Experimental Economics 實驗經濟學

Joseph Tao-yi Wang (王道一)

3 Cores of Economics 經濟學三大核心方法論

- Micro, Macro, Metrics (個體,總體,計量)?
 - Because of 1st year course (因為是博一必修)?
- Economic Theory (經濟理論/模型建構)
 - Mathematical/graphical/verbal models
 - (數學模型、圖形模型、嘴砲模型)
- Data Analysis (資料分析/計量方法)
 - Statistical methods, graphs (統計方法、製作圖表)
- Data Collection (資料取得)
 - Surveys, experimental methods, requesting data
 - (問卷調查、實驗方法、索取資料的管道)

Experimental Economics, Behavioral Game Theory 實驗經濟學與行為賽局論

Joseph Tao-yi Wang (王道一) Lecture 1, Spring 2015

What is Experimental Econ?何謂實驗經濟學?

- Science (科學的定義): (Merriam-Webster)
 - "knowledge or a system of knowledge covering general truths or the operation of general laws especially as obtained and tested through scientific method."
 - 一用來描述普遍真理或普遍法則如何運行的系統性 知識,特別是用科學方法獲得與檢驗的知識
- What is the "Scientific Method"?
 - 何謂「科學方法」?

Scientific Methods (Wikipedia)科學方法

- The scientific method seeks to explain the events of nature in a reproducible way, and to use these reproductions to make useful predictions. It is done through observation of natural phenomena, and/or through
- experimentation that tries to simulate natural events under controlled conditions.
 - 科學方法希望用可重複驗證的方式來解釋自然現象,並用此來做有用的預測。達成方式包含觀察自然發生的現象,以及用實驗在控制條件下產生自然發生的現象。

What is Experimental Econ?何謂實驗經濟學?

- Observation (觀察) vs. experimentation (實驗)
- Experimental Economics is a method of economics that seeks "experimentation that tries to simulate natural (economic) events under controlled conditions"
 - 實驗經濟學是經濟學的一種研究方法,目的是要「用實驗在控制條件下 產生自然發生的現象」
- Other empirical work are "observation of natural (economic) phenomena"
 - 其他實證方法則是「觀察自然發生的經濟現象」

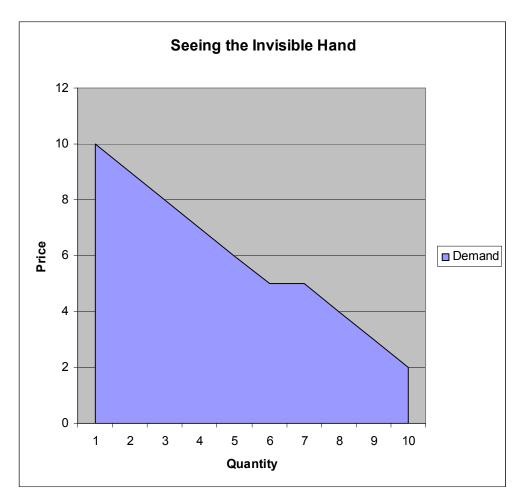
Two Traditions of EE (實驗經濟學兩大傳統)

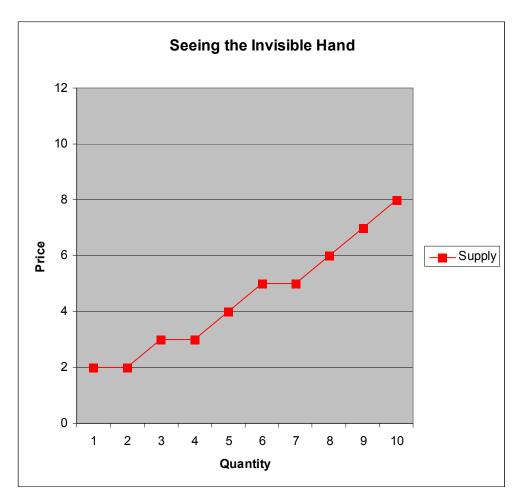
- Two Nobel Laureates of 2002 (兩位諾獎得主)
- Vernon Smith (臥龍·史密斯)
 - Market Experiments (市場實驗)
 - Experimental Economics = Economic Science
 - (實驗經濟學 = (唯一的)經濟科學)
- Daniel Kahneman (丹尼·卡尼曼)
 - "Psychology and Economics"
 - aka "Behavioral Economics" (see next slide)
 - 結合心理學與經濟學(又稱「行為經濟學」)
- The two traditions interacted and grew...
 - 兩大傳統互相影響、一起成長...

What is Behavioral Econ?何謂「行為經濟學」

- Isn't Economics by definition Behavioral?
 - 經濟學的目的不就是要解釋人類的行為嗎?
- What is "Non-behavioral Economics"?
 - (到底甚麼算是「非行為經濟學」嗎?)
 - "Bad" economics? 那應該叫「不好的經濟學」!
- Non-behavioral Economics doesn't exist!
 - (「非行為經濟學」有定義上的矛盾!)
 - Though Experimental Economics and Behavioral Game Theory are fine...
 - 「實驗經濟學」與「行為賽局論」沒問題?!

Two Traditions of EE (實驗經濟學兩大傳統)

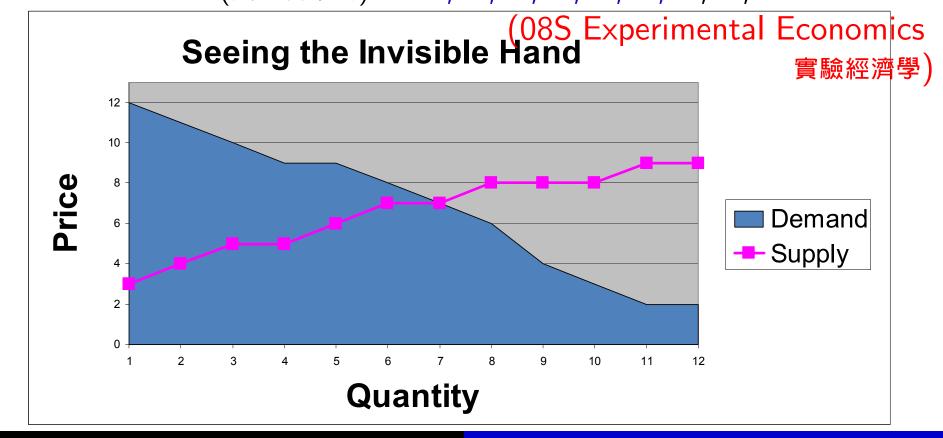

- 1. Market Experiments/Design (市場實驗/設計)
 - How Adam Smith's invisible hand really works
 - (在實際市場中「看不見的手」如何運作)
- 2. Behavioral Game Theory (行為賽局論)
 - What players actually do in games
 - (在賽局中真實的人如何做決定)

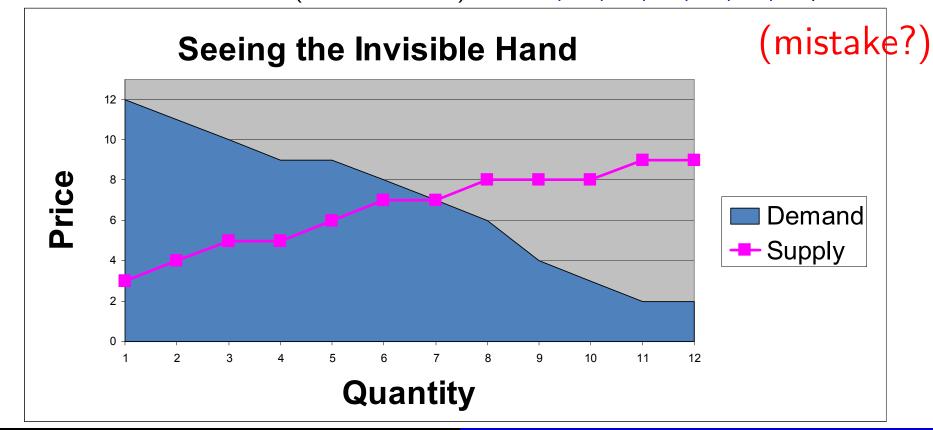

Like the Two Traditions in Economic Theory

- (正如經濟理論兩大傳統):
- General Equilibrium Theory (全面均衡理論)
- Game Theory (賽局論)

Market Experiments and Market Design

- 市場實驗與市場設計
- The Pit Market (交易坑市場)
 - Chamberlin (JPE, 1948) 張伯倫
 - Smith (JPE, 1962) 臥龍·史密斯
- Experiment: Seeing the Invisible Hand
 - (課堂實驗: 發現看不見的手)
 - Ran in Principles of Microeconomics Class
 - (在大一經濟學原理有做過)
 - See instructions (請見實驗說明)


- Prices (成交價格)
 - 07F Economics I 經濟學-
- Pit Market (交易坑市場)
 - -A: 6, 6, 6, 8, 5, 6, 6
 - -B: 5, 5, 4, 6, 6, 6, 7


- Double Auction (雙邊喊價市場)
 - -A: 5, 5, 5, 5
 - -B: 5, 5, 6, 6, 6
 - C: 4, 5, 5, 6, 5, 5

回合		價 格	買方利潤	賣方利潤
交易坑1	平均值	6.1	1	2
	變異數	0.8	5.3	2.7
交易坑2	平均值	5.6	1.6	2.1
	變異數	1.0	1.3	1.5
雙邊 喊價1	平均值	5	3	2.2
	變異數	0	2.5	0.7
雙邊 喊價2	平均值	5.6	2.4	2.2
	變異數	0.3	2.8	1.2
雙邊 喊價3	平均值	5	2.5	1.8
	變異數	0.4	2.3	0.6

- Pit Market (交易坑市場) 1: 5, 6, 5, 3, 8, 8, 8
- Pit Market (交易坑市場) 2: 6, 4, 8, 4, 6, 7, 7, 7, 5

- Double Auction (雙邊喊價市場) 1: 6,10, 7, 7, 7, 8, 8, 7
- Double Auction (雙邊喊價市場) 2:7,6,6,6,6,7,7,7

Market Design: Nobel Prize of 2012

- 市場設計: 2012年瑞典央行紀念諾貝爾經濟科學獎得主
- Lloyd S. Shapley (夏普利)
 - Gale-Shapley algorithm finds stable matching in matching markets (提出演算法求配對分發市場的穩定解)
- Alvin E. Roth (AER!) (艾文·羅斯)
 - Test this in the lab (在「實驗室」中驗證夏普利的理論)
 - Take this to the field (在「現場」設計穩定配對分發制度)
 - Medical Residents, School Choice, Kidney
 Exchange... (實習醫生、學校分發、器官交換市場等等)

Behavioral Game Theory 行為賽局論(大綱)

- 1. What is Game Theory Good for? (賽局論有甚麼用?)
- 2. Three Examples (三個例子):
 - 1. Ultimatum Bargaining (最後通牒談判實驗)
 - 2. Continental Divide (產業發展分水嶺實驗)
 - 3. Beauty Contests (選美結果猜測實驗)
- 3. Experimental Regularity and Behavioral Game Theory (—致的實驗結果與行為賽局論)
- 4. Conclusion (結論)

What is Game Theory? 何謂賽局論?

- Game Theory: What happens if people or nations interact. (賽局論研究「人們」互動的結果)
- Game (賽局): Taxonomy of strategic situations
 需要籌思對策的各種情境
 - Strategies (策略), Players (參與者), Payoffs (報酬)
- Important Milestones (重要里程碑)
 - GEB: Von Neumann & Morgenstern (1944)
 - Nash Equilibrium (奈許均衡): Nash (PNAS, 1950)
 - Asymmetric information as Types (把資訊不透明看作每個人有不同類型): Harsanyi (MS, 1967-68)

What is Game Theory? 何謂賽局論?

- Power of game theory: Generality/precision
 - 賽局論能廣泛應用在不同的領域, 也能做精確的預測
- Analytical Game Theory (數學賽局「論」)
 - Mathematical derivations of what players with different cognitive capabilities are likely to do
 - 用數學分析不同聰明程度的玩家在不同的賽局採取何種對策
- Possible Barrier: Highly mathematical
- Bigger Problem (可能的問題是需要很多數學,但更大的問題是)
 - Based on introspection and guesses, not observations about how people actually play
 - 根據數學家的自我想像與猜測,而非人們實際上怎麼做

What is Behavioral Game Theory?

- Von Neumann and Morgenstern (1944):
- "Our knowledge of the relevant facts of economics is incomparably smaller than that commanded in physics at the time when mathematization of that subject was achieved..."
 - 「跟物理學(在三百年前)數理化的時候相比,目前我們對於 跟經濟學相關的事實和實證結果真的知道太少了!

What is Behavioral Game Theory?

- Von Neumann and Morgenstern (1944):
- "It would have been absurd in physics to expect Kepler and Newton without Tycho Brahe---and...
 - 「在物理學上,要是沒有泰谷的天文觀測紀錄,刻卜勒和牛頓不可能寫出行星運動定律。……
- "...there is no reason to hope for an easier development in economics."
 - 「……同樣地,如果沒有足夠資料,經濟學如何有同樣的發展?當然不可能!」

What is Game Theory Good For?賽局有啥用?

- Is Game Theory meant to 賽局論可以
 - Predict what people do, (預測人們的行為)
 - Explain why people act this ways, (解釋人們的行為)
 - Advise people what to do? (建議人們該怎麼做)
- Case (實例): auction theory & real world auctions
 - Auction Theory (拍賣理論)
 - vs. Experimental Evidence (實驗結果)
 - Auction Theory (拍賣理論)
 - vs. Real World Auction Design (拍賣制度設計)

Three Examples 三個例子

- BGT: what players actually do
 - (行為賽局論:人們實際怎麼做)
 - By utilizing results from hundreds of experiments根據上百個「爾虞我詐」的實驗結果
- 1. Ultimatum Bargaining (最後通牒談判實驗)
- 2. Beauty Contests (選美結果預測實驗)
- 3. Continental Divide (產業發展分水嶺實驗)

Three Examples 三個例子

- Goal: Show how BGT can
- explain what people do more accurately
- by extending game theory to include:
 - social preferences (fairness),
 - limited strategic thinking, and
 - learning
 - 目的:說明行為賽局論如何更準確預測人們的行為,把社會 (公平)偏好、有限理性思考和學習過程引入數學賽局論。

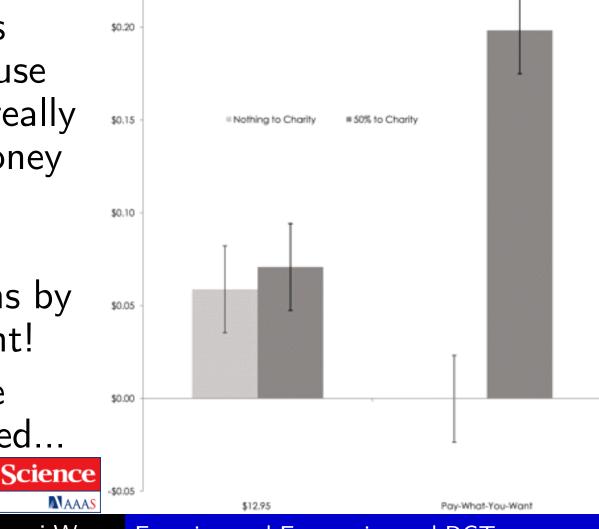
例一:最後通牒談判(Ultimatum Bargaining)

- 2 players (參與者): Proposer (下通牒的提議者) and Respondent (回應者)
- Action of Proposer (提議如何瓜分新台幣100元): First makes a proposal on how to split \$100: 10-90, 20-80, 30-70, 40-60, 50-50,....
- Act of Respondent (回應接受或拒絕):
 Accepts or Rejects the proposal.
- Outcome (結果): Split accordingly if accept, both get nothing if reject.
 - (接受則按該提議瓜分100元; 拒絕則兩人什麼都沒有)

例一:最後通牒談判(Ultimatum Bargaining)

- Photographer vs. Tourist (觀光景點攝影師兜售照片)
- AGT Predictions (數學賽局論的預測)
 - Responders accept any low offer (回應者通通接受)
 - Proposers offer unfairly (提議者提出極不公平方案)
- Experimental Results (實驗結果)
 - Responders reject unfair offers (回應者拒絕不公平方案)
 - Proposers often offer fairly (50-50) (提議合理方案)
- BGT Explanation: (行為賽局論的解釋)
 - Negative Reciprocity (你對我不仁,我就對你不義)

例一:最後通牒談判(Ultimatum Bargaining)

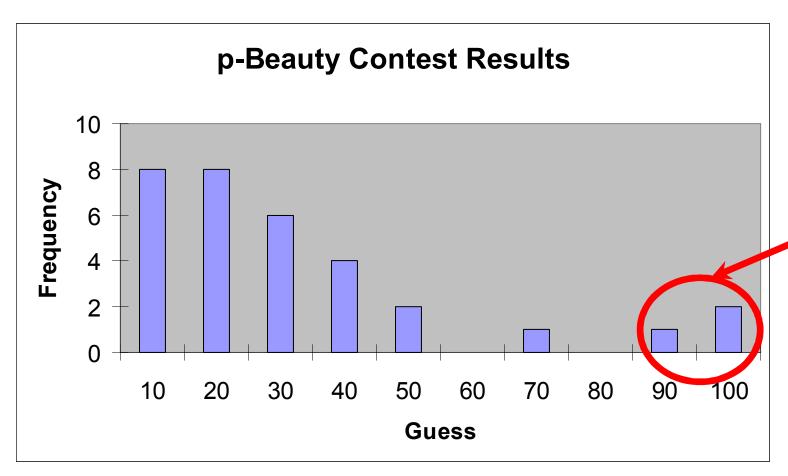

- Responders do not maximize own earnings
 - (回應者並非追求自己「物質上」的報酬最大)
 - Still think strategically (w/ social preferences)
 - 但仍是理性思考,只是有社會偏好、厭惡不公平
- Further Investigation (延伸研究): BGT, Ch.2
- Primitive societies under different culture of fairness (不同原始部落有不同的公平文化)
- Knoch, ..., Fehr, Science 2006
 - TMS your DLPFC to accept unfair offers
 - 用穿顱刺激DLPFC腦區能讓人接受不公平方案

Disneyland Photo Field Experiment 還真的有!

- Gneezy et al. (2010), "Shared Social Responsibility: A Field Experiment in Pay-What-You-Want Pricing and Charitable Giving," Science 329 (5989): 325–327.
 - Change pricing scheme of photo taken at a Disneyland ride (on different days)
- Fixed US\$12.95 vs. Pay-What-You-Want
- Nothing to Charity vs. 50% to Charity*

Fig.1 Profit per rider (amount paid minus production costs)

- Problem: This is profit only because Disney did not really donate more money to charity!
- Instead reduced regular donations by the same amount!
- Likely to change results if disclosed...


- Newspaper shows 6 pictures
- Choose one picture and win a prize if
 - you chose the most chosen picture
 - 凱因斯認為股票市場就像報紙預測選美結果:
- "It is not a case of choosing those which, to the best of one's judgment, are really the prettiest,
- nor even those which average opinion genuinely thinks the prettiest.
 - 「這不是要挑每個人各自認為最漂亮的[臉蛋],
 - 更不是要挑大家公認最漂亮的。

- We have reached the third degree, where we devote our intelligences to
- anticipating what average opinion expects the average opinion to be
 - 我們已經想到第三層去,
 - 努力預測一般人心目中認為大家公認最漂亮的會是誰。
- And there are some, I believe, who practice the fourth, fifth, and higher degrees."
 - 而且我相信有些人還可以想到第四層、第五層或更高。」
 - Keynes (1936, p.156)

- p-Beauty Contest (Guessing Game)
 - 選美結果預測賽局,又稱「猜測(平均的三分之二)賽局」
- Environment (遊戲規則): N players (參與者)
- Action of Player (參與者的策略): Each player guess a number from 0-100
 - 每一位參與者都猜一個0-100數字
- Outcome (結果): Number closest to p=2/3 of the average wins
 - 所猜數字最接近<u>所有猜測數字的平均乘p=2/3</u>的人就是贏家

- Each pick 0-100 to predict 2/3 of the average
- AGT Predictions (數學賽局論的預測)
 - Unique Nash: Choose 0 (dominant solvable)
 - 不斷地刪除劣勢策略可解出唯一的Nash均衡(大家都選0)
- Experimental Results (實驗結果)
 - First-round choices (首次平均) around 21-40
 - Converge to 0 within 10 rounds (十回合内到均衡)
- BGT Explanation: (行為賽局論的解釋)
 - Limited iterated reasoning (level-k; 多層次思考)
 - Learning: Towards equilibrium (學習「到」均衡)

Results from 2008 課堂實驗結果

Average = 27.75
Target = 18.5

Exclude 3 obs.

Average = 20.93

Target = 13.95

例三: 產業發展分水嶺 (Continental Divide)

- Location Problem: Silicon Valley or Hollywood?
- 7 a group, each choose 1-14 (-組七人,各選1-14)
- Payoff based on your choice & group median
 - 你的報酬取決於你的數字和所有人的中位數(報酬矩陣見下表)
- Key Feature: (別人選小你也該選小、別人選大你也該選大)
 - Should pick low if others pick low
 - Should pick high if others pick high
- When everyone is going to China, Hsinchu Science Park, etc. will you follow the trend?
 - 當大家都在竹科(或東莞?)設廠,你會獨排衆議,還是隨波逐流?

例三	-	E業	变展 2	分水	演 ((Cont	inen	tal [Divid	le)
	3	4	5	6	7	8	9	10	11	12
3	60	66	70	74	72	1	-20	-32	-41	-48
4	58	65	71	77	80	26	8	-2	-9	-14
5	52	60	69	77	83	46	32	25	19	15
6	42	52	62	72	82	62	53	47	43	41
7	28	40	51	64	78	75	69	66	64	63
8	11	23	37	51	69	83	81	80	80	80
9	-11	3	18	35	57	88	89	91	92	94
10	-37	-21	-4	15	40	89	94	98	101	104
11	-66	-49	-31	-9	20	85	94	100	105	110
12	_100	22	61	27	5	72	Ω1	00	106	112

例三	-	E業	後展 2	分水	嶺 ((Cont	inen	tal [Divid	le)
	3	4	5	6	7	8	9	10	11	12
3	60	66	70	74	72	1	-20	-32	-41	-48
4	58	65	71	77	80	26	8	-2	-9	-14
5	52	60	69	77	83	46	32	25	19	15
6	42	52	62	72	82	62	53	47	43	41
7	28	40	51	64	78	75	69	66	64	63
8	11	23	37	51	69	83	81	80	80	80
9	-11	3	18	35	57	88	89	91	92	94
10	-37	-21	-4	15	40	89	94	98	101	104
11	-66	-49	-31	-9	20	85	94	100	105	110
12	_100	<u> </u>	61	27	F	72	01	00	106	110

例三:產業發展分水嶺 (Continental Divide)

- AGT Predictions (數學賽局論的預測)
 - Multiple Equilibrium (兩個均衡): 3 or 12
- Experimental Results (實驗結果)
 - Don't always gravitate toward Good Eq.
 - Small history accidents have big LR impact
 - 重複多次不見得會到較好的均衡、歷史的偶然對長期發展有重大影響
- BGT Explanation (行為賽局論的解釋)
 - Learning in the basin of attraction
 - Initial Conditions: Lucky 7 vs. 8 (一路發)?
 - 在「引力範圍」内被牽引,初始條件: Lucky 7 vs. 8 (一路發)

Experimental Regularity有一致的結果,然後?

- Goal: <u>Improve</u> game theory by establishing regularity and inspiring new theory
 - 目的: <u>改進</u>賽局論(而非推翻),用一致的結果激發新理論
- Why has empirical observation played a small role in game theory until recently?
 - 為何實證觀察直到最近才對賽局論有影響?
- John Nash did experiments at RAND
 - 奈許本人其實有嘗試跟蘭德智庫一起做賽局實驗,但是...
- "Unbelievable" PD results?!
 - 沒有進一步發展是因為囚犯兩難的實驗結果「難以置信」?

Experimental Regularity有一致的結果,然後?

- How others react to (experimental) data?
 - 關於實驗方法的反對意見:
- 1. People are confused, not motivated
 - 人們搞錯了、沒誘因?好的實驗設計可克服、讓決策有真實後果
- 2. Experimental designs are all bad
 - 實驗設計都很糟?民主政治是最糟的政治制度,但其他更不可行
- 3. People were playing a different game
 - 人們其實在做別的?也許是「美麗人生」,但as-if 模型都如此
- 4. Non-rational behavior cannot be modeled
 - 非理性就是亂選?但非理性行為仍可預測(Predictably Irrational)

Conclusion 結論

- AGT → Experimental Regularities → BGT
 - 數學賽局論 > 看到一致的實驗結果 > 行為賽局論
- Three Examples (三個例子)
- Want to see more? (更多請見)
 - Camerer (2003), Behavioral Game Theory
- Homework:
 - Read BGT, Ch.1 and Lecture notes (both online)
 - Solve the equilibrium of the 3 examples above
 - 你能解出上述三個例子的均衡嗎?翻翻大二個經課本吧!