Coordination協調賽局

Joseph Tao－yi Wang（王道一） Lecture 10，EE－BGT

Why is Coordination Important?

- Which Equilibrium to Select Among Many?
- This requires Coordination!
- Examples of Coordination in Daily Life:
- Language
- Trading in Markets (Liquidity)
- Industry Concentration

Why is Coordination Important?

- Equilibrium Selection in Game Theory

1. Desirable Features Approach:

- Payoff-Dominance, Risk Dominance, etc.

2. Convergence via Adaptation/Learning

- Weibull (1995), Fudenberg and Levine (1998)

3. Empirical Approach: Infer Principles by

- Putting people in experiments and observe actual behavior/outcome

Why is Coordination Important?

- Possible "Selection Principles":
- Precedent, focal, culture understanding, etc.
- Why are observations useful?
- Schelling (1960, p.164):
- "One cannot, without empirical evidence, deduce what understandings can be perceived in a nonzero-sum game of maneuver
- any more than one can prove,
- by purely formal deduction, that a particular joke is bound to be funny."

Why is Coordination Important?

- Can't Communication Solve This?
- Not always... (See Battle of Sexes below)
- Sometimes communication is not feasible:
- Avoiding Traffic Jams
- Speed Limits (useful because they reduce speed "variance", and hence, enhance coordination!)
- Miscommunication can have big inefficiency!

Examples of Coordination Impact

- The standard width of US railroad tracks is 4 feet and 8.5 inch Because English wagons were about 5 feet (width of two horses)
- Space Shuttle rockets are smaller than ideal since they need to be shipped back by train...
- Industries are concentrated in small areas - Silicon Valley, Hollywood, Hsinchu Science Park
- Urban Gentrification
- I want to live where others (like me) live

Examples of Coordination Impact

- Drive on the Left (or Right) side of the road - Right: Asia, Europe (Same continent!) - Left: Japan, UK, Hong Kong (Islands!) $\int_{3.9}$ - Sweden switched to Right (on Sunday morning) - What about America? Right, to avoid - hitting others with the whip on your right hand - Bolivians switch to Left in mountainous area - Cannot see outer cliffside from driver seat (left)
- Pittsburgh left: left-turners go first/avoid line

3 Types of Coordination Games

- Matching Games
- Pure Coordination Game; Assignment Game
- Games with Asymmetric Payoffs
- Battle of Sexes, Market Entry Game
- Games with Asymmetric Equilibria - Stag Hunt, Weak-Link Game
- Applications: Market Adoption and Culture

Examples of Coordination Impact

- Categorizing Products
-Where should you find Narnia? Family or Action?
- Can you find your favorite grocery at a new store?
- Common Language: Internet promotes English
- Some Koreans even get surgery to loosen their tongues, hoping to improve their pronunciation
- Key: Agreeing on something is better than not; but some coordinated choices are better.

Matching Game: GAMES magazine (1989)

- Pick one celebrity (out of 9) for President, another for Vice-President:
- Oprah Winfrey, Pete Rose,
- Bruce Springsteen, Lee laccoca,
- Ann landers, Bill Cosby,
- Sly Stallone, Pee-Wee Herman,
- Shirley MacLaine
- One person is randomly awarded prize among those who picked most popular one

Matching Game：GAMES magazine（1989）

－Taiwanese example：
－戴資穎，陳偉殷，黃國昌，朱敬一，陳建仁，林立青，李來希，舒淇，林志玲，林奕含
－Prize？
－Results．．．

Matching Game: GAMES magazine (1989)

- US Results:

1. Bill Cosby (1489): successful TV show
2. Lee lacocca (1155): possible US candidate
3. Pee-Wee Herman (656): successful TV show
4. Oprah Winfrey (437): successful TV show
5. Shirley MacLaine (196): self-proclaimed reincarnate

Pure Coordination Game

- Both get 1 if pick the same;
- Both get 0 if not

0,0

- Two pure NE,
- One mixed NE
- Which one will be played empirically?

Pure Coordination Game

- Mehta, Starmer and Sugden (AER 1994)
- Picking Condition (P): Just pick a strategy
- Coordinating Condition (C): - Win $\$ 1$ if your partner picks the same as you
- Difference between P and $\mathrm{C}=$ How focal

Choices: Years, Flowers, Dates, Numbers, Colors, Boy's name, Gender, etc.

Pure Coordination Game

Category
Years
Flowers
Dates
Numbers Colors
Boy's Name
Gender

Pure Coordination Game: Follow-up 1

- Bardsley, Mehta, Starmer, Sugden (EJ 2010) - Incorporate (Replace?) Bardsley, et al. (wp 2001)
- Add additional condition besides P and C : - Guess Condition (G): Guess partner's pick
- 14 Games: One in choice set is distinctive - EX: \{Bern, Barbodos, Honolulu, Florida\}
- Design question: How do you avoid focality of physical location (first/last/top-left)?
- Have things swim around the computer screen...

Pure Coordination Game: Follow-up 1

- Derivative Salience: $\mathrm{P}=\mathrm{G}=\mathrm{C}$
- (See how paper use) Cognitive Hierarchy theory
- Schelling Salience: $\mathrm{P}=\mathrm{G} \neq \mathrm{C}$
- Team Reasoning: Pick distinctive choice only in C
- Schelling Salience wins here!
- Distinctive choice $=$ modal choice in C (60\%); less often in P and G in 12 games (out of 14)
- EJ 2010: But still rejected in follow-up study w/ subtle design differences (used to coordinate)

Assignment Game (Follow-up 2

- Hume (1978/1740) - Ownership conventions: spatial/temporal proximity, cultural, etc.
- Mehta, Starmer and Sugden (ToD 1994)

Assignment Game and Visual Selection

- Assign circles to L or R
- Earn \$\$ if all circles match partner assignment
- Focal Principle 1: Closeness (C)

Assignment Game and Visual Selection

- Assign circles to L or R
- Earn \$\$ if all circles match partner assignment
- Focal Principle 2: Equality (E)

Assignment Game and Visual Selection

- Assign circles to L or R
- Earn $\$ \$$ if all circles match partner assignment
- Focal Principle 3: Accession (A)

Assignment Game and Visual Selection

 - How would you assign the circles?- What about this? $(C=A=E)$
- In fact, 74\% chose this!

Assignment Game and Visual Selection

 - How would you assign the circles?- What about this? $(C=A=E)$
- In fact, 68\% chose this!

Assignment Game and Visual Selection

- How would you assign the circles?
- What about this? (Accession!)
- In fact, 70% chose this! (What does C/E say?)

Assignment Game: C \& A vs. Equality

- What does Closeness/Accession say?
- What does Equality say about this? (-)
- 29% follow C \& A vs. I $\leftarrow 45 \%$ follow E

Assignment Game: Accession vs. Closeness

- What does Accession say about this? ()
- What does Closeness say about this?
- 43% follow A vs. 32% follow C

Assignment Game: Accession vs. Equality

 - What does Accession say about this?- What does Equality say about this? (-)

Equality > Accession > Closeness

- First Focal Principle: Equality (\cdot)
- Then Accession (if Equality satisfied/silent)

Unpacking Focality

- Bacharach and
Bernasconi (GEB 1997)
- Visual matching game - Pick one from picture:
- Test rarity preferences - 6 vs. 8
- Rare item chosen more frequently
- As Rarity increases:
- $6 / 8,2 / 3,6 / 18,1 / 15$

Unpacking Focality: Test Rarity

Unpacking Focality: Test Trade-offs

- Rarity (n=3 vs. 8)
- against
- Oddity (size or color) - $p(\mathrm{~F})=$ prob. of notice
- Choose Obvious if - $p(\mathrm{~F})=0.94 \gg 1 / 3$
- Choose Subtle if - $p(\mathrm{~F})=0.40>1 / 3$

Unpacking Focality: Test Trade-offs

- Violate $p(\mathrm{~F})>1 / \mathrm{r}$
- Mostly chose Obvious Oddity
- Less than half chose Subtle Oddity

Obvious Oddity (r) Subtle Oddity (r)
$r=\#$ of Rare Rare 14\% $19 \% \quad 9 \% \quad 7 \% \quad 77 \% \quad 55 \% \quad 45 \% \quad 69 \% \quad 55 \%$
 Other $2 \% \quad 2 \% \quad 0 \% \quad 5 \% \quad 0 \% \quad 14 \% \quad 10 \% \quad 12 \% \quad 25 \%$ $\begin{array}{lllllllllll}p(\mathrm{~F}) & 0.95 & 0.91 & 0.95 & 0.93 & 0.55 & 0.40 & 0.62 & 0.25 & 0.25\end{array}$ 2017/5/22

Unpacking Focality
 - Munro (wp 1999)

- Field study of coordination

Asymmetric Plavers: Battle of Sexes

Asymmetric Players: Battle of Sexes

- Cooper, DeJong, Forsythe \& Ross (AER 90')
- BOS: Baseline (MSE mismatch 62.5\%)
- BOS-300: Row player has outside option 300 - Forward induction predicts $(2,1)$
- BOS-100: Row player has outside option 100 - Forward induction doesn't apply
- Compare BOS-100 and BOS-300 shows if "any outside option" works...

Battle of Sexes (Last 11 Periods)

Game	Outside	$(1,2)$	$(2,1)$	Other	\# Obs
BOS	-	$37(22 \%)$	$31(19 \%)$	$97(59 \%)$	165
BOS-300	33	$0(0 \%)$	$119(90 \%)$	$13(10 \%)$	165
BOS-100	3	$5(3 \%)$	$102(63 \%)$	$55(34 \%)$	165
BOS-1W					165
BOS-2W					165
BOS-SEQ					165

Asymmetric Players: Battle of Sexes

- Cooper, DeJong, Forsythe \& Ross (AER 90')
- BOS-1W: 1 way communication by Row
- BOS-2W: 2 way communication by both
- BOS-SEQ: Both know that Row went first, but Column doesn't know what Row did - Information set same as simultaneous move - Would a sequential move act as an coordination device?

Battle of Sexes (Last 11 Periods)

Game	Outside	$(1,2)$	$(2,1)$	Other	\# Obs
BOS	-	$37(22 \%)$	$31(19 \%)$	$97(59 \%)$	165
BOS-300	33	$0(0 \%)$	$119(90 \%)$	$13(10 \%)$	165
BOS-100	3	$5(3 \%)$	$102(63 \%)$	$55(34 \%)$	165
BOS-1W	-	$1(1 \%)$	$158(96 \%)$	$6(4 \%)$	165
BOS-2W	-	$49(30 \%)$	$47(28 \%)$	$69(42 \%)$	165
BOS-SEQ	-	$6(4 \%)$	$103(62 \%)$	$56(34 \%)$	165

Where Does Meaning Come From?

- Communication can help us coordinate
- But how did the common language for communication emerge in the first place?
- Put people in a situation of no meaning and see how they create it!
- Blume, DeJong, Kim \& Sprinkle (AER 98') - See also BDKS (GEB 2001) which is better!

Evolution of Meaning: Game 1 (Baseline)

- Blume et al. (AER 1998)
- Sender has private type T1 or T2
- Sends message "*" or "\#" to receiver
- Receiver chooses A or B (to coordinate type)

Evolution of Meaning

- Blume et al. (AER 1998)
- Game 1: Baseline as above
- Game 1NH: See only history of own match
- Game 2: Receiver can choose C (safe action) that gives $(4,4)$ regardless of T1/T2 - Theory: Pooling or Separating Equilibrium

Percentage Consistent with Separating

Game \Period	1	5	10	15	20

1st Session

Game 1
48
65
74
89
95
2nd Session
Game 1
49
72
61
89
100
Game 1NH

55	55	28

55
72
Game 2
Separating Pooling

05
05

Evolution of Meaning

- Blume et al. (AER 1998)
- Game 1: Baseline as above
- Game 1NH: See only history of own match
- Game 2: Receiver can choose C (safe action) that gives $(4,4)$ regardless of $\mathrm{T} 1 / \mathrm{T} 2$ - Theory: Pooling or Separating Equilibrium
- Game 3: Coordinate payoffs become $(2,7)$
- So sender wants to disguise types to force receiver to choose C (safe action)
- Allowed to send 2 or 3 messages...

Results of Game 3: 2 vs. 3 messages

\# of Messages	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$
$51-60$					
2-Separating	43	53	38	39	

2-Pooling	33	34	41	43	$2^{\text {nd }}$ Session

| $3-$ 3-Separating | 43 | 38 | 33 | 24 |
| :--- | :--- | :--- | :--- | :--- | 3-Pooling $\quad 33 \quad 37 \quad 42 \quad 60$

| 2-Separating | 39 | 27 | 23 | 24 | 24 | 23 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 2-Pooling

39

3-Separating 3-Pooling
$\begin{array}{llll}55 & 61 & 58 & 56\end{array}$
$\begin{array}{llll}55 & 61 & 58 & 56\end{array}$
60
63
61

23	22	23	25	22	24

57
61
$1^{\text {st }}$ Session

Example of Asymmetric Payoffs

- Market Entry Game
- n players decide to enter market with capacity c
- Payoffs declines as number of entrants increase; < 0 if number > c (= capacity)
- Kahneman (1988): Number close to equil. - "To a psychologist, it looks like magic."
- See BI-SAW paper by Chen et al. (2012)...

Market Entry Game Results

Market capacity	1	3	5	7		11	13	15	17	19
MSE	0	2.1	4.2	6.3	8.4	10.5	12.6	14.7	16.8	18.9

$1^{\text {st }}$
block all data $\begin{array}{llllllllll}1.0 & 3.7 & 5.1 & 7.4 & 8.7 & 11.2 & 12.1 & 14.1 & 16.5 & 18.2\end{array}$

- Sundali et al. 95'

Games with Asymmetric Equilibria

Games with Asymmetric Equilibria

- Cooper et al. (AER 1990)
- CG: Baseline Stag Hunt
- CG-900: Row has outside option 900 each - Forward induction predicts $(2,2)$
- CG-700: Row has outside option 700 each - Forward induction won't work
-CG-1W: 1 way communication by Row
-CG-2W: 2 way communication by both

Stage Hunt (Last 11 Periods)

Game	Outside	$(1,1)$	$(2,2)$	Other	\# Obs
CG	-	$160(97 \%)$	$0(0 \%)$	$5(3 \%)$	165
CG-900	65	$2(2 \%)$	$77(77 \%)$	$21(21 \%)$	165
CG-700	20	$119(82 \%)$	$0(0 \%)$	$26(18 \%)$	165
CG-1W	-	$26(16 \%)$	$88(53 \%)$	$51(31 \%)$	165
CG-2W	-	$0(0 \%)$	$150(91 \%)$	$15(9 \%)$	165

Weak-link Game: Team Production Example

- Van Huyck, Battalio and Beil (AER 1990)
- Each of you belong to a team
- Each of you can choose effort $X=1-4$ - Spade $=4$, Heart $=3$, Diamond $=2$, Club $=1$
- Earnings depend on your own effort and the smallest effort of your team
- Each person has to do his/her job for the whole team project to fly
- Have you every had such a project team?

Weak-link Game: Team Production Example

$$
\text { Payoff }=60+10 * \min \left\{\mathrm{X}_{\mathrm{j}}\right\}-10 *\left(\mathrm{X}_{\mathrm{i}}-\min \left\{\mathrm{X}_{\mathrm{i}}\right\}\right)
$$

Team Project Payoff
 Cost of Effort X

Your X	Smallest X in the team			
	4	3	2	1
4	100	80	60	40
3	-	90	70	50
2	-	-	80	60
1	-	-	-	70

Weak-link Game: Team Production Example

- What is your choice when...
- Group size $=2$?
- Group size $=3$?
- Group size $=20$?
- Can some kind of communication help coordinate everyone's effort?

Classroom Experiment：害群之馬最弱環節賽局
 （Weak－Link Game）

Weak－Link Game（最弱環節腟局

－Each DM chooses effort $X=1-4$
－Spade $=4$ ，Heart $=3$ ，Diamond $=2$ ，Club $=1$
－DM（Decision Maker）＝a team of two
－每組每回合都會有四張撲克牌，分別為黑桃（4），紅心（3），方塊（2），梅花（1）

- 主持人會跟每組收一張牌
- 交出來的花色代表你們花多少時間排練
＞你們的努力程度：黑桃 $=4$ 小時，紅心 $=3$ 小時，方塊 $=2$ 小時，梅花 $=1$ 小時
－各組要討論屆時交出哪一張牌．．．

Payoff Calculation（記分方式）

$$
\text { Payoff }=3 * \min _{4}\left\{X_{j}\right\}-1 * X_{i}
$$

Team Project Payoff

Cost of Effort X

－「花最少時間排練那一組的排練時數」，每一小時的排練大家都會得到3分。各組自己每花一小時排練，就少1分。

Your X_{i}	$\min \left\{X_{j}\right\}$			（最低那組時數）
（本組時數）	4	3	2	1
4	8	5	2	-1
3	-	6	3	0
2	-	-	4	1
1	-	-	-	2

Payoff Calculation（記分方式）

1．How much would you earn if all DM choose $X=4$ ？
－ 8 ！
－如果所有各組都花四小時排練，這樣各組會拿幾分？8分！

Your X_{i}	$\min \left\{X_{j}\right\}$			（最低那組時數）
$\left(\begin{array}{l}\text { 本組時數）}\end{array}\right.$	4	3	2	1
4	8	5	2	-1
3	-	6	3	0
2	-	-	4	1
1	-	-	-	2

Payoff Calculation（記分方式）

2．How much would you earn if you choose $X=3$ while others choose $X=4$ ？
－ 6 （ <8 ，not worth it！）
－如果別組都花四小時排練，但你們這組只花三小時排練，這樣你們會拿幾分？你們這麼做値得嗎？6分！小於 8 分所以不値得！

Your X_{i}	$\min \left\{X_{j}\right\}$			（最低那組時數） $($ 本組時數）		4	3	2	1
4	8	5	2	-1					
3	-	6	3	0					
2	-	-	4	1					
1	-	-	-	2					

Payoff Calculation（記分方式）

3．How much would you earn if you choose $X=2$ while some other DM choose $X=1$ ？
－ 1 （ <2 ，if you also choose $X=1$ ！）
－如果有某一組只花一小時排練，你們這組如果花兩小時排練，值得嗎？不值得，因為只得 1 分，但如果也花一小時就會跟他們一㮈得到2 2 分！

Your X_{i} （本組時數）	$\min \left\{\mathrm{X}_{\mathrm{j}}\right\}$		（最低那組時數）	
	4	3	2	1
4	8	5	2	－1
3	－	6	3	0
2	－	－	4	1
1	－	－	－	2

Weak－Link Game（最弱環節䅉局）

－Please decide now and we will see the results．．．
6．Are you satisfied with the results？How can you encourage cooperation next time？
－你對結果滿意嗎？如果你希望大家都更好，該怎麼鼓勵大家合作？讓我們再來做一次．．．

Your X_{i}	$\min \left\{X_{j}\right\}$			$\left(\begin{array}{l}\text { 最低那組時數）} \\ \hline(\text { 本組時數）}\end{array}\right.$
4	4	3	2	1
3	8	5	2	-1
2	-	6	3	0
1	-	-	4	1
	-	-	-	2

Weak－Link Game（最弱環節霣局）

－In reality，people would see each other＇s effort and increase effort gradually
－Let＇s try again by committing hour－by－hour！
－現實中你們彼此多半清楚大家的排練情況，而且時數可以逐步加碼。這次我們採一小時，一小時逐步加碼方式進行

本組排練時數	最但那組排練時數			
	4	3	2	1
4	8	5	2	-1
3	-	6	3	0
2	-	-	4	1
1	-	-	-	2

