

Joseph Tao-yi Wang (王道一) Lecture 6, EE-BGT

Bargaining

Joseph Tao-yi Wang

Bargaining (議價談判)

▶ Bargaining (就是「討價還價」!)

- Process by which economic agents agree on the terms of a deal (個體間討論條件、達成交易的過程)
- Common even in competitive markets
 - The pit market in NYSE/market experiments
 - ▶ (即使在完全競爭市場也很常見,例如紐約股市的交易坑市場)
 - Edgeworth Box (原本是用來研究談判!) was created to show range of possible bargaining outcomes
- Have you ever bargained with someone?
 - 你有跟別人談判過嗎?

Bargaining (議價談判)

- Nash (1950, 1951):
 - ▶ (Cooperative) Nash Bargaining Solution (奈許談判解)
 - ▶ (Non-cooperative) Nash Equilibrium (奈許均衡)
- Nash could have won two Nobels...
- Nash Program: Is NBS the NE/SPE of a particular game? (奈許問: NBS是否為某賽局的NE/SPE?)
 Yes: Binmore, Rubinstein and Wolinsky (1986)
- ▶ References (參考章節):
 - BGT, Ch. 4, HEE, Ch. 4, MGS, Ch. 23

2 Bargaining Experiments (兩種談判實驗)

- Cooperative NBS vs. Non-cooperative NE
 - ▶ 對應合作賽局NBS和非合作賽局NE,也有兩種談判實驗:
- 1. Unstructured Bargaining Experiments
 - Free form procedure determined by players
 - Closer to naturally occurring bargaining
 - ▶ 自由談判實驗: 雙方自行決定談判形式過程, 較接近實務上談判
- 2. Structured Bargaining Experiments
 - Procedure specified by experimenter
 - Game theory makes specific predictions
 - ▶ 制式談判實驗:形式過程由實驗者決定,賽局論能做出明確預測

Negotiation Research in Applied Psychology

- 3. Negotiation Research: Bazerman et al. (2000)
- Bazerman, Magliozzi and Neale (1985)
 - Negotiate over several issues (ex: price/quantity)
 - Free form communication with fixed deadline
 - Private point schedule (dep. on each issue)
 - 應用心理學研究:雙方各自知道自己的報酬計分方式,在一定時限自由 溝通討論,最後須在價格數量等多層面(連續或類別)上達成協議
- Results: Deals not Pareto-efficient
 - Affected by systematic heuristics and other cognitive variables (unrelated to game)

▶ 結果: 達成的協議不都有效率且受到無關的經驗法則與認知因素影響

<u>Negotiation Research (協商談判研究)</u>

- ▶ Why not much overlap? (為何沒有交集?)
 - Game theory assumes too much rationality
 - Solvable games are too simplified
 - Hard to apply to Negotiation games
 - ▶ 賽局論假設完全理性,解得出來賽局又太簡單,很難用在協商研究
- Like 2 traditions of experimental economics
 - Game experiments are too simplified
 - Hard to apply to market experiments
 - ▶ 正如賽局論實驗太過簡單,很難用賽局論來預測市場實驗的結果
- ▶ But research questions are the same! (研究問題一樣)

Unstructured Bargaining (自由談判)

- Test: Nash Bargaining Solution (NBS)
 - The point maximizing the product of utility gains (beyond the disagreement point)
 - ▶ 奈許談判解(NBS):與談判破裂相較讓雙方效用增加量的乘積最大的解
- Only point satisfying 4 axioms:
 - 1. Pareto Optimality (效率性、不受額外無關選項影響)
 - 2. Symmetry (對稱、不受效用平移伸縮影響)
 - 3. Independence of Irrelevant Alternatives (IIA)
 - 4. Independence from affine utility transformation

2018/4/2

Bargaining

Joseph Tao-yi Wang

Nash Bargaining Solution (NBS)

 $S^* = \arg \max_{(x_1, x_2) \in S} (x_1 - d_1)(x_2 - d_2)$

= arg $\max_{(x_1,x_2)\in S} [u_1(x_1) - u_1(d_1)][u_2(x_2) - u_2(d_2)]$ Satisfies:

- 1. Pareto Optimality ($\bar{\chi}$ $\bar{\chi}$ $\bar{\chi}$ $\in S^*, \nexists y \in S, y > x$ $\Leftrightarrow y_i \ge x_i \forall i, y_j > x_j$
- 2. Symmetry (對稱): $\Leftrightarrow y_i \ge x_i \forall i, y_j > x_j$

$$d_1 = d_2, (x_1, x_2) \in S^* \Rightarrow (x_2, x_1) \in S^*$$

3. IIA (Independence of Irrelevant Alternatives; 不受額外無關選項影響) S^* solves (T, d) if S^* solves (S, d) and $S \subset T$

4. IAT (Independence from affine utility transformation, 不受效用平 移伸縮影響): $u_1(x) = Ax + B, u_2(x) = Cx + D$

Bargaining

2018/4/2

Joseph Tao-yi Wang

Unstructured Bargaining (自由談判)

- Roth and Malouf (Psych Rev 1979)
- Player bargain over 100 lottery tickets
 - Risk neutral if can reduce compound lottery
 - 雙方談判如何分配100張彩券(每張 = 1%機率贏得獎金)。用彩券可 讓人風險中立地決策(假設人們會把複合機率簡化成單一機率)
- 1 ticket = 1% chance winning a big prize
- Equal (\$1) vs. Unequal Prize (\$1.25/\$3.75)
- Full vs. Partial (know own prize) Info.
- ▶ NBS: 50-50 split (NBS預測: 50-50 對分)
 - ▶ 2×2實驗設計:獎金相同/不同, 資訊透明/不透明

Unstructured		Bargaining (自由談判)								
Inform ation	Money Prize		of T							
		20	25	30	35	40	45	50	% of Dis- agreement	
Full Info.	1/1	0	0	1	0	1	0	20	0%	
	1.25/3.75	1	6	3	2	2	1	4	14%	
Part. Info.	1/1	0	0	0	0	0	1	14	6%	
	1.25/3.75	0	0	0	0	0	3	13	0%	
2018/4/2	Bargaining						Joseph Tao-yi Wang			

Unstructured Bargaining (自由談判)

- Results: Agreements cluster at 50-50
 - ▶ Rare Disagreement (很少未達成協議, 大部分 50-50 對分)
- ▶ 14% Disagree when both know inequality
 - Divide tickets or \$\$\$ payoffs equally
 - Sensitive to \$\$\$ payoffs
 - Violate IAT (indep. of affine transformation)
 - ▶ 雙方清楚知道獎金不平等時, 有14%未達成協議(彩券 vs. 金錢平分)
 - ▶ 結果受金錢多寡影響,違反「不受效用平移伸縮影響」公設
- <u>Rawlsian</u> Bargaining Solution explains this
 Followup: Roth & Murnighan (ECMA 1982)

Rawlsian Bargaining Solution (羅斯談判解)

$$S^* = \arg \max_{(x_1, x_2) \in S} (x_1 - d_1)(x_2 - d_2)$$

= arg $\max_{(x_1,x_2)\in S} [u_1(x_1) - u_1(d_1)][u_2(x_2) - u_2(d_2)]$ Satisfies:

1. Pareto Optimality (效率性): $\forall x \in S^*, \nexists y \in S, \underline{y > x}$

- 2. Symmetry $(d_1 = d_2, (x_1, x_2) \in S^* \Rightarrow (x_2, x_1) \in S^*$
- 3. IIA (S^* solves (T, d) if S^* solves (S, d) and $S \subset T$)
- 4. Independence of utility transformation preserving preference order & which player has larger gain $x_1 - d_1 \ge x_2 - d_2 \Leftrightarrow u_i(x_1 - d_1) \ge u_i(x_2 - d_2)$ $x_i \ge y_i \Leftrightarrow u_i(x_i) \ge u_i(y_i)$

Unstructured Bargaining (自由談判)

- ▶ Review earlier studies to find: (回顧先前實驗發現)
 - Murnighan, Roth & Schoumaker (JRU 1988)
- Pairs settle @ final minutes (of 9-12 min)
 - Convey private info (Stubbornness/Delay Cost)?
 - ▶ 最後幾分鐘才達成協議 (用以表示自己很堅持/可以負擔延遲成本?)
- Follow-up: Roth & Schoumaker (AER 1983)
 - First play against computer that gives you a lot
- Expect & get this from later human players
 - Strong Reputation (如果有人先跟軟弱的電腦談判、被訓練覺得 自己該拿比較多,接下來面對真人態度也會較強硬、並且真的拿比較多)

Unstructured Bargaining (自由談判)

- Mehta, Starmer and Sugden (bk chp. 1992)
- ▶ Nash Demand Game (奈許需求實驗): 2 Players
 - ▶ Each state demand (兩人分別列出自己的需求金額)
 - Get their demand If sum \leq £10, 0 otherwise.
 - ▶ 如果總和 <= 10英鎊就會得到所求, 不然都得0
- Focal point: Players split 4 Aces + 4 deuces
 - Before bargain, players were told: "4 aces worth £10 together, so to earn \$\$ you have to pool your aces and agree on how to divide the £10."
 (兩人抽八張牌 其中四張本 四張2)
 - ▶ (兩人抽八張牌,其中四張A、四張2)

<u>Unstructured Bargaining (自由談判)</u>

Results: 被告知四張A合起來值十英鎊,因此要賺錢就得把四張A合起來並同意如何平分十英鎊。實驗結果居然受此敘述(與報酬無關)影響!!

Aces split 2-2:	Demand	1A	2A	3A
 Agree 50-50 Split (各兩張A就對分) 	£2.50	11	0	0
► Aces 1-3: (一張/三張)	£3.00-4.50	5	1	1
▶ Half <u>50-50</u> , (一半對分)	£5.00	<u>16</u>	4 0 1	17
 ▶ Half 25-75; ▶ 22% disagree 	£5.50-7.00	0		11
	£7.50	0	0	4
(另一半要求25-75, 22%爆掉)	Ν	32	42	33

Bargaining

Joseph Tao-yi Wang

Can BGT Explain This? (行為賽局論解釋?)

- Roth (1985) explains as Coordination Game
- Two sides simultaneously propose to split tickets either 50-50 or h-(100-h)
 - ▶ 可用協調賽局解釋: 雙方同時提議分配為 50-50 或 h -(100 h)

• MSE: $p_1 = \frac{h - 50}{150 - h}$ $p_2 = \frac{h - 50}{h + 50}$ • Disagreement rates $= \frac{(h - 50)^2}{(150 - h)(50 + h)}$

Can BGT Explain This? (行為賽局論解釋?)

- Roth (bk chp 1985)
 Disagreement rates = $\frac{(h-50)^2}{(150-h)(50+h)}$
- ▶ Predicted to be $0\% \rightarrow 7\% \rightarrow 10\%$
 - For h = 50, 75, 80 in pervious experiments
- ▶ Data: $7\% \rightarrow 18\% \rightarrow 25\%$ (Direction is right!)
- Murnighan et al. (JRU 1988)
 - ▶ *h* = 60, 70, 80, 90 predict 1%, 4%, 10%, 19%
- Actual data not as good: Constant across h

Can BGT Explain This? (行為賽局論解釋?)

- Cause of Disagreement: Self-Serving Bias (自利偏誤)
 "What is better for me" = "Fair" (對我有利才叫公平)
- Add this to the above coordination game
 Can explain higher disagreement rate in data
- Same in Kagel, Kim and Moser (GEB 1996):
 Ultimatum over 100 tickets (P/R value differently)
- Not know P value $H/L \rightarrow$ Propose 45%/30%

Know P value higher, R rejects 40%, wants >50%
 (最後通牒談判分配100張(價値不同的)彩券, 對方不知道價値時提議者提議55-45(價値高)/70-30(價値低)。知道對方價値較高時回應者會要求比50-50更好, 拒絕40%的提議)

Bargaining

Joseph Tao-yi Wang

Babcock et al. (AER 1995, Law&Social Inquiry 1997)

- Self-serving bias Exp: Loewenstein et al. (JLS 93')
- ▶ Read 27-page actual legal case (讀27頁卷宗/談判和解)
 - Motorcyclist sues driver: \$100,000 injury damage
- Bargain for 30 min. to settle it for ?? dollars
 - \$5000 legal fees for every 5-min delay
 - Retired judge imposes award if no agreement
- First Guess what judge would award
 - US\$1 (or 1 Grade Point) for every \$10,000
 - ▶ 30分鐘談判和解(訴訟金額\$100,000), 每延遲5分鐘須付\$5000律師費
 - ▶ 事先預測和解不成法官會如何判 (實驗中\$10,000 = 一美金或 1 GPA)

Gap of E(judgment) Predicts Disagreement

- Baseline: 70% cases settled at period 3-4 (out of 6)
- E(judgment) differ by \$20,000 (20% of \$100,000)
 - ▶ 控制組結果: 70%的組在第3-4回合達成和解(總共6回合)
 - ▶ 雙方預期判決結果的落差在\$20,000左右(訴訟金額的20%)

	Se	ettle	ment S	Stat.	E(judgmt) Gap		
Information	Ν	%	periods	(s. e.)	mean	(s. e.)	
Control: Babcock 95'	47	72	3.75	(0.28)	\$18,555	(3,787)	
Control: Babcock 97'	26	65	4.08	(0.46)	\$21,783	(3,956)	
2018/4/2		Bar	gaining		Joseph Tao-yi Wang		

More Pairs Settled (and More Rapidly) if...

Don't know role @ reading: 94% (in 2.51 pds)
Or, before bargaining, 1st tell about bias and

List Weakness of own case: 96% (in 2.39 pds)

	S	ettle	ment S	Stat.	E(judgmt) Gap		
Information	Ν	%	periods	(s. e.)	mean	(s. e.)	
Control: Babcock 95'	47	-72	-3.75	(0.28)	\$ 18,555	(3,787)	
Control: Babcock 95' Didn't know roles	47	• 94	2.51	(0.21)	-\$6,275 =	<mark>(</mark> 4,179)	
Control: Babcock 97'	26	-65	4.08	(0.46)	\$ <mark>21,783</mark>	(3,956)	
1 st List Weakness	23	-96	2.39	(0.34)	\$4,676 =	<mark>.</mark> €(6,091)	
2018/4/2	Bargaining				Joseph Tao-yi Wang		

Summary for Unstructured Bargaining

- Focal points affect bargaining outcome
- Chip value affect bargaining outcome
 Violate IAT Axiom of NBS
- BGT Explanation: Bargainers try to coordinate under multiple focal points
- Self-serving bias predict costly delay/settle
 - Outcome favoring me is more likely/fair"
 - Caused by knowing my role when reading case

Structured Bargaining (制式談判)

- ▶ Finite Alternating-Offer Game (有限回交互提案)
- Binmore, Shaked & Sutton (1985): 2 period
- 1 offers a division of 100p to 2
- If 2 rejects, makes counteroffer dividing 25p
 - ▶ 成員甲提議如何分配100p, 成員乙回應。若拒絶則由他提議分配25p
- ▶ SPE: Offer 25-75 (子賽局完全均衡: 成員甲提議25-75)
- Experimental Results: mode at 50-50, some 25-75 and others in between
 - ▶ 實驗結果:提議分配的衆數在50-50,有些在25-75,其他在兩者之間

<u>Structured Bargaining (制式談判)</u>

- Neelin, Sonnenschein and Spiegel (1988)
 - Economics undergrads yield different results
- Are they taught backward induction? Also,
 - ▶ 經濟系大學部學生實驗結果不同,因為學過倒推法? 還是實驗說明?
- Binmore: "YOU WOULD BE DOING US A FAVOR IF YOU SIMPLY SET OUT TO MAXIMIZE YOUR WINNINGS."

Neelin: "You would be discussing the theory this experiment is designed to test in class."

Structured Bargaining (制式談判)

- Social Preference or Limited Strategic
 Thinking? (是因為人們有社會偏好,還是理性思考有限制?)
- Johnson, Camerer, Sen & Rymon (2002), "Detecting Failures of Backward Induction: Monitoring Information Search in Sequential Bargaining," Journal of *Economic Theory*, 104 (1), 16-47. Some do not even look at the last stage payoffs in 3-stage bargaining games!

▶ 三回合談判,有人「不看」最後一回合

<u>Structured Bargaining (制式談判)</u>

- Random Termination vs. Discounting
- Zwick, Rapoport and Howard (ToD 1992)
- Divide \$30 with random termination
- Continuation probabilities 0.90, 0.67, 0.17
- ▶ SPE: 14.21, 12, 4.29
 - Accepted final offers: 14.97, 14.76, 13.92
- Close to discounting results (50-50 & SPE)
 14.90, 14.64, 13.57

<u>Structured Bargaining (制式談判)</u>

- Fixed Delay Cost in Bargaining
 - Lost wages, profits, etc.
- SPE: Strong side (lower delay cost) gets all
- ▶ Rapoport, Weg and Felsenthal (ToD 1990)
 - Divide 30 shekels (pseudo-infinite horizon)
 - Fixed Cost: 0.10 vs. 2.50 or 0.20 vs. 3.00
- Strong support for SPE: In the 1st round,
 - Strong P offer 4.4-7.9, weak R accept 60-80%
 - Weak P offer low, strong R accept 30%, but later quickly settle in 2nd (35%) or 3rd-4th (22%)

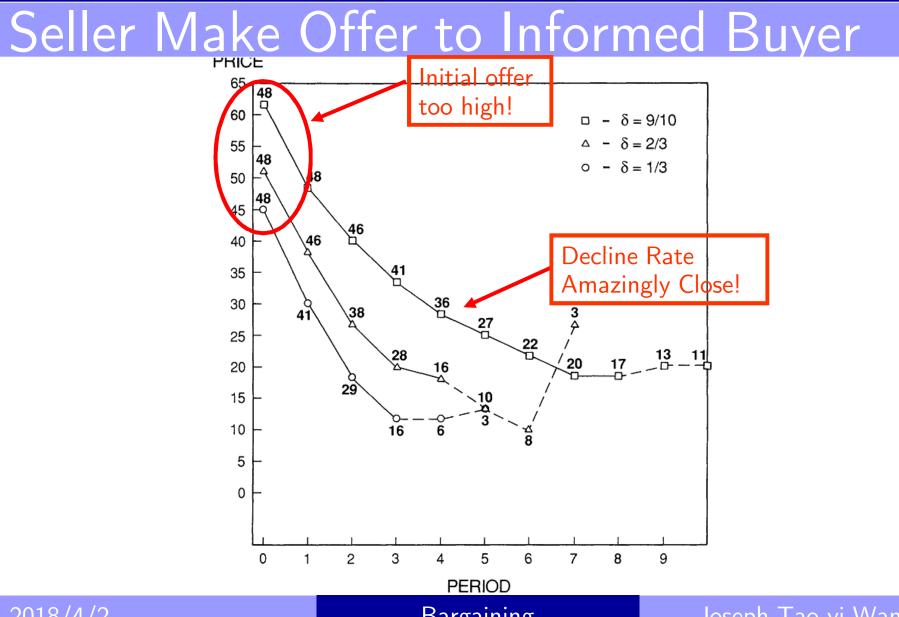
Bargaining

Outside Option and Threat Points

- Binmore, Shaked and Sutton (QJE 1989)
 - ▶ Two players bargain over £7, discount
 - Player 2 has outside option of $\pounds 0$, $\pounds 2$, or $\pounds 4$
- Split-the-difference (NBS): 47%, 64%, 76%
 - Divide surplus beyond the threat points
- ▶ Deal-me-out (SPE): 47%, 47%, 57%(=4/7)_δ
 ▶ Options matter only if is credible; ignore if < 1 δ
- ▶ BGT, Figure 4.4: Deal-me-out wins
 - £0, £2: spike around 50% / £4: cluster @ 57%

<u>Incomplete Information (資訊不透明)</u>

- Add Asymmetric Information to bargaining
- More realistic, but
 - Hard to bargain for a bigger share AND convey information at the same time
- Might need to turn down an offer to signal patience or a better outside option


- Rapoport, Erve, and Zwick (MS 1995)
- Seller: Own item (worthless to herself)
- Buyer: Private reservation price is unif.[0,1]
- Seller makes an offer each period
- Common discount factor δ

- Unique Sequential Equilibrium:
- Seller Offer:

$$p_0 = \gamma \cdot \frac{1 - \delta}{1 - \gamma \cdot \delta}, \quad \gamma = \frac{1 - \sqrt{1 - \delta}}{\delta}$$

Subsequently: $p_t = p_0 \cdot \gamma^t$

Buyer Accepts if
$$p_t \leq v \cdot rac{1-\delta}{1-\gamma \cdot \delta}$$

- Complicate Strategy: Depend on δ
 - Price discriminate high/low-value buyers
 - Price declines slow enough so high-value buyers will not want to wait
- Can subjects get these in experiments?
 - ▶ Different δ : H (0.90), M (0.67), L (0.33)
 - ▶ Opening p₀ : H (0.24), M (0.36), L (0.45)
 - Discount y: H (0.76), M (0.68), L (0.55)

2018/4/2

Bargaining

Joseph Tao-yi Wang

- Can subjects get these in experiments?
 - ▶ Different δ : H (0.90), M (0.67), L (0.33)
 - Opening p₀: H (0.24), M (0.36), L (0.45)
 Discount γ: H (0.76), M (0.68), L (0.55)
- Buyers accept the 1st or 2nd offer below v
 Accept offers too soon
- Sellers ask for higher prices (than equil.)
 - But discount γ : H (0.81), M (0.68), L (0.55)

Strikes and 1-Sided Information

- Forsythe, Kennan and Sopher (AER 1991)
- Only Informed bargainer I sees pie size
 Either large (π_g) or small (π_b)
- Free-form bargaining
- Uninformed U can strike to shrink pie by γ
- Can we predict what happens?

Strikes and 1-Sided Information

- Forsythe, Kennan and Sopher (AER 1991)
 - Only Informed bargainer I sees pie size π_{g} or π_{b}
- Uninformed U can strike to shrink pie by γ
- Can we predict what happens?
 - Free-form bargaining
- Myerson (1979): Revelation Principle
 - announces true state
 - U strikes to shrink pie by γ_{g} or γ_{b}
 - \blacktriangleright I gives U (based on true state) x_g or x_b

Bargaining

Strikes and 1-Sided Information

• IC requires:

2018/4/2

$$(\gamma_g - \gamma_b)\pi_b \le x_g - x_b \le (\gamma_g - \gamma_b)\pi_g$$

Interim Incentive Efficiency requires:

$$\gamma_g = 1, x_g - x_b = (1 - \gamma_b)\pi_g$$

 \blacktriangleright Strike ($_{\mathrm{Y}_{\mathrm{b}}} < 1)$ if and only if $\, p \pi_g > \pi_b$

Deriving this is complicated...
Could ANY subject get close to this?

Strikes and 1-Sided Information

- Random Dictator (RD) Axiom:
 - Agree fair mix between each being dictator to propose mechanism
- Then:

$$egin{aligned} &\gamma_g = 1, x_g = rac{\pi_g}{2}, \gamma_b = rac{1}{2}, x_b = 0 ext{ if } p \pi_g > \pi_b \ &\gamma_g = 1, x_g = rac{\pi_b}{2}, \gamma_b = 1, x_b = rac{\pi_b}{2} ext{ if } p \pi_g < \pi_b \end{aligned}$$

Strikes and 1-Sided Information

This is a win-win experiment:

- Success if theory predictions are close
- If not, will point to which assumption fails
- Forsythe et al. (AER 1995):
 - ▶ 10 minute sessions; written messages
- Is Myerson (1979) confirmed?
 - Surprisingly yes, though not perfect...

Strike Condition Off

 $p\pi_g < \pi_b$

Game	p	State	π	π U	π_{I}	Total	% Strike
Ш	0.5	b	2.80				
		g	4.20				
		aver.	3.50	1.50	1.80	3.29	6.0%
		pred.		1.40	2.10	3.50	0.0%
IV	0.25	b	2.80				
		g	6.80				
		aver.	3.50	1.21	2.04	3.24	7.4%
		pred.		1.20	2.30	3.50	0.0%

2018/4/2

Strike Condition On

Game	p	State	π	π U	π_{I}	Total	% Strike
I	0.5	b	1.00				
		g	6.00				
		aver.	3.50	1.05	2.00	3.05	13.0%
		pred.		1.50	1.75	3.25	7.1%
II	0.75	b	2.30				
		g	3.90				
		aver.	3.50	1.41	1.76	3.18	9.3%
		pred.		1.46	1.75	3.21	8.3%

2018/4/2

- Both buyers and sellers have private information
- Sealed-Bid Mechanism
 - Both write down a price
 - \blacktriangleright Trade at the average if $p_b\!>p_s$
 - Call Market: Many buyers vs. many sellers
- Two-Person Sealed-Bid Mechanism
 - One form of bilateral bargaining

- Two-Person Sealed-Bid Mechanism
- Buyer V: unif.[0,100]; Seller C: unif.[0,100]
- Piecewise-linear equilibrium: (not unique)
 - Chatterjee and Samuelson (1983)
 - Max. ex ante gains (Myerson & Satterthwaite 83)

$$p_{b} = \begin{cases} V & \text{if } V < 25 \\ \frac{25}{3} + \frac{2}{3}V & \text{if } V \ge 25 \\ 25 + \frac{2}{3}C & \text{if } C < 75 \\ C & \text{if } C < 75 \end{cases}$$

- Radner and Schotter (JET 1989): 8 sessions
- ▶ 1, 2, 8: Baseline as above
- 3: Trade at price (v + c + 50) / 3 if v>c+25
 Should bid their values v = V, c = C
- 4: Price = v, (Buyers should bid v = V/2)
- 5,6: Alternative distribution for more learning
 Distribution w/ more trade (for learning):
 - m = 0.438
- 7: Face-to-face bargaining

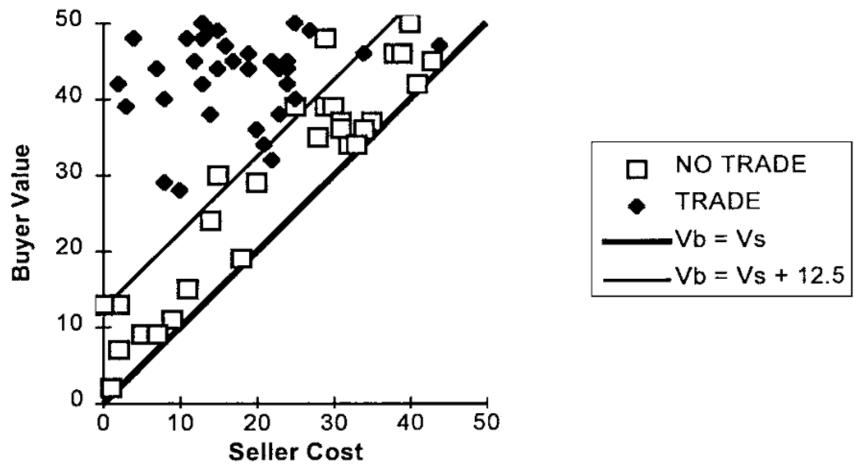
Estimated Buyer Bid Function Slope							
	Below Cutoff			Above Cutoff			
Session	β	β	t-stat	β	β	t-stat	
1	1	1.00	(0.01)	0.67	0.85*	(4.14)	
2	1	0.91	(-0.52)	0.67	1.06	(1.28)	
8	1	0.91	(-0.14)	0.67	0.80*	(2.32)	
3	1	0.92	(-0.88)	1	0.73*	(-2.64)	
4	0.5	0.55	(0.66)	0.5	0.58*	(2.32)	
5	1	0.80*	(-4.17)	0.438	0.50	(1.12)	
6 (-20)	1	0.85	(-1.40)	0.438	0.40	(0.56)	
6 (21-)	1	1.11	(0.70)	0.438	0.32	(-1.55)	
0010/4/0			Dennetining		Jacob Ta		

2018/4/2

Bargaining

Estimated Seller Bid Function Slope							
	Below	Cutoff	Above Cutoff				
Session	β	β	t-stat	β	β	t-stat	
1	0.67	0.58	(-1.38)	1	0.97	(-0.32)	
2	0.67	0.74	(1.28)	1	1.07	(0.14)	
8	0.67	0.75	(1.65)	1	1.07	(0.17)	
3	1	1.06	(1.04)	1	0.67	(-0.58)	
5	0.438	0.48	(0.87)	1	1.00	(0.60)	
6 (-20)	0.438	0.57*	(2.16)	1	0.97	(-0.79)	
6 (21-)	0.438	0.52	(1.20)	1	0.95	(-0.69)	

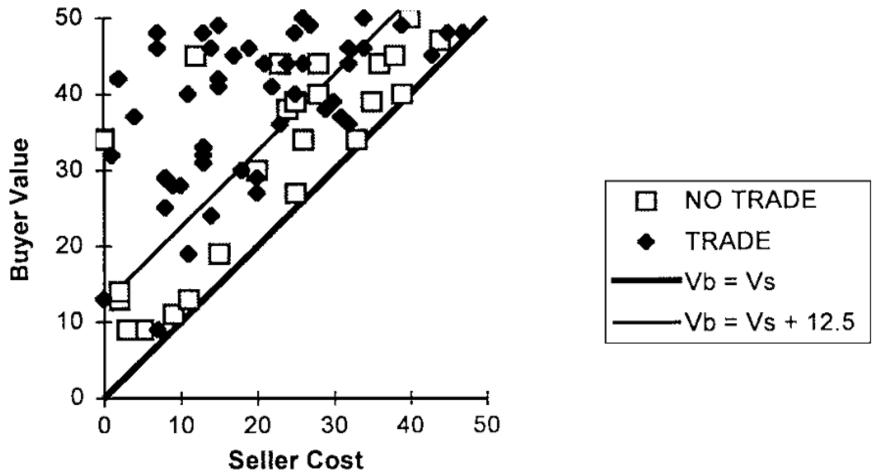
2018/4/2


Bargaining

- Face-to-face yields efficiency 110%
 - Some truthfully reveal; others do not
- Radner and Schotter (1989, p.210):
 - The success of the face-to-face mechanism, if replicated, might lead to a halt in the search for better ways to structure bargaining in situations of incomplete information.
 - It would create, however, a need for a theory of such structured bargaining in order to enable us to understand why the mechanism is so successful.

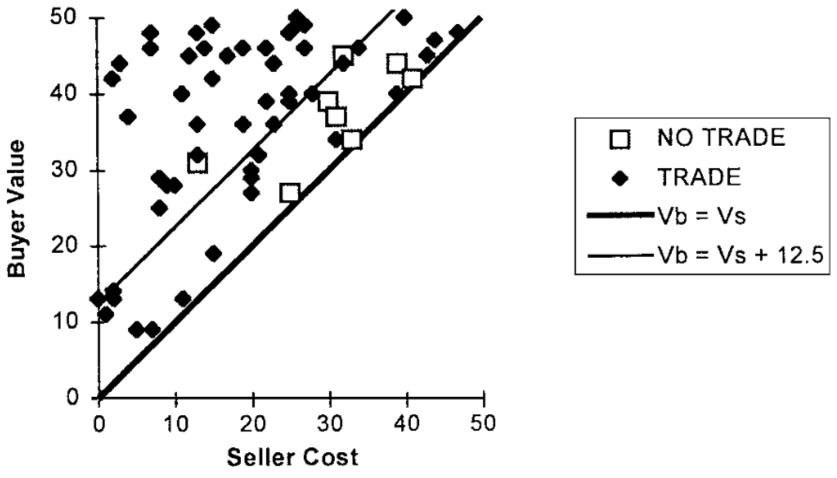
- Follow-up Studies:
- Schotter, Snyder and Zheng (GEB 2000)
 - Add agents
- Rapoport and Fuller (1995)
 - Strategy method; asymmetric value dist.
- Daniel, Seale and Rapoport (1998)
 - Asymmetric value distribution (20 vs. 200)
- Rapoport, Daniel and Seale (1998)
 - Flip buyer-seller asymmetry; fixed pairing

- ▶ Valley et al. (GEB 2002): Communication
- Buyer/Seller Values/Costs: uniform[0, \$50]
 - Bargain by stating bids; 7 periods; no rematch
 Half had no feedback
- No communication: Sealed-bid in 2 minutes
- Written communication: Exchange messages for 13 minutes before final bid
- Face-to-face: Pre-game communication


A. No communication

2018/4/2

Bargaining


B. Written communication

2018/4/2

Bargaining

C. Face-to-face communication

2018/4/2

Bargaining

<u>Communication vs. Sealed-Bid</u>

- Empirical bid function slope = 0.7 (~0.67)
- Why are there "gains of communication"?
- Slope of buyer bids against seller bids=0.6
- Buyers bid higher when seller bids higher
 - Mutual bidding of values (common in students)
 - Mutual revelation of values (com. in students)
 - Coordinating on a price (40% written; 70% face)

<u>Communication vs. Sealed-Bid</u>

- Coordinating on a price
 - ▶ Happens 40% in written, 70% in face-to-face
- Not truth-telling (only 1/3)
 - ▶ TT not coordinated (4% written, 8% face)
- Feel each other out; give enough surplus
 - Modal equal split of surplus
- Variance of surplus doubles (by mismatch)

Conclusion

Unstructured Bargaining

- Focal divisions; competing focal points
- Self-serving bias (erased by veil of ignorance or stating weakness of own case)

Structured Bargaining

- Deviate toward equal splits
- Social preference models could explain this
- But Johnson et al. (JET 2002) suggest limited look-ahead as reason for such deviations

Conclusion

- Outside options affect bargaining divisions only if threats are credible
 - Lower fixed cost player gets everything
- Information Asymmetry: One-Sided
 - Revelation Principle + Random Dictator: Good
 - Bazaar mechanism:
 - Offers decline as theory predicts, but start too high and respond to δ wrongly
 - Buyers accept too early

Conclusion

- Bilateral Bargaining: Two-Sided
 - Sealed-bid mechanism: between truthful revelation and piecewise-linear equilibrium
- Players over-reveal values in face-to-face
 Too honest, but "more efficient"
- Communication → agree on a single price
- Why theory does better in sealed-bid than alternative-offer bargaining?
 - Is sealed-bid cognitively more transparent?

致謝

感謝 Management Science還有以下三位教授讓我們在第47 張投影片使用下述論文的圖片:

- Amnon Rapoport, Ido Erev, and Rami Zwick (1995), "An Experimental Study of Buyer-Seller Negotiation with One-Sided Incomplete Information and Time Discounting," *Management Science*, 41(3), 377-394.
- 感謝Games and Economic Behavior 還有以下四位教授讓 我們在77, 78, 79 這三張投影片中使用以下文章的一張圖表:
 - Kathleen Valley, Leigh Thompson, Robert Gibbons, Max H. Bazerman (2002), "How Communication Improves Efficiency in Bargaining Games," *Games and Economic Behavior*, 38(1), 127–155.