Midterm Proposal and Presentation

- Submit a 4-page Experimental Proposal
- You can present your design in class 4/24: Submit the proposal by 4/24, 0am
 - I will print out copies for everyone
- If you do not present,
 - Written proposal grade = presentation grade
 - You will not receive instant feedback about your design

Dominance-Solvable Game

Dominance-Solvable Games (優勢可解賽局實驗)

Joseph Tao-yi Wang (王道一) Lecture 7, EE-BGT

2017/4/9

Dominance-Solvable Game

Dominance

Dominance

Strategy A gives you better payoffs than
 Strategy B regardless of opponent strategy

Dominance Solvable

 A game that can be solved by iteratively deleting dominated strategy

Dominance-Solvable Game

Dominance

Do people obey dominance?

- Looking both sides to cross a 1-way street
- If you can see this, I can't see you."
- p-Beauty Contest behavior (guess above 67)
- Will you bet on others obeying dominance?
 - Workers respond to incentives rationally
 - Companies do not use optimal contracts
- SOPH: Knowing other's steps of reasoning

Belief of Iterated Dominance

- 1. Obey Dominance,
- 2. Believe that others obey dominance,
- 3. Believe that others believe you will obey dominance,
- 4. Believe that others believe that you believe they obey dominance,
- Believe that others believe that you believe that they believe you obey dominance, etc.

Outline

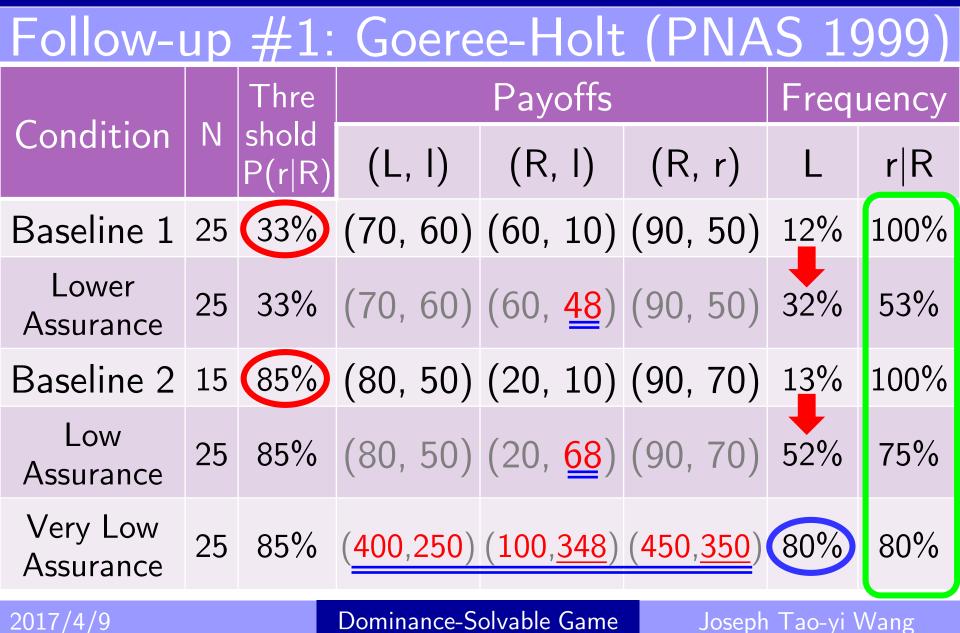
2017/4/9

- A Simple Test: Beard and Beil (MS 1994)
- Centipede:
 - McKelvey and Palfrey (Econometrica 1992)
- Mechanism Design:
 - Sefton and Yavas (GEB 1996)
- Dirty Face:
 - Weber (EE 2001)

Dominance-Solvable Game

A Simple Test: Beard and Beil (MS 1994)

Iterated Dominance Game						
Player 1	Player 2 Move					
Player 1 Move	l r					
L	9.75, 3					
R	3, 4.75	10, 5				


Dominance-Solvable Game

A Simple	Test:	Bearc	and	Bei	I (M	S 1	1994)
	Pa	yoffs froi	n	Frequency			Thres
Treatment	(L, I)	(R, I)	(R, r)	L	r R	N	∣ -hold P(r R)
1 (baseline)	(9.75,3)	(3, 4.75)	(10, 5)	66%	83%	35	97%
2 (less risk)	(<u>9</u> , 3)	(3, 4.75)	(10, 5)	65%	100%	31	85%
3 (even less risk)	(<u>7</u> 3)	(3, 4.75)	(10, 5)	20%	100%	25	57%
4(more assurance)	(9.75,3)	(3, <u>3</u>)	(10, 5)	47%	100%	32	97%
5(more resentment)	(9.75, <mark>6)</mark>	(3, 4.75)	(10, 5)	86%	100%	21	97%
6 (less risk, more reciprocity)	(9.75, <mark>5</mark>)	(5, 9.75)	(10, 10)	31%	100%	26	95%
7 (1/6 payoff)	(58.5,18)	(18,28.5)	(60,30)	67%	100%	30	97%
2017/4/9		ominance-So			Joseph T		Wang

A Simple Test: Beard and Beil (MS 1994)

- Player 2 mostly DO obey dominance
- Player 1 is inclined to believe this
 - Though they can be convinced if incentives are strong for the other side to comply
- Follow-up studies show similar results:
 - Goeree and Holt (PNAS 1999)
 - Schotter, Weigelt and Wilson (GEB 1994)

Dominance-Solvable Game

Dominance-Solvable Game

#	2: Schotter-	Neigelt-	Wilson	(GEB 199	4)
	Normal Form	Play	er 2	Game 1M	
	Player 1	I	r	Frequency	
	L	<u>4, 4</u>	4, 4	(57%)	
	R	0,1	<u>6, 3</u>	(43%)	
	Frequency	(20%)	(80%)		
	Sequential Form			Game 1S	
	L	4, 4		(8%)	
		I	r		
	R	0,1	6, 3	(92%)	
	Frequency	(2%)	(98%)		
201	7/4/10	Dominance-Solval	ble Game	Joseph Tao-yi Wang	

	No	ormal Fo	rm		Player	Game 3M			
\neq		Player 1		t	m		b	Frequency	.)
		Т		4, 4	4, 4	1	4, 4	(82%)	
		Μ		0, 1	6, 3	3	0, 0	(16%)	
		В		0,1	0, C)	6, <u>3</u>	(2%)	
	F	requenc	y	(70%)) (26%	ó)	(4%)		
	Se	quential	Form	1				Game 3S	
	Т	4, 4	t					(70%)	
			0,1		m		b		
				Μ	6, 3		0, 0	(100%)	
				В	0, 0		6, 3	(0%)	
	Fre	equency	(13%	b)	(31%)		(69%)		
20	17/4/	10		Domina	ance-Solvable	e Gam	ne Jose	ph Tao-yi Wang	

#2: Schotter-Weigelt-Wilson (GEB 1994)

- Schotter et al. (1994)'s conclusion:
- Limited evidence of iteration of dominance (beyond 1-step), or SPE, forward induction
 Can more experience fix this?
- <u>No</u> for forward induction in 8 periods...
 Brandts and Holt (1995)
- But, <u>Yes</u> for 3-step iteration in 160 periods
 Rapoport and Amaldoss (1997): Patent Race

Centipede Game: 4-Move SPNE

McKelvey and Palfrey (Econometrica 1992)

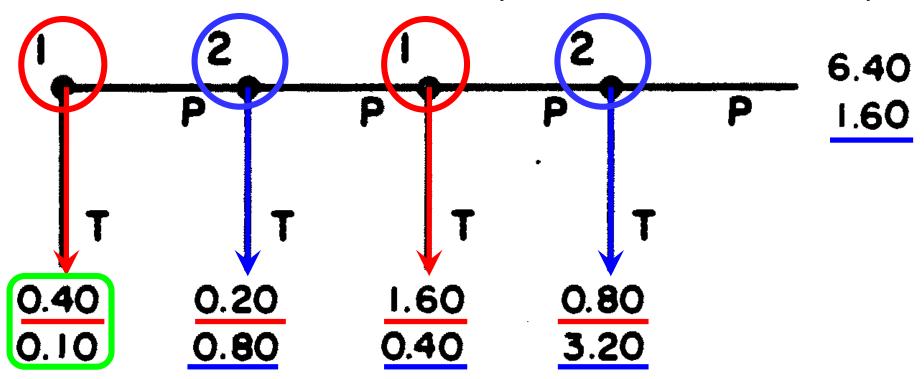


FIGURE 1.—The four move centipede game.

Dominance-Solvable Game

Centipede Game: 6-Move SPNE

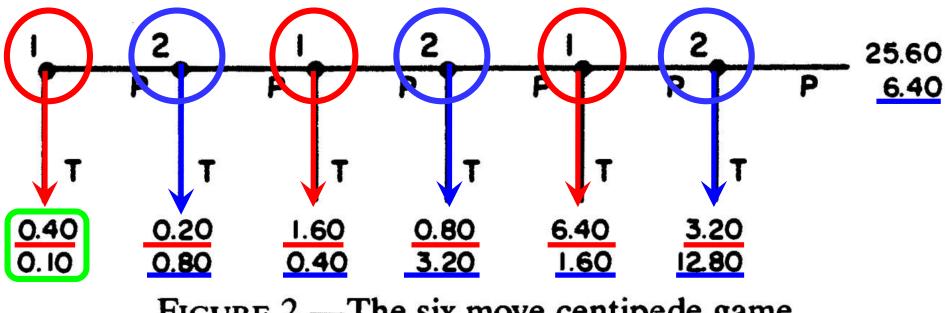


FIGURE 2.—The six move centipede game.

Dominance-Solvable Game

Centipede Game: Outcome

TABLE IIA

PROPORTION OF OBSERVATIONS AT EACH TERMINAL NODE

		Session	N	f_1	f_2	f_3	f4	f_5	f_6	<i>f</i> ₇
	1	(PCC)	100	.06	.26	.44	.20	.04		
Four	2	(PCC)	81	.10	.38	.40	.11	.01		
Move	3	(CIT)	100	.06	.43	.28	.14	.09		
	Total	1-3	281	.071	.356	.370	.153	.049		
High Payoff	4	(High-CIT)	100	.150	.370	.320	.110	.050		
	5	(CIT)	100	.02	.09	.39	.28	.20	.01	.01
Six	6	(PCC)	81	.00	.02	.04	.46	.35	.11	.02
Move	7	(PCC)	100	.00	.07	.14	.43	.23	.12	.01
	Total	5-7	281	.007	.064	.199	.384	.253	.078	.014

2017/4/10

Dominance-Solvable Game

Centipede Game: Pr(Take)

20

IMPLIED TAKE PROBABILITIES FOR THE CENTIPEDE GAME

	Session	<i>p</i> ₁	<i>p</i> ₂	<i>p</i> ₃	P 4	<i>p</i> ₅	<i>p</i> ₆
	1 (PCC)	.06 (100)	.28 (94)	.65 (68)	.83		
Four Move	2 (PCC)	.10 (81)	.42 (73)	.76 (42)	.90 (10)		
	3 (CIT)	.06 (100)	.46 (94)	.55 (51)	.61 (23)		
	Total 1–3	.07 (281)	.38 (261)	.65 (161)	.75 (57)		
High Payoff	4 (CIT)	.15 (100)	.44 (85)	.67 (48)	.69 (16)		
	5 (CIT)	.02 (100)	.09 (98)	.44 (89)	.56	.91 (22)	.50 (2)
Six Move	6 (PCC)	.00 (81)	.02 (81)	.04 (79)	.49 (76)	.72 (39)	.82
	7 (PCC)	.00 (100)	.07 (100)	.15 (93)	.54 (79)	.64 (36)	.92
	Total 5–7	.01 (281)	.06 (279)	.21 (261)	.53 (205)	.73 (97)	.85 (26)
7/4/10		Domi	nance-Solva	ble Game	Jose	ph Tao-yi	Wang

Centipede Game

TABLE IIIB

IMPLIED TAKE PROBABILITIES

COMPARISON OF EARLY VERSUS LATE PLAYS IN THE LOW PAYOFF CENTIPEDE GAMES

Treatment	Game	p_1	<i>P</i> ₂	<i>p</i> ₃	<i>P</i> 4	<i>p</i> ₅	p_6
Four Move	1–5	.06 (145)	.32 (136)	.57 (92)	.75 (40)		
	6-10	.08 (136)	.49 (125)	.75 (69)	.82 (17)		
Four	1–5	.00	.06	.18	.43	.75	.81
Move		(145)	(145)	(137)	(112)	(64)	(16)
	6-10	.01 (136)	.07 (134)	.25 (124)	.65 (93)	.70 (33)	.90 (10)

2017/4/10

Dominance-Solvable Game

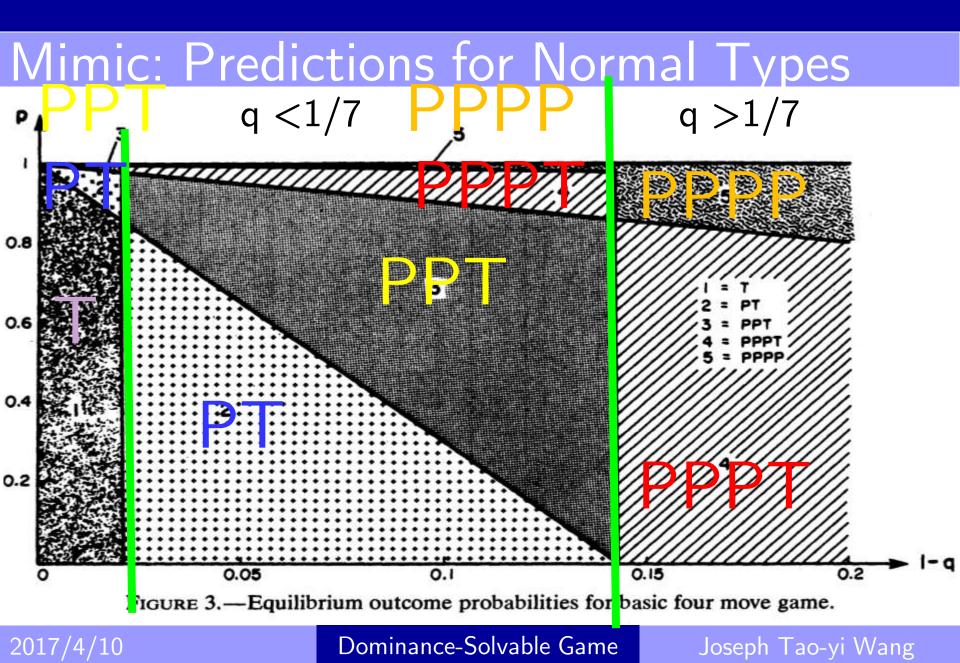
Centipede Game: Mimic Model

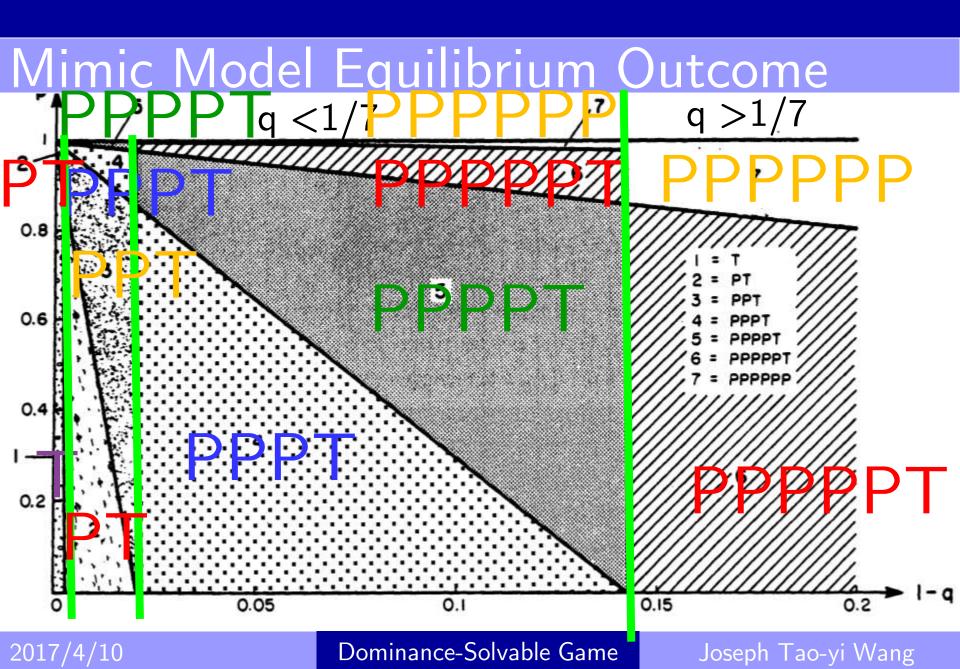
- What theory can explain this?
- Altruistic Types (7%): Prefer to Pass
- Selfish Types:
 - Mimic altruistic types up to a point (to gain)
- Unraveling: error rate shrinks over time

Dominance-Solvable Game

Centipede Game: Mimic Model

- Selfish guys sometimes pass (mimic altruist)
- Imitating an altruist might lure an opponent into passing at the next move
 Raising one's final payoff in the game
- Equilibrium imitation rate depends directly on beliefs about the likelihood (1-q) of a randomly selected player being an altruist
 - The more likely players believe there are altruists, the more imitation there is


Mimic: Predictions for Normal Types


1. On the last move, Player 2 TAKE for any q

- 2. If 1 q > 1/7, both Player 1 and 2 PASS
 Except on the last move Player 2 always TAKE
- 3. If $0 < 1 q < 1/7 \rightarrow$ Mixed Strategy Equil.

4. If 1- q =0 both Player 1 and Player 2 TAKE

Dominance-Solvable Game

Centipede: Mimic Model Add Noisy Play

- We model **noisy play** in the following way.
- In game t, at node s, if p* is the equilibrium probability of TAKE
- Assume player actually chooses TAKE with probability $(1 \varepsilon_t)p^*$, and makes a random move with probability ε_t

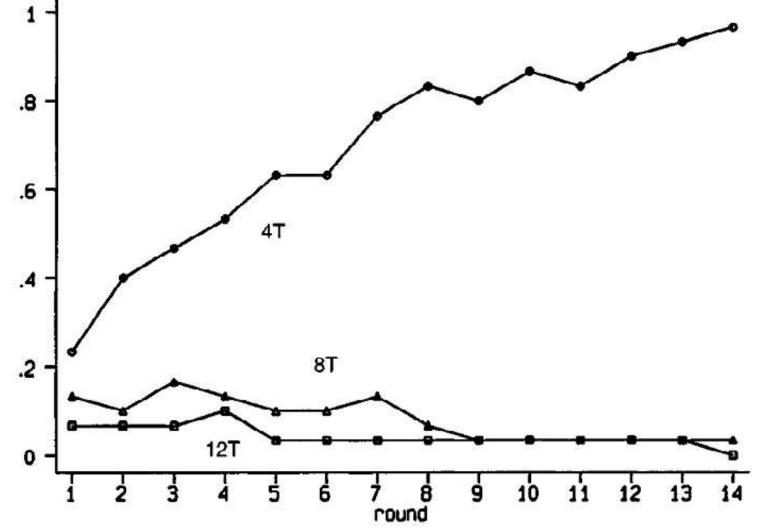
$$\epsilon_t = \epsilon e^{-\delta(t-1)}$$

Explains further deviation from mimic model

Centipede: Mimic Model Add Noisy Play

- Fey, McKelvey and Palfrey (IJGT 1996)
 - Use constant-sum to kill social preferences
 - ▶ Take 50% at 1st, 80% at 2nd
- Nagel and Tang (JMathPsych 1998)
 - Don't know other's choice if you took first
 - Take about half way
- Rapoport et al. (GEB 2003)
 - 3-person & high stakes: Many take immediately
 - CH can explain this (but not QRE) see theory

- Pure coordination game with \$1.20 & \$0.60
- How can you implement a Pareto-inferior equilibrium in a pure coordination games?
- Abreu & Matsushima (Econometrica 1992)
 - \blacktriangleright Slice the game into T periods
 - ▶ *F* : Fine paid by first subject to deviate
 - \blacktriangleright Will not deviate if $F\!>\$1.20/\,T$
 - ► Can set T = 1, F = \$1.20; more credible if T large


- ► Glazer and Rosenthal (Economtrica 1992)
 - Comment: AM mechanism requires more steps of iterated deletion of dominated strategies
- Abreu & Matsushima (Econometrica 1992)
 - Respond: "[Our] gut instinct is that our mechanism will not fare poorly in terms of the essential feature of its construction, that is, the significant multiplicative effect of fines.'"
- This invites an experiment!

- Sefton and Yavas (GEB 1996)
- F = \$0.225
- ▶ T = 4, 8, or 12

• Theory: Play inferior NE at T=8, 12, not T=4

- Results: Opposite, and diverge...
- Why? Choose only 1 switch-point in middle
 - ► Goal: switch soon, but 1 period after opponent

Dominance-Solvable Game

2017/4/10

Dominance-Solvable Game

- Glazer and Perry (GEB 1996)
 - Implemental can work in sequential game via backward induction
- Katok, Sefton and Yavas (JET 2002)
 - Does not work either
- Can any approximately rational explanation get this result?
 - Maybe "Limited steps of IDDS + Learning"?

- Three ladies, A, B, C, in a railway carriage all have dirty faces and are all laughing.
- It sudden flashes on A:
- Why doesn't B realize C is laughing at her?
- Heavens! I must be laughable.
 - Littlewood (1953), A Mathematician's Miscellany
- Requires A to think that B is rational enough to draw inference from C

Dirty Face Game: Weber (Exp Econ 01')

- Independent Types: X or O
 - Pr(X) = 0.8, Pr(O) = 0.2 (X is like "dirty face")
- Commonly told: At least one player is type X.
 - ▶ $P(XX) = 0.64 \rightarrow 2/3, P(XO) = 0.32 \rightarrow 1/3$
- Observe other's type
- Choose Up/Down (figure out one is type X)
 If nobody chooses Down, reveal other's choice and play again

Dominance-Solvable Game

Dirty Face Game: Weber (Exp Econ 01')

		Ту	/pe
		Х	Ο
Proba	ability	0.8	0.2
Action	Up	\$0	\$0
	Down	\$1	-\$5

2017/4/10

Dominance-Solvable Game

- Case XO: Players play (Up, Down) since
- Type X player thinks:
 - ▶ I know that "at least one person is type X"
 - ► I see the other person is type O
- So, I must be type $X \rightarrow Chooses Down$
- Type O player thinks:
 - ► I know that "at least one person is type X"
 - ► I see the other person is type X
- No inference → Chooses Up

Dirty F	Face Ga	ame							
		Trial 1		Tria	al 2				
		XO	XX	XO	XX				
	UU	0	7*	1	<u>7*</u>				
Round 1	DU	3*	3	4*	1				
	DD	0	0	0	0				
	UU	_	1	-	2				
Round 2	DU	-	5	-	2				
(after UU)	DD	-	1*	-	3*				
,	Other	-	-		-				
2017/4/10		Dominance-So	olvable Game	Joseph Tao-yi Wang					

- Case XX First round:
 - At least one is type X, but the other guy is type X
- No inference → Both choose Up
- Case XX Second round:
- Seeing UU in first
 - The other is not sure about his type
 - He must see me being type X
- I must be Type $X \rightarrow Both choose Down$

- Results: 87% rational in XO, but only 53% in 2nd round of XX
- Significance:
- Choices reveal limited reasoning, not pure cooperativeness
 - More iteration is better here...
- Upper bound of iterative reasoning
 Even Caltech students cannot do 2 steps!

Conclusion

- Do you obey dominance?
- Would you count on others obeying dominance?
- Limit of Strategic Thinking: 2-3 steps
- Compare with Theories of Initial Responses
 - Level-k: Stahl-Wilson95, CGCB01, CGC06
 - Cognitive Hierarchy: CHC04

Dominance-Solvable Game

- ▶ 感謝The Econometric Society 和 Richard D. McKelvey 和 Thomas R. Palfrey這兩位教授讓我們使用下面這篇論文中的圖片
- Richard D. McKelvey and Thomas R. Palfrey
 - "An Experimental Study of the Centipede Game," *Econometrica*, Vol. 60, No. 4 (Jul., 1992), pp. 803-836
- ▶ 感謝Games and Economic Behavior與 Martin Sefton和 Abdullah Yavas 這兩位教授讓我們使用下面這篇論文中的圖片
- Martin Sefton and Abdullah Yavas
 - "Abreu-Matsushima Mechanisms: Experimental Evidence, " *Games and Economic Behavior*, Volume 16, Issue 2, October 1996, Pages 280–302