Lemma 2: If voting behavior is s.t. $\sigma_{A}>\tau_{A}$ and $\sigma_{B}<\tau_{B}$, then

$$
\frac{\operatorname{Pr}\left[\operatorname{Piv_{B}} \mid \alpha\right]}{\operatorname{Pr}\left[\operatorname{Piv}_{B} \mid \beta\right]}>\frac{\operatorname{Pr}\left[\operatorname{Piv}_{A} \mid \alpha\right]}{\operatorname{Pr}\left[\operatorname{Piv}_{A} \mid \beta\right]}
$$

- On the set of "marginal" events where the vote totals are close (i.e., a voter is pivotal), A is more likely to be leading in state α and more likely to be trailing in state β.
- Let $\left(p_{a}^{*}, p_{b}^{*}\right)$ be equ'm participation rates.
- A voter with signal a and $\operatorname{cost} c_{a}^{*}=F^{-1}\left(p_{a}^{*}\right)$ is just indifferent b / w voting and staying home;

$$
\text { (IRa) } \quad q(\alpha \mid a) \operatorname{Pr}\left[\operatorname{Pi}_{A} \mid \alpha\right]-q(\beta \mid a) \operatorname{Pr}\left[\operatorname{Pi}_{A} \mid \beta\right]=F^{-1}\left(p_{\mathrm{a}}^{*}\right) .
$$

Sincere Voting

- To show: sincere voting is optimal for a voter with signal a if others are voting sincerely;

$$
\begin{aligned}
(I C a) & \\
& q(\alpha \mid a) \operatorname{Pr}\left[\operatorname{Piv}_{A} \mid \alpha\right]-q(\beta \mid a) \operatorname{Pr}\left[\operatorname{Piv}_{A} \mid \beta\right] \\
\geq & q(\beta \mid a) \operatorname{Pr}\left[\operatorname{Piv}_{B} \mid \beta\right]-q(\alpha \mid a) \operatorname{Pr}\left[\operatorname{Piv}_{B} \mid \alpha\right] .
\end{aligned}
$$

- LHS is the payoff from voting for A whereas RHS is the payoff to voting for B.
- $p_{a}^{*}>0$ combined with (IRa) implies

$$
\frac{\operatorname{Pr}\left[\operatorname{Piv}_{A} \mid \alpha\right]}{\operatorname{Pr}\left[\operatorname{Piv}_{A} \mid \beta\right]}>\frac{q(\beta \mid a)}{q(\alpha \mid a)}
$$

- Then by Lemma 2,

$$
\frac{\operatorname{Pr}\left[\operatorname{Piv_{B}|\alpha]}\right.}{\operatorname{Pr}\left[\operatorname{Piv_{B}} \mid \beta\right]}>\frac{q(\beta \mid a)}{q(\alpha \mid a)} .
$$

- But then, the last inequality is equivalent to

$$
q(\beta \mid a) \operatorname{Pr}\left[\operatorname{Piv}_{B} \mid \beta\right]-q(\alpha \mid a) \operatorname{Pr}\left[\operatorname{Piv}_{B} \mid \alpha\right]<0 .
$$

Sincere Voting

- Similarly, we combine $p_{b}^{*}>0$, Lemma 2, and

$$
\text { (IRb) } \quad q(\beta \mid b) \operatorname{Pr}\left[\operatorname{Piv}_{B} \mid \beta\right]-q(\alpha \mid b) \operatorname{Pr}\left[\operatorname{Piv}_{B} \mid \alpha\right]=F^{-1}\left(p_{b}^{*}\right)
$$

to show

$$
\begin{aligned}
(I C b) & \\
& q(\beta \mid b) \operatorname{Pr}\left[\operatorname{Piv}_{B} \mid \beta\right]-q(\alpha \mid b) \operatorname{Pr}\left[\operatorname{Piv}_{B} \mid \alpha\right] \\
\geq & q(\alpha \mid b) \operatorname{Pr}\left[\operatorname{Piv}_{A} \mid \alpha\right]-q(\beta \mid b) \operatorname{Pr}\left[\operatorname{Piv}_{A} \mid \beta\right] .
\end{aligned}
$$

Proposition 3: Under voluntary participation, sincere voting is incentive compatible.

- We can also show that all equ'a involve sincere voting (Krishna \& Morgan JET 2012).

