Coordination 協調賽局

Joseph Tao-yi Wang (王道一) Lecture 10, EE-BGT

2017/5/22

Coordination

- Which Equilibrium to Select Among Many?
 - This requires Coordination!
- Examples of Coordination in Daily Life:
 - Language
 - Trading in Markets (Liquidity)
 - Industry Concentration

- Equilibrium Selection in Game Theory
- 1. Desirable Features Approach:
 - Payoff-Dominance, Risk Dominance, etc.
- 2. Convergence via Adaptation/Learning
 - Weibull (1995), Fudenberg and Levine (1998)
- 3. Empirical Approach: Infer Principles by
 - Putting people in experiments and observe actual behavior/outcome

- Possible "Selection Principles":
 - Precedent, focal, culture understanding, etc.
- Why are observations useful?
- Schelling (1960, p.164):
 - "One cannot, without empirical evidence, deduce what understandings can be perceived in a nonzero-sum game of maneuver
 - any more than one can prove,
 - by purely formal deduction, that a particular joke is bound to be funny."

- Can't Communication Solve This?
 - Not always... (See Battle of Sexes below)
- Sometimes communication is not feasible:
 - Avoiding Traffic Jams
 - Speed Limits (useful because they reduce speed "variance", and hence, enhance coordination!)
- Miscommunication can have big inefficiency!

Examples of Coordination Impact

- The standard width of US railroad tracks is 4 feet and 8.5 inch Because English wagons were about 5 feet (width of two horses)
 - Space Shuttle rockets are smaller than ideal since they need to be shipped back by train...
- Industries are concentrated in small areas
 Silicon Valley, Hollywood, Hsinchu Science Park
- Urban Gentrification
 - I want to live where others (like me) live

Examples of Coordination Impact

- Drive on the Left (or Right) side of the road
 - Right: Asia, Europe (Same continent!)
 - Left: Japan, UK, Hong Kong (Islands!)
 - Sweden switched to Right (on Sunday morning)
- What about America? Right, to avoid
 - hitting others with the whip on your right hand
- Bolivians switch to Left in mountainous area
 - Cannot see outer cliffside from driver seat (left)
- Pittsburgh left: left-turners go first/avoid line

3 Types of Coordination Games

- Matching Games
 - Pure Coordination Game; Assignment Game
- Games with Asymmetric Payoffs
 - Battle of Sexes, Market Entry Game
- Games with Asymmetric Equilibria
 - Stag Hunt, Weak-Link Game
- Applications: Market Adoption and Culture

Examples of Coordination Impact

Categorizing Products

- Where should you find Narnia? Family or Action?
- Can you find your favorite grocery at a new store?
- Common Language: Internet promotes English
 - Some Koreans even get surgery to loosen their tongues, hoping to improve their pronunciation
- Key: Agreeing on something is better than not; but some coordinated choices are better.

Matching Game: GAMES magazine (1989)

- Pick one celebrity (out of 9) for President, another for Vice-President:
 - Oprah Winfrey, Pete Rose,
 - Bruce Springsteen, Lee laccoca,
 - Ann landers, Bill Cosby,
 - Sly Stallone, Pee-Wee Herman,
 - Shirley MacLaine
- One person is randomly awarded prize among those who picked most popular one

Matching Game: GAMES magazine (1989)

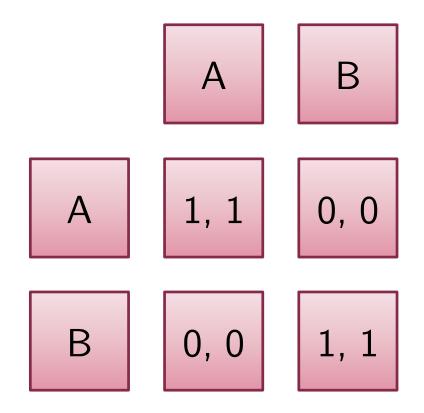
Taiwanese example:

▶ 戴資穎、陳偉殷、黃國昌、朱敬一、陳建仁、 林立青、李來希、舒淇、林志玲、林奕含

Prize?

Results...

朱敬-月累3年(二 4 - 1× 0 本本艺王 本本「いうら 173


2017/5/22

Matching Game: GAMES magazine (1989)

- US Results:
- 1. Bill Cosby (1489): successful TV show
- 2. Lee lacocca (1155): possible US candidate
- 3. Pee-Wee Herman (656): successful TV show
- 4. Oprah Winfrey (437): successful TV show
- 9. Shirley MacLaine (196): self-proclaimed reincarnate

. . .

Pure Coordination Game

Both get 1 if pick the same;

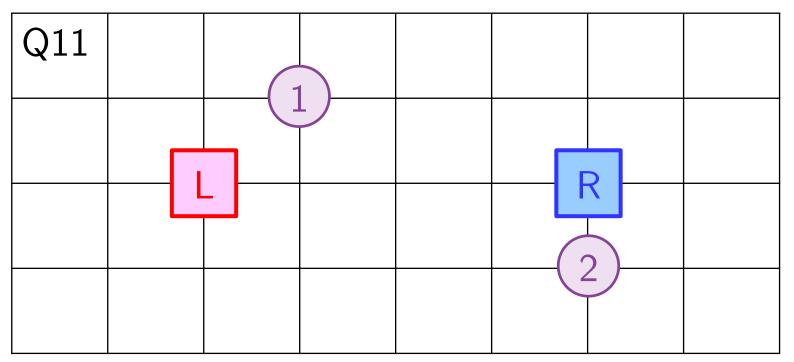
- Both get 0 if not
- ► Two pure NE,
- One mixed NE
- Which one will be played empirically?

Pure Coordination Game

- Mehta, Starmer and Sugden (AER 1994)
- Picking Condition (P): Just pick a strategy
- Coordinating Condition (C):
 - Win \$1 if your partner picks the same as you
- Difference between P and C = How focal
- Choices: Years, Flowers, Dates, Numbers, Colors, Boy's name, Gender, etc.

Pure Coordination Game								
Catavara	Group P ((n =88)	Group C (n=90)					
Category	Response	%	Response	%				
Years	1971	8.0	1990	61.1				
Flowers	Rose	35.2	Rose	66.7				
Dates	Dec. 25	5.7	Dec. 25	44.4				
Numbers	7	11.4	1	40.0				
Colors	Blue	38.6	Red	58.9				
Boy's Name	John	9.1	John	50.0				
Gender	Him	53.4	4 Him 8					
2017/5/22	Coordir	nation	Joseph Tao-yi Wang					

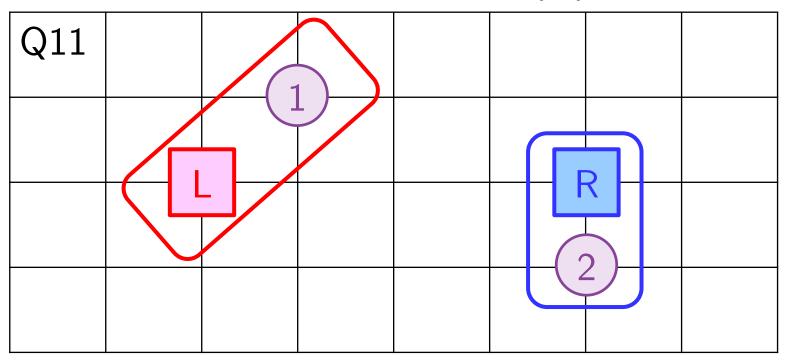
Pure Coordination Game: Follow-up 1


- Bardsley, Mehta, Starmer, Sugden (EJ 2010)
 Incorporate (Replace?) Bardsley, et al. (wp 2001)
- Add additional condition besides P and C:
 Guess Condition (G): Guess partner's pick
- 14 Games: One in choice set is distinctive
 EX: {Bern, Barbodos, Honolulu, Florida}
- Design question: How do you avoid focality of physical location (first/last/top-left)?
 - Have things swim around the computer screen...

Pure Coordination Game: Follow-up 1

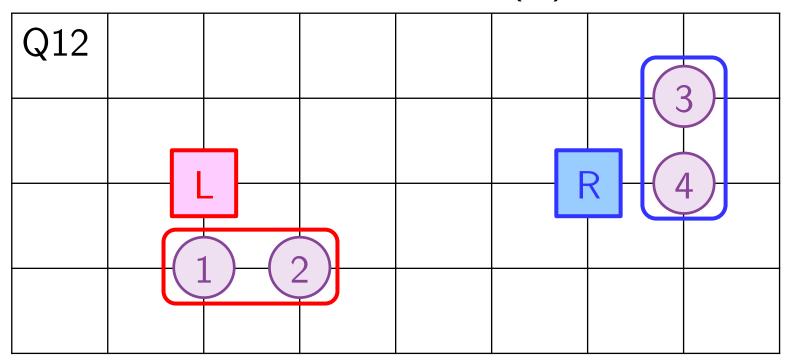
- Derivative Salience: P=G=C
 - (See how paper use) Cognitive Hierarchy theory
- ► Schelling Salience: P=G≠C
 - Team Reasoning: Pick distinctive choice only in C
- Schelling Salience wins here!
 - Distinctive choice = modal choice in C (60%); less often in P and G in 12 games (out of 14)
 - EJ 2010: But still rejected in follow-up study w/ subtle design differences (used to coordinate)

<u>Assignment Game (Follow-up 2)</u>


- Hume (1978/1740) Ownership conventions: spatial/temporal proximity, cultural, etc.
 - Mehta, Starmer and Sugden (ToD 1994)

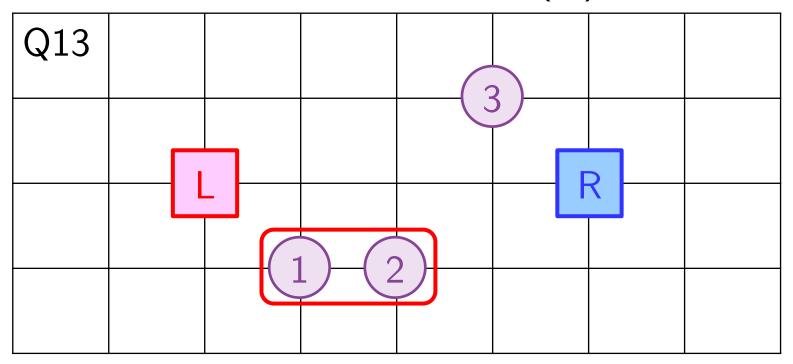
2017/5/22

Coordination


- Assign circles to L or R
- Earn \$\$ if all circles match partner assignment
- ► Focal Principle 1: Closeness (C)

2017/5/22

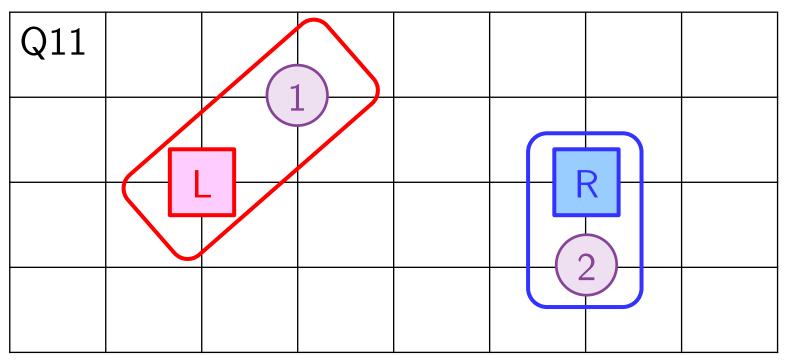
Coordination


- Assign circles to L or R
- Earn \$\$ if all circles match partner assignment
- Focal Principle 2: Equality (E)

2017/5/22

Coordination

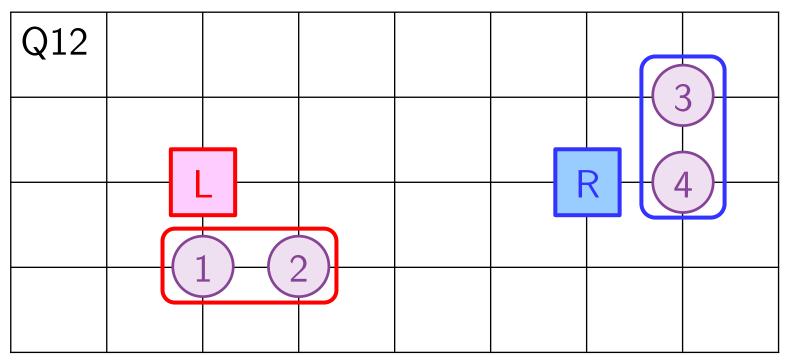
- Assign circles to L or R
- Earn \$\$ if all circles match partner assignment
- ► Focal Principle 3: Accession (A)



2017/5/22

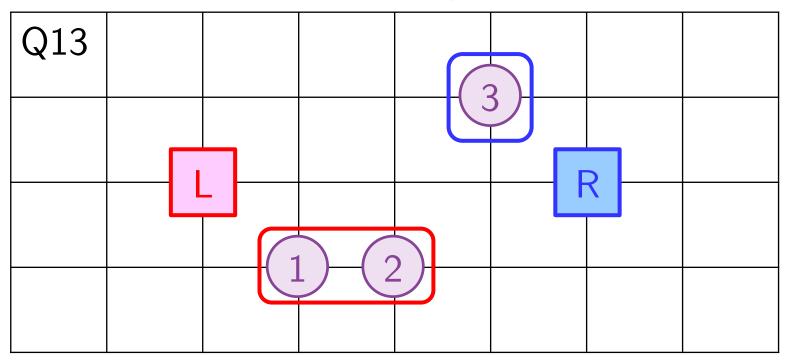
Coordination

How would you assign the circles?


- What about this? (C = A = E)
 - In fact, 74% chose this!

2017/5/22

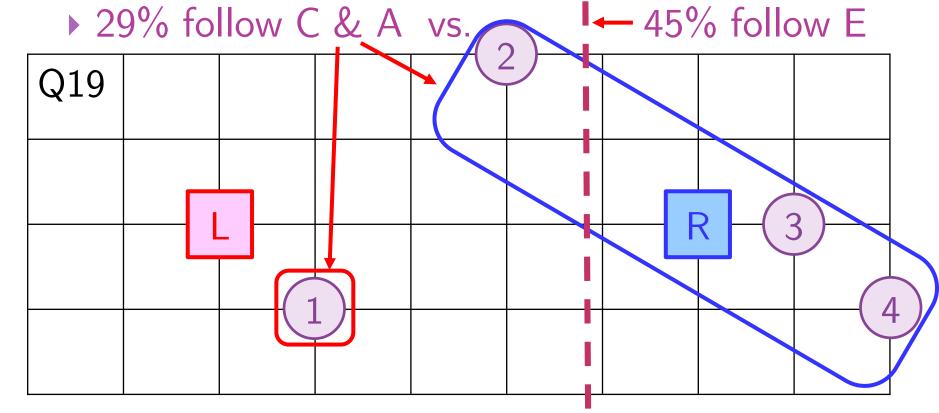
Coordination


- How would you assign the circles?
- What about this? (C = A = E)
 - In fact, 68% chose this!

2017/5/22

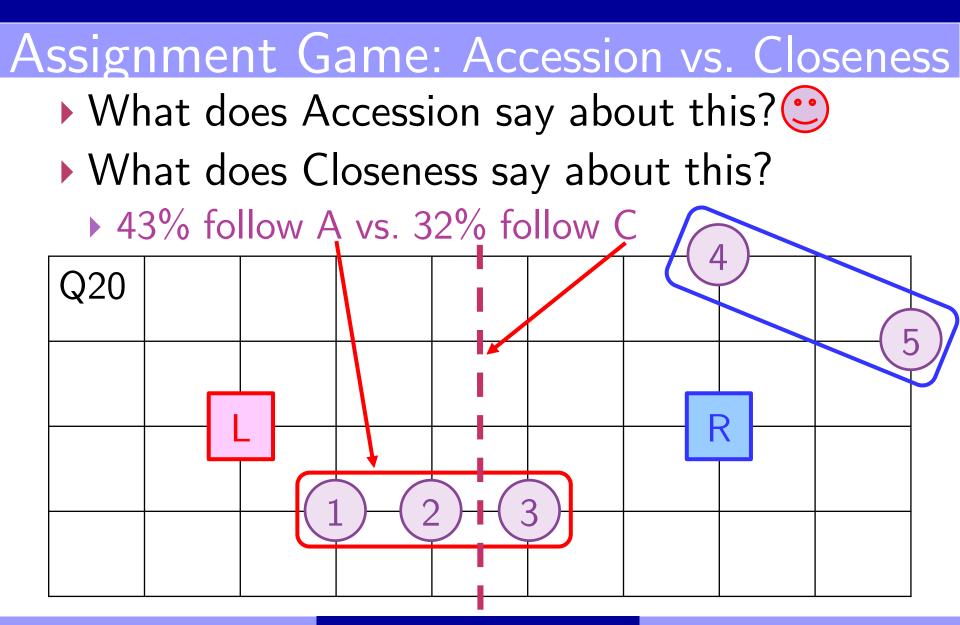
Coordination

- How would you assign the circles?
- What about this? (Accession!)
 - ▶ In fact, 70% chose this! (What does C/E say?)



2017/5/22

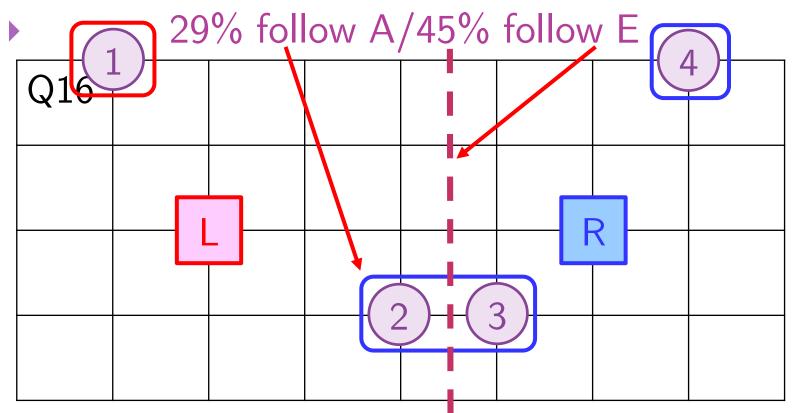
Coordination


Assignment Game: C & A vs. Equality

- What does Closeness/Accession say?
- What does Equality say about this?

2017/5/22

Coordination

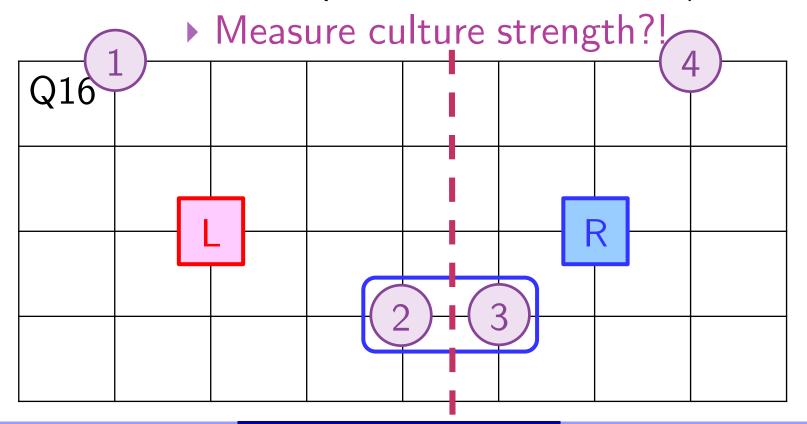


2017/5/22

Coordination

Assignment Game: Accession vs. Equality

- What does Accession say about this?
- What does Equality say about this?

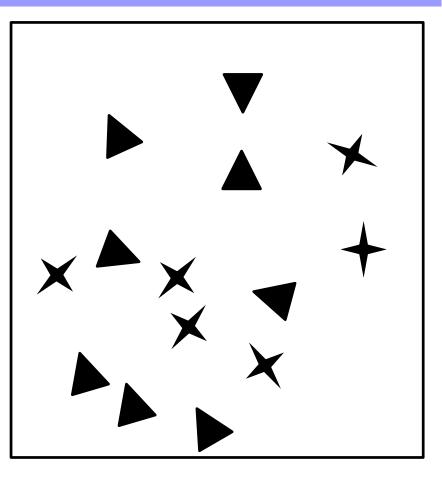


2017/5/22

Coordination

Equality > Accession > Closeness

- First Focal Principle: Equality 🙂
- Then Accession (if Equality satisfied/silent)



2017/5/22

Coordination

Unpacking Focality

- Bacharach and Bernasconi (GEB 1997)
- Visual matching game
 Pick one from picture:
- Test rarity preferences
 6 vs. 8
- Rare item chosen more frequently
 - As Rarity increases:
 6/8, 2/3, 6/18, 1/15

2017/5/22

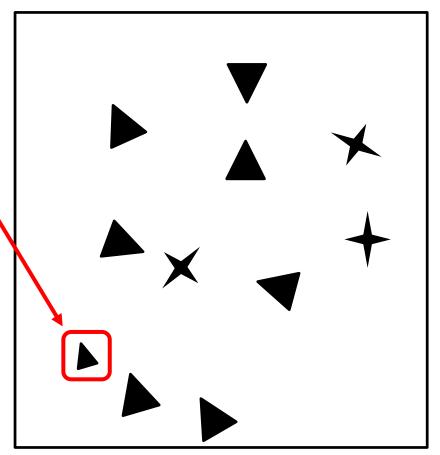
Coordination

Unpacking Focality: Test Rarity

 As Rarity increases Frequency of rare choice increases 					
	# of Rare/Frequent Items				
	6/8	2/3	6/18	1/15	
Rare	65%	76%	77%	94%	
Frequent	35%	24%	23%	6%	

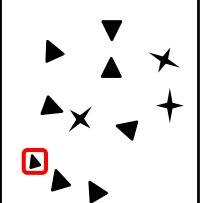
2017/5/22

Coordination


Unpacking Focality: Test Trade-offs

Rarity (n=3 vs. 8)

against


- Oddity (size or color)
 p(F)= prob. of notice
- Choose Obvious if
 - ▶ *p*(F)=0.94 >> 1/3
- Choose Subtle if

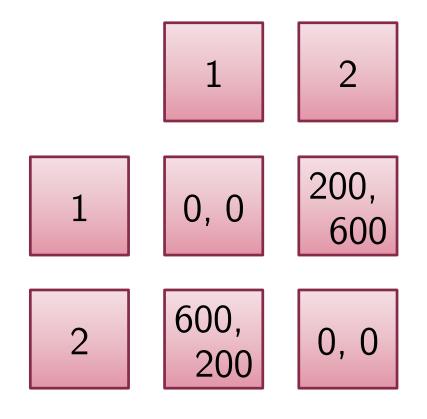
▶ *p*(F)=0.40 > 1/3

Unpacking Focality: Test Trade-offs

- Violate p(F) > 1/r
 - Mostly chose Obvious Oddity
 - Less than half chose Subtle Oddity

r = #	Obvious Oddity (r)			Subtle Oddity (r)					
of Rare	2	3	4	5	2	3	4	5	6
Rare	14%	19%	9%	7%	77%	55%	45%	69%	55%
Oddity	83%	79%	91%	88%	23%	31%	45%	19%	20%
Other	2%	2%	0%	5%	0%	14%	10%	12%	25%
$p(\mathbf{F})$	0.95	0.91	0.95	0.93	0.55	0.40	0.62	0.25	0.25
2017/5/22CoordinationJoseph Tao-yi Wa					Vang				

Unpacking Focality


Munro (wp 1999)

Field study of coordination

Coordination

Asymmetric Players: Battle of Sexes

- 100 lottery tickets =
 - ▶ 10% chance to win \$1/\$2
- Pure NE: (1,2) and (2,1)
 - Players prefer equilibrium where they play strategy 2
- Mixed NE:
 - ▶ (1/4, 3/4) each
- Which would you pick?

Asymmetric Players: Battle of Sexes

- Cooper, DeJong, Forsythe & Ross (AER 90')
- **BOS**: Baseline (MSE mismatch 62.5%)
- BOS-300: Row player has outside option 300
 Forward induction predicts (2,1)
- BOS-100: Row player has outside option 100
 Forward induction doesn't apply
- Compare BOS-100 and BOS-300 shows if "any outside option" works...

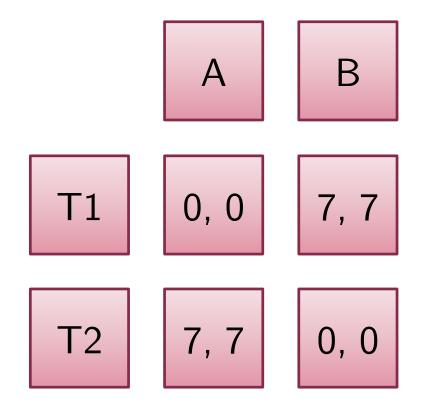
Battle of Sexes (Last 11 Periods)

Game	Outside	(1,2)	(2,1)	Other	# Obs
BOS	-	37(22%)	31(19%)	97(59%)	165
BOS-300	33	0(0%)	119(90%)	13(10%)	165
BOS-100	3	5(3%)	102(63%)	55(34%)	165
BOS-1W					165
BOS-2W					165
BOS-SEQ					165

Asymmetric Players: Battle of Sexes

- Cooper, DeJong, Forsythe & Ross (AER 90')
- BOS-1W: 1 way communication by Row
- BOS-2W: 2 way communication by both
- BOS-SEQ: Both know that Row went first, but Column doesn't know what Row did
 - Information set same as simultaneous move
 - Would a sequential move act as an coordination device?

Battle of Sexes (Last 11 Periods)


Game	Outside	(1,2)	(2,1)	Other	# Obs
BOS	-	37(22%)	31(19%)	97(59%)	165
BOS-300	33	0(0%)	119(90%)	13(10%)	165
BOS-100	3	5(3%)	102(63%)	55(34%)	165
BOS-1W	-	$1_{(1\%)}$	158(96%)	6(4%)	165
BOS-2W	-	49(30%)	47(28%)	69(42%)	165
BOS-SEQ	-	6(4%)	103(62%)	56(34%)	165

Coordination

Where Does Meaning Come From?

- Communication can help us coordinate
- But how did the common language for communication emerge in the first place?
- Put people in a situation of no meaning and see how they create it!
- Blume, DeJong, Kim & Sprinkle (AER 98')
 See also BDKS (GEB 2001) which is better!

Evolution of Meaning: Game 1 (Baseline)

- Blume et al. (AER 1998)
- Sender has private type T1 or T2
- Sends message "*" or "#" to receiver
- Receiver chooses A or
 B (to coordinate type)

Evolution of Meaning

- Blume et al. (AER 1998)
- Game 1: Baseline as above
- ▶ Game 1NH: See only history of own match
- Game 2: Receiver can choose C (safe action) that gives (4,4) regardless of T1/T2
 - Theory: Pooling or Separating Equilibrium

Percentage Consistent with Separating

$Game \setminus Period$	1	5	10	15	20
1st Session					
Game 1	48	65	74	89	95
2nd Session					
Game 1	49	72	61	89	100
Game 1NH	55	55	28	55	72
Game 2					
Separating	44	88	88	88	94
Pooling	39	05	00	05	05

2017/5/22

Coordination

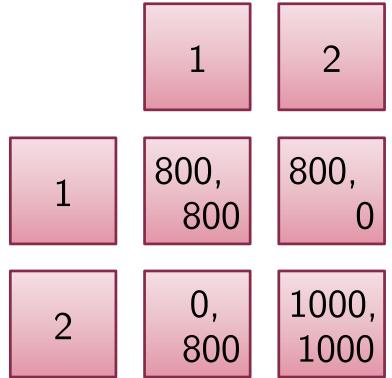
Evolution of Meaning

- Blume et al. (AER 1998)
- Game 1: Baseline as above
- ▶ Game 1NH: See only history of own match
- Game 2: Receiver can choose C (safe action) that gives (4,4) regardless of T1/T2
 Theory: Pooling or Separating Equilibrium
- ► Game 3: Coordinate payoffs become (2,7)
 - So sender wants to disguise types to force receiver to choose C (safe action)
 - Allowed to send 2 or 3 messages...

Results of Game 3: 2 vs. 3 messages								
# of Messages	1-10	11-20	21-30	31-40	41-50	51-60		
2-Separating	43	53	38	39				
2-Pooling	33	34	41	43	2 nd Se	ession		
3-Separating	43	38	33	24				
3-Pooling	33	37	42	60				
2-Separating	39	27	23	24	24	23		
2-Pooling	39	48	51	60	63	61		
3-Separating	23	22	23	25	22	24		
3-Pooling	55	61	58	56	57	61		
					1^{st} Se	ession		
2017/5/22		Coordi	nation	J	oseph Tao-	yi Wang		

Example of Asymmetric Payoffs

- Market Entry Game
 - $\blacktriangleright\ n$ players decide to enter market with capacity c
 - Payoffs declines as number of entrants increase;
 < 0 if number > c (= capacity)
- Kahneman (1988): Number close to equil.
 - "To a psychologist, it looks like magic."
- See BI-SAW paper by Chen et al. (2012)...


Market Entry Game Results

1	3	5	7		11	13	15	17	19
						12.6	14.7	16.8	18.9
1.3	5.7	9.7	6.7	3.7	14.0	11.3	11.3	16.0	18.0
1.0	3.7	5.1	7.4	8.7	11.2	12.1	14.1	16.5	18.2
	0	0 2.1 1.3 5.7	0 2.1 4.2 1.3 5.7 9.7	0 2.1 4.2 6.3 1.3 5.7 9.7 6.7	0 2.1 4.2 6.3 8.4 1.3 5.7 9.7 6.7 3.7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 2.1 4.2 6.3 8.4 10.5 12.6 1.3 5.7 9.7 6.7 3.7 14.0 11.3	0 2.1 4.2 6.3 8.4 10.5 12.6 14.7 1.3 5.7 9.7 6.7 3.7 14.0 11.3 11.3	1357111315170 2.1 4.2 6.3 8.4 10.5 12.6 14.7 16.8 1.3 5.7 9.7 6.7 3.7 14.0 11.3 11.3 16.0 1.0 3.7 5.1 7.4 8.7 11.2 12.1 14.1 16.5

Sundali et al. 95'

2017/5/22

Games with Asymmetric Equilibria

Stag Hunt

Cooper et al. (AER 1990)

100 lottery tickets =

10% chance to win \$1/ \$2

Pure NE:

(1,1) & (2,2)

Which would you pick?

Games with Asymmetric Equilibria

- Cooper et al. (AER 1990)
- CG: Baseline Stag Hunt
- CG-900: Row has outside option 900 each
 - Forward induction predicts (2,2)
- CG-700: Row has outside option 700 each
 Forward induction won't work
- ► CG-1W: 1 way communication by Row
- CG-2W: 2 way communication by both

Stage Hunt (Last 11 Periods)

Game	Outside	(1,1)	(2,2)	Other	# Obs
CG	-	160(97%)	0(0%)	5(3%)	165
CG-900	65	2(2%)	77(77%)	21(21%)	165
CG-700	20	119(82%)	0(0%)	26(18%)	165
CG-1W	-	26(16%)	88(53%)	51 (31%)	165
CG-2W	-	0(0%)	150(91%)	15(9%)	165

Coordination

Weak-link Game: Team Production Example

- Van Huyck, Battalio and Beil (AER 1990)
- Each of you belong to a team
- Each of you can choose effort X=1-4
 Spade = 4, Heart = 3, Diamond = 2, Club = 1
- Earnings depend on your own effort and the smallest effort of your team
 - Each person has to do his/her job for the whole team project to fly
- Have you every had such a project team?

Weak-link Game: Team Production Example

• Payoff = $60 + 10 * \min\{X_j\} - 10 * (X_i - \min\{X_i\})$

Team Project Payoff

	Smallest X in the team						
Your X	4	3	2	1			
4	100	80	60	40			
3	-	90	70	50			
2	-	-	80	60			
1	-	-	-	70			

2017/5/22

Coordination

Weak-link Game: Team Production Example

- What is your choice when...
 - ► Group size = 2?
 - Group size = 3?
 - Group size = 20?
- Can some kind of communication help coordinate everyone's effort?

Classroom Experiment: 害群之馬

最弱環節賽局 (Weak-Link Game)

2017/5/22

水經濟實驗:節約用水

Weak-Link Game (最弱環節賽局)

- ► Each DM chooses effort X=1-4
 - Spade = 4, Heart = 3, Diamond = 2, Club = 1
- DM (Decision Maker) = a team of two
 - ▶ 每組每回合都會有四張撲克牌,分別為黑桃(4)、 紅心(3)、方塊(2)、梅花(1)
 - ▶主持人會跟每組收一張牌
 - ▶ 交出來的花色代表你們花多少時間排練
 - ▶ 你們的努力程度: 黑桃 = 4小時、紅心 = 3小時、方 塊 = 2小時、梅花 = 1小時
 - ▶ 各組要討論屆時交出哪一張牌…

• Payoff = $3 * \min\{X_j\} - 1 * X_i$

Team Project Payoff

Cost of Effort X

「花最少時間排練那一組的排練時數」,每一小時的排練 大家都會得到3分。各組自己每花一小時排練,就少1分。

Your X _i	min{X _j } (最低那組時數)				
(本組時數)	4	3	2	1	
4	8	5	2	-1	
3	_	6	3	0	
2	-	-	4	1	
1	-	-	-	2	

2017/5/22

水經濟實驗: 害群之馬

- 1. How much would you earn if all DM choose X=4?
 - 8!

如果所有各組都花四小時排練,這樣各組會拿幾分?8分!

Your X _i (本組時數)	min{X _j } (最低那組時數)					
(本組時數)	4	3	2	1		
4	8	5	2	-1		
3	-	6	3	0		
2	-	-	4	1		
1	_	-	-	2		

2017/5/22

水經濟實驗: 害群之馬

2. How much would you earn if you choose X=3 while others choose X=4?

▶ 6 (< 8, not worth it!)

如果別組都花四小時排練,但你們這組只花三小時排練,這樣你們會 拿幾分?你們這麼做值得嗎?6分!小於8分所以不值得!

Your X _i (本組時數)	min{X _j } (最低那組時數)					
(本組時數)	4	3	2	1		
4	8	5	2	-1		
3	-	6	3	0		
2	-	-	4	1		
1	-	-	-	2		

水經濟實驗: 害群之馬

- 3. How much would you earn if you choose X=2 while some other DM choose X=1?
 - ▶ 1 (< 2, if you also choose X=1!)</p>
 - 如果有某一組只花一小時排練,你們這組如果花兩小時排 練,值得嗎?不值得,因為只得1分,但如果也花一小時 就會跟他們一樣得到2分!

Your X _i	min{X _j } (最低那組時數)					
(本組時數)	4	3	2	1		
4	8	5	2	-1		
3	-	6	3	0		
2	-	-	4	1		
1	-	-	-	2		

2017/5/22

水經濟實驗: 害群之馬

Weak-Link Game (最弱環節賽局)

- Please decide now and we will see the results...
- 6. Are you satisfied with the results? How can you encourage cooperation next time?
 - 你對結果滿意嗎?如果你希望大家都更好,該怎麼鼓勵大家合作?讓我們再來做一次…

Your X _i (本組時數)	min{X _j } (最低那組時數)				
(本組時數)	4	3	2	1	
4	8	5	2	-1	
3	_	6	3	0	
2	-	-	4	1	
1	-	-	-	2	

水經濟實驗: 害群之馬

Weak-Link Game (最弱環節賽局)

In reality, people would see each other's effort and increase effort gradually

Let's try again by committing hour-by-hour!

現實中你們彼此多半清楚大家的排練情況,而且時數可以 逐步加碼。這次我們採一小時、一小時逐步加碼方式進行

本組排練時數	最低那組排練時數					
	4	3	2	1		
4	8	5	2	-1		
3	-	6	3	0		
2	-	-	4	1		
1	-	_	-	2		

水經濟實驗: 害群之馬