Econometrica, Vol. 50, No. 6 (November, 1982)

STRATEGIC INFORMATION TRANSMISSION

BY VINCENT P. CRAWFORD AND JOEL SOBEL¹

"Oh, what a tangled web we weave, when first we practice to deceive!" —Sir Walter Scott

The paper is about...

- Information transmission
- Communication
- Rational behavior
- Deception
- Lying
- Truth-telling
- Interests
- However: very general, very broad concept

Explaining by using math!

LEMMA 2: If $V(a_{i-1}, a_i, a_{i+1}, b) = 0$ for $0 \le a_{i-1} < a_i < a_{i+1} \le 1$, then $U_1^S(\bar{y}(a, a_i), a_i, b) > 0$ and $V_1(a, a_i, a_{i+1}, b) < 0$ for all $a \in [0, a_{i-1}]$, and $U_1^S(\bar{y}(a_i, a_i), a_i, b) < 0$ and $V_3(a_{i-1}, a_i, a, b) < 0$ for all $a \in [a_{i+1}, 1]$.

PROOF: Since $U^{S}(\bar{y}(a_{i-1}, a_{i}), a_{i}, b) = U^{S}(\bar{y}(a_{i}, a_{i+1}), a_{i}, b)$ by hypothesis, $\bar{y}(a_{i}, a_{i+1}) > \bar{y}(a_{i-1}, a_{i})$, and $U_{11}^{S}(\cdot) < 0$, $U_{1}^{S}(y, a_{i}, b) > 0$ for $y \le \bar{y}(a_{i-1}, a_{i})$ and $U_{1}^{S}(y, a_{i}, b) < 0$ for $y \ge \bar{y}(a_{i}, a_{i+1})$. The Lemma follows from the definition of V because $\bar{y}(\cdot)$ is strictly increasing in both of its arguments. Q.E.D.

(32)
$$-V(c, a_1^x, a_2^x, b) \equiv U^S(\bar{y}(c, a_1^x), a_1^x, b) - U^S(\bar{y}(a_1^x, a_2^x), a_1^x, b) > 0$$

for all $x \in [a_{N-1}(N), a_N(N+1))$ and $c \in [0, a_1^x]$

Now $EU^{R}(x)$ is given by

(33)
$$EU^{R}(x) \equiv \sum_{j=1}^{N+1} \int_{a_{j-1}^{x}}^{a_{j}^{x}} U^{R}(\tilde{y}(a_{j-1}^{x}, a_{j}^{x}), m) f(m) dm.$$

Since $\bar{y}(a_{j-1}^x, a_j^x)$, defined in (9) as *R*'s best response to a signal in the step $[a_{j-1}^x, a_j^x]$, maximizes the *j*th term in the sum and since $a_{N+1}^x \equiv 1$, the Envelope Theorem yields

(34)
$$\frac{dEU^{R}(x)}{dx} \equiv \sum_{j=1}^{N} f(a_{j}^{x}) \frac{da_{j}^{x}}{dx} \left[U^{R} \left(\tilde{y}(a_{j-1}^{x}, a_{j}^{x}), a_{j}^{x} \right) - U^{R} \left(\tilde{y}(a_{j}^{x}, a_{j+1}^{x}), a_{j}^{x} \right) \right].$$

Assumption (M) guarantees that $da_i^x/dx > 0$ for all j = 1, ..., N, and

(35)
$$U^{R}(\bar{y}(a_{j-1}^{x}, a_{j}^{x}), a_{j}^{x}) - U^{R}(\bar{y}(a_{j}^{x}, a_{j+1}^{x}), a_{j}^{x})$$
$$\geq U^{S}(\bar{y}(a_{j-1}^{x}, a_{j}^{x}), a_{j}^{x}, b) - U^{S}(\bar{y}(a_{j}^{x}, a_{j+1}^{x}), a_{j}^{x}, b) \geq 0$$

13)
$$U^{S}(\bar{y}(a_{i}, a_{i+1}), m) = \max_{i} U^{S}(\bar{y}(a_{j}, a_{j+1}), m) \text{ for all } m \in [a_{i}, a_{i+1}],$$

where the maximum in (13) is taken over j = 0, ..., N-1. To see this, note that because $U_{11}^{S}(\cdot) < 0$ and $\overline{y}(a_i, a_{i+1}) > \overline{y}(a_{i-1}, a_i)$, (A) implies (13) for $m = a_i$. Since $U_{12}^{S}(\cdot) > 0$ and $m \in [a_i, a_{i+1}]$,

(14)
$$U^{S}(\bar{y}(a_{i}, a_{i+1}), m) - U^{S}(\bar{y}(a_{k}, a_{k+1}), m)$$
$$\geq U^{S}(\bar{y}(a_{i}, a_{i+1}), a_{i}) - U^{S}(\bar{y}(a_{k}, a_{k+1}), a_{i}) \geq 0 \text{ and}$$

(15)
$$U^{S}(\bar{y}(a_{i}, a_{i+1}), m) - U^{S}(\bar{y}(a_{j}, a_{j+1}), m)$$
$$\geq U^{S}(\bar{y}(a_{i}, a_{i+1}), a_{i+1}) - U^{S}(\bar{y}(a_{j}, a_{j+1}), a_{i+1}) \geq 0$$

Let $a^x \equiv (a_0^x, a_1^x, \ldots, a_{N+1}^x)$ be the partition that satisfies (A) for $i = 2, \ldots, N$ with $a_0^x = 0, a_N^x = x$, and $a_{N+1}^x = 1$. If $x = a_{N-1}(N)$ then $a_1^x = 0$, and if $x = a_N(N+1)$ then $a^x = a(N+1)$ and (A) is satisfied for all $i = 1, \ldots, N$. When $x \in [a_{N-1}(N), a_N(N+1)]$, which is a nondegenerate interval by Lemma 3, $EU^R(x)$ is strictly increasing in x. To see this, note first that $V(c, a_1^x, a_2^x, b) \neq 0$ for all $c \in [0, a_1^x]$ if $x \in [a_{N-1}(N), a_N(N+1)]$. This follows because $(a_{N+1}(N+1), a_{N+1}(N), \ldots, a_{N+1}(1), a_{N+1}(0))$ is a backward solution of (A) of length N + 1, and (M') guarantees that any other backward solution of (A), a, of length N + 1 with $a_0 = 1$ and $a_1 = x$ must satisfy $x > a_{N+1}(N)$. Moreover $V(0, a_1(N+1), a_2(N+1), b) = 0$ by the definition of a(N+1), and hence $-V(c, a_1(N+1), a_2(N+1), b) > 0$ for all $c \in (0, a_1(N+1)]$ by Lemma 2. It follows

The model

- Random state "m" is observed by player 1 (sender)
- Sender sends signal (noise?) to player 2 (receiver)
- Receiver takes action
- b is difference in preferences

$$y^{s}(m,b) \equiv \arg \max U^{s}(y,m,b)$$

$$y^{R}(m) \equiv \arg \max U^{R}(y,m),$$

Equilibrium

• Define

•
$$y^{S}(m,b) \equiv argmax \ U^{s}(y,m,b)$$

•
$$y^R(m) \equiv argmax \ U^R(y,m)$$

THEOREM 1: Suppose b is such that $y^{S}(m,b) \neq y^{R}(m)$ for all m. Then there exists a positive integer N(b) such that, for every N with $1 \leq N \leq N(b)$, there exists at least one equilibrium (y(n), q(n|m)), where q(n|m) is uniform, supported on $[a_{i}, a_{i+1}]$ if $m \in (a_{i}, a_{i+1})$,

(A)
$$U^{S}(\bar{y}(a_{i}, a_{i+1}), a_{i}, b) - U^{S}(\bar{y}(a_{i-1}, a_{i}), a_{i}, b) = 0$$

(*i* = 1, ..., *N* - 1),

(10)
$$y(n) = \bar{y}(a_i, a_{i+1})$$
 for all $n \in (a_i, a_{i+1})$,

$$(11) a_0 = 0, and$$

(12) $a_N = 1.$

Further, any equilibrium is essentially³ equivalent to one in this class, for some value of N with $1 \le N \le N(b)$.

COROLLARY 1: If V(0, a, 1, b) > 0 for all $a \in [0, 1]$, then N(b) = 1; that is, the only equilibrium is uninformative.

b=0	b>0 V(0,a,1,b)=0 has solution	V(0,a,1,b)>0
Partition equilibria & Truth telling equilibrium	Partition equilibria	Uninformative equilibria

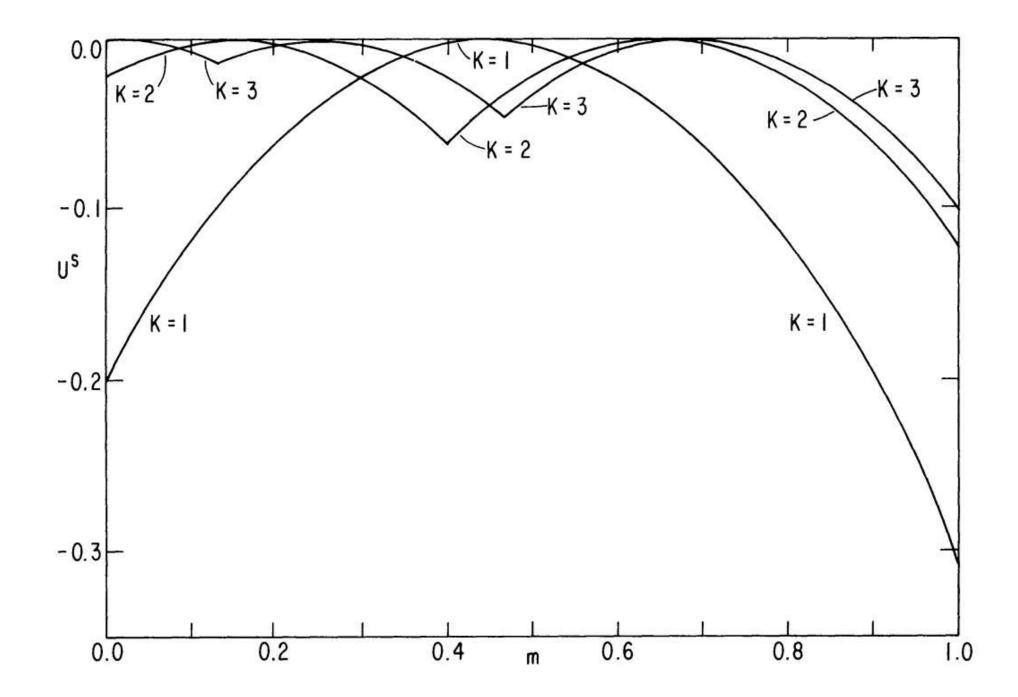
Which equilibrium will be chosen?

Example

•
$$U^{S}(y, m, b) \equiv -(y - (m + b))^{2}$$

•
$$U^R(y,m) \equiv -(y-m)^2$$

•
$$b = \frac{1}{20}$$



More general result

(M) For a given value of b, if \hat{a} and \tilde{a} are two forward solutions of (A) with $\hat{a}_0 = \tilde{a}_0$ and $\hat{a}_1 > \tilde{a}_1$, then $\hat{a}_i > \tilde{a}_i$ for all $i \ge 2$.

• This is only a sufficient condition.

THEOREM 3: For given preferences (i.e., b), R always strictly prefers equilibrium partitions with more steps (larger N's).

THEOREM 4: For a given number of steps (i.e., N), R always prefers the equilibrium partition associated with more similar preferences (i.e., a smaller value of b).

THEOREM 5: For given preferences (i.e., b), S always strictly prefers ex ante (that is, before learning his type) equilibrium partitions with more steps (larger N's).

Conclusion

- Direct communication is more likely to play in important role, the more closely related at agents' goals
- Perfect communication never happens (except b=0, interests coincide)
- Rational behavior can result in non-communication (b=...)