Level－k Reasoning多層次思考

Joseph Tao－yi Wang（王道一） Lecture 8，EE－BGT

Joseph Tao－yi Wang Level－k Reasoning

Outline

- Introduction: Initial Deviations from MSE - Hide-and-Seek: Crawford \& Iriberri (AER07) - Initial Joker Effect: Re-asssess O’Neil (1987)
- Simultaneous Dominant Solvable Games
- Price competition: Capra et al (IER 2002)
- Traveler's dilemma: Capra et al (AER 1999) - p-BC game: Nagel (AER 95), CHW (AER 98)
- Level-k Theory:
- Stahl-Wilson (GEB1995), CGCB (ECMA2001)
- Costa-Gomes \& Crawford (AER 2006)

Hide-and-Seek Games w/ Non-neutral Location Framing

- RTH: Rubinstein \& Tversky (1993); Rubinstein, Tversky, \& Heller (1996); Rubinstein $(1998,1999)$
- Your opponent has hidden a prize in one of four boxes arranged in a row.
- The boxes are marked as shown below: A, B, A, A.

A

Joseph Tao-yi Wang Level-k Reasoning

Hide-and-Seek Games w/ Non-neutral Location Framing

- RTH (Continued):
- Your goal is, of course, to find the prize.
- His goal is that you will not find it.
- You are allowed to open only one box.
- Which box are you going to open?

A

Joseph Tao-yi Wang Level-k Reasoning

Hide-and-Seek Games w/ Non-neutral Location Framing

- Folk Theory: "...in Lake Wobegon, the correct answer is usually ' c '."
- Garrison Keillor (1997) on multiple-choice tests
- Comment on the poisoning of Ukrainian's presidential candidate (now president):
- "Any government wanting to kill an opponent ...would not try it at a meeting with government officials."
- Viktor Yushchenko, quoted in Chivers (2004)

Hide-and-Seek Games w/ Non-neutral Location Framing

- B is distinguished by its label
- The two end A may be inherently salient
- This gives the central A location its own brand of uniqueness as the least salient location

Joseph Tao-yi Wang Level-k Reasoning

Hide-and-Seek Games w/ Non-neutral Location Framing

- RTH's game has a unique equilibrium, in which both players randomize uniformly
- Expected payoffs: Hider 3/4, Seeker $1 / 4$

Hider/Seeker	A	B	A	A
A	0,1	1,0	1,0	1,0
B	1,0	0,1	1,0	1,0
A	1,0	1,0	0,1	1,0
A	1,0	1,0	1,0	0,1

Joseph Tao-yi Wang Level-k Reasoning

Hide-and-Seek Games w/ Non-neutral Location Framing

- All Treatments in RTH:
- Baseline: ABAA (Treasure Treatment)
- Variants:
- Left-Right Reverse: AABA
- Labeling: 1234 (2 is like B, 3 is like central A)
- Mine Treatments
- Hider hides a mine in 1 location, and Seeker wants to avoid the mine (payoffs reversed)
- mine hiders $=$ seekers, mine seekers $=$ hiders

Hide-and-Seek Games: Aggregate Results of RTH

Joseph Tao-yi Wang Level-k Reasoning

Hide-and-Seek Games: Aggregate Results of RTH

RTH-4	A	B	A A	
Hider (53)	9\%	36\%	40\%	15\%
Seeker (62)	13\%	31\%	45\%	11\%
RT-AABA-Treasure	A	A	B	A
Hider (189)	22\%	35\%	19\%	25\%
Seeker (85)	13\%	51\%	21\%	15\%
RT-AABA-Mine	A	A	B	A
Hider (132)	24\%	39\%	18\%	18\%
Seeker (73)	29\%	36\%	14\%	22\%
RT-1234-Treasure	1	2	3	4
Hider (187)	25\%	22\%	36\%	18\%
Seeker (84)	20\%	18\%	48\%	14\%
RT-1234-Mine	1	2	3	4
Hider (133)	18\%	20\%	44%	17\%
Seeker (72)	19\%	25\%	36\%	19\%
R-ABAA	A	B	A	A
Hider (50)	16\%	18\%	44\%	22\%
Seeker (64)	16\%	19\%	54\%)	11\%

Joseph Tao-yi Wang Level-k Reasoning

Hide-and-Seek Games: Aggregate Results of RTH

- Can pool data since no significant differences for Seekers ($p=0.48$) or Hiders ($p=0.16$)
- Chi-square Test across 6 different Treatments

	A	B	A	A
Hiders (624)	0.2163	0.2115	0.3654	0.2067
Seekers (560)	0.1821	0.2054	0.4589	0.1536

Joseph Tao-yi Wang Level-k Reasoning

Hide-and-Seek Games: Stylized Facts

- Central A (or 3) is most prevalent for both Hiders and Seekers
- Central A is even more prevalent for Seekers (or Hiders in Mine treatments)
- As a result, Seekers do better than in equilibrium
- Shouldn't Hiders realize that Seekers will be just as tempted to look there?
- RTH: "The finding that both choosers and guessers selected the least salient alternative suggests little or no strategic thinking."

Joseph Tao-yi Wang Level-k Reasoning

Hide-and-Seek Games: Explaining Stylized Facts

- Can a strategic theory explain this?
- Heterogeneous population with substantial frequencies of L2 and L3 as well as L1 (estimated 19% L1, 32% L2, 24% L3, 25% L4) can reproduce the stylized facts
- More on Level-k later...
- Let us first see more evidence in DS Games...

Simultaneous Dominant Solvable Games

- Initial Response vs. Equilibration
- Price Competition
- Capra, Goeree, Gomez and Holt (IER 2002)
- Traveler's Dilemma
- Capra, Goeree, Gomez and Holt (AER 1999)
- p-Beauty Contest
- Nagel (AER 1995)
- Camerer, Ho, Weigelt (AER 1998)

Price Competition

- Capra, Goeree, Gomez \& Holt (IER 2002) - Two firms pick prices $p_{1} \& p_{2}$ from $\$ 0.60-\$ 1.60$ - Both get $(1+\alpha)^{*} p_{1} / 2$ if tied
- But if $p_{1}<p_{2}$:
- Low-price firm gets $\left(1^{*} p_{1}\right)$
- Other firm gets ($\alpha * p_{1}$)
- $\alpha=$ responsiveness to best price $(=0.2 / 0.8)$
$-\alpha \rightarrow 1$: Meet-or-release (low price guarantees)
$-\alpha<1$: Bertrand competition predicts lowest price
Joseph Tao-yi Wang Level-k Reasoning

Price Competition: Data

Figure 5
AVERAGE PRICES BY SESSION (DASHED LINES) AND TREATMENT (DARK LINE)

Joseph Tao-yi Wang Level-k Reasoning

Price Competition: Simulation

Figure 4
SIMULATED AVERAGE PRICES OBTAINED FROM 1000 SIMULATIONS (DARK LINES) ± 2 STANDARD DEVIATIONS (DOTTED LINES) AND A TYPICAL RUN (LINES CONNECTING SQUARES)

Joseph Tao-yi Wang Level-k Reasoning

Traveler's Dilemma

- Capra, Goeree, Gomez \& Holt (AER 1999)
- Two travelers state claim p_{1} and $p_{2}: 80-200$
- Airline awards both the minimum claim, but
- reward R to the one who stated the lower claim
- penalize the other by R
- Unique NE: race to the bottom \rightarrow lowest claim
- Like price competition game or p-beauty contest

Traveler’ s Dilemma: Data

cents maximum claim

Figure 1. Data for Part A for Various Values of the Reward/Penalty Parameter

Joseph Tao-yi Wang Level-k Reasoning

p－Beauty Contest Games 選美結果預測實驗

－Each of N players choose x_{i} from $[0,100]$
－每人選擇 0 到 100 之間的數字，希望最接近「所有數字平均乘以 p 倍」
－Target is p^{*}（average of x_{i} ）
－Closest x_{i} wins fixed prize
－$(67,100]$ violates $1^{\text {st }}$ order dominance
－選燡67－1000的人是選擇（一階的）劣築策路
－$(45,67]$ obeys 1 step（not 2）of dominance

－ $1^{\text {st }}$ Experiment（叒早的賈驗）：Nagel（AER 1995）

Joseph Tao－yi Wang Level－k Reasoning

Figure 1A of Nagel (AER 1995): $p=1 / 2$

12.5 (L2, D1)

Chosen Numbers

Joseph Tao-yi Wang Level-k Reasoning

Figure 1B of Nagel (AER 1995): $p=2 / 3$

Joseph Tao-yi Wang Level-k Reasoning

p－Beauty Contest Games 選美結果預測實驗

－Named after Keynes，General Theory（1936）
－＂．．．professional investment may be likened to those newspaper competitions in which the competitors have to pick out the six prettiest faces from a hundred photographs，
（專業投資好比報純上的選美比贅，要從上百張照片挑出最漂亮的六張）
－the prize being awarded to the competitor whose choice most nearly corresponds to the average preferences of the competitors as a whole．．．＇
（目標是選擇最接近「平均參賽者會選到的照片」）
Joseph Tao－yi Wang Level－k Reasoning

p－Beauty Contest Games 選美結果預測實驗

－It is not a case of choosing those［faces］ that，to the best of one＇s judgment，are really the prettiest，
－「這不是要挑每個人各自認為最漂亮的［臉蛋］，
－nor even those that average opinion genuinely thinks the prettiest．
－更不是要挑大家公認最漂亮的。
－We have reached the third degree where we devote our intelligences to．．．
－我們已經想到第三層去，

p－Beauty Contest Games 選美結果預測實驗

－Anticipating what average opinion expects the average opinion to be．
－努力預測一般人心目中認為大家公認最漂亮的會是誰。
－And there are some，I believe，who practice the fourth，fifth and higher degrees．＂

- 而且我相信有些人還可以想到第四層，第五層或更高。」
- Keynes（脭因斯，1936，p．156）
- Follow－up Studies（後緒研究）
－Camerer，Ho and Weigelt（AER 1998）

Camerer, Ho \& Weigelt (AER 1998): Design

Figure 1A. A Finite-Threshold Game, $F T(n)=([100,200], 1.3, n)$

Figure 1B. An Infinite-Threshold Game, $I T(n)=([0,100], 0.7, n)$

Camerer，Ho \＆Weigelt（AER 1998）：Design

Table 1－The Experimental Design

實驗設計
Group size
3 每組人數： 3 vs． 77
Finite \rightarrow Infinite
先做有限次 $F T(1.3,3) \rightarrow I T(0.7,3) \quad F T(1.3,7) \rightarrow I T(0.7,7)$再做無限次（7 groups） $1.3 \rightarrow 0.7 \quad$（ 7 groups）再做無限次 $F T(1.1,3) \rightarrow \operatorname{IT}(0.9,3) \quad F T(1.1,7) \rightarrow I T(0.9,7)$ （删劣勢策略）（7 groups）$\quad 1.1 \rightarrow 0.9 \quad$（7 groups）

Infinite \rightarrow Finite

先做無限次 $I T(0.7,3) \rightarrow F T(1.3,3) \quad I T(0.7,7) \rightarrow F T(1.3,7)$再做有限次 （7 groups）$\quad 0.7 \rightarrow 1.3 \quad$（ 7 groups）

$$
\begin{gathered}
I T(0.9,3) \rightarrow F T(1.1,3) \\
(6 \text { groups })
\end{gathered} 0.9 \rightarrow 1.1 \quad\left(\begin{array}{l}
I T(0.9,7) \rightarrow F T(1.1,7) \\
(7 r o u p s)
\end{array}\right.
$$

Joseph Tao－yi Wang Level－k Reasoning

Camerer, Ho and Weigelt (AER 1998)

- RESULT 1:

First-period choices are far from equilibrium, and centered near the interval midpoint. Choices converge toward the equilibrium point over time.

- Baseline: IT(0.9,7) and IT(0.7, 7)

Camerer, Ho \& Weigelt (AER 1998): $p=0.9$ vs. 0.7

40.5 (L2, D1) 24.5 (L2, D1)

Figure 2C. Inexperienced Subjects' Choices over Round in $I T(0.9,7$ Figure 2A. In aperienced Subjects' Choices over Round in $I T$ ($0.7,7$)

$$
45 \text { (L1, D0) } 35 \text { (L1, D0) } \underset{\text { Joseph Tao-yi Wang Level-k Reasoning }}{ } 3
$$

Camerer, Ho and Weigelt (AER 1998)

- IT($0.9,7$) vs. IT($0.7,7$)
- RESULT 2 :

On average, choices are closer to the equilibrium point
for games with finite thresholds, and for games with p further from 1 .

- Infinite vs. Finite...

Camerer, Ho \& Weigelt (1998): Finite Thresholds

Figure 3A. Choices over Round in FT Games Played by 3-Person Groups
FT closer to Equilibrium

Figure 3B. Choices over Round in $F T$ Games Played by 7-Person Groups

Joseph Tao-yi Wang Level-k Reasoning

Camerer, Ho and Weigelt (AER 1998)

- RESULT 3:

Choices are closer to equilibrium for large (7-person) groups than for small (3-person) groups.

- More on 7-group vs. 3-group...

Camerer, Ho \& Weigelt (1998):7-grp vs. 3-grp

Figure 2E. Inexperienced Subjects' Choices over mound in $I T(0.7,3$ Figure 2A. Inexp rienced Subjects' Choices over Round in $I T$ (0.7 , 7)

35 (L1, D0)

Joseph Tao-yi Wang Level-k Reasoning

Camerer, Ho \& Weigelt (1998):7-grp vs. 3-grp

Joseph Tao-yi Wang Level-k Reasoning

Camerer, Ho and Weigelt (AER 1998)

- RESULT 4:

Choices by [cross-game] experienced subjects are no different than choices by inexperienced subjects in the first round, but converge faster to equilibrium.

- Inexperienced vs. Experienced...

Camerer.Ho \& Weigelt_(1998): Exper. vs. Inexper.

Eicher 2a Immur rofenced Subjects' Choices over Round in $I T(0.7,7)$

35 (L1, D0)

Joseph Tao-yi Wang Level-k Reasoning

Camerer, Ho \& Weigelt (1998): Exper. vs. Inexper.

Joseph Tao-yi Wang Level-k Reasoning

Camerer, Ho \& Weigelt (1998): Exper. vs. Inexper.

Figure 2F. Experienced Subiects' Cholces over Round in II (0.7,3)
35° (L1, D0)
Joseph Tao-yi Wang Level-k Reasoning

Camerer, Ho \& Weigelt (1998): Exper. vs. Inexper.

Joseph Tao-yi Wang Level-k Reasoning

Camerer, Ho and Weigelt (AER 1998)

- Classification of Types
- Follow Stahl and Wilson (GEB 1995)
- Level-0: pick randomly from $\mathrm{N}(\mu, \sigma)$
- Level-1: BR to level-0 with noise
- Level-2: BR to level-1 with noise
- Level-3: BR to level-2 with noise
- Estimate type, error using MLE

Camerer, Ho and Weigelt (AER 1998)

Table 3-Maximum-Likelihood Estimates and Log-Likelihoods for Levels of Iterated Dominance (First-Round Data Only)

	Out data Parameter estimates		(groups of 3 or 7)		
	$I T(p, n)$	$F T(p, n)$		Nagel's data (groups of 16-18)	
ω_{0}	15.93	21.72		$45.83(23.5, n)$	$I T(2 / 3, n)$
ω_{1}	20.74	31.46		$37.50(29.58)$	$34.36(13.11)$
ω_{2}	13.53	12.73		$16.67(40.84)$	$37.31(39.34)$
ω_{3}	49.50	34.08		$0.00(5.63)$	$0.00(3.28)$
μ	70.13	100.50		$35.53(50.00)$	$52.23(50.00)$
σ	28.28	26.89		22.70	14.72
ρ	1.00	1.00		0.24	1.00
$-L L$	1128.29	1057.28		168.48	243.95

Type distribution...

Joseph Tao-yi Wang Level-k Reasoning

Camerer, Ho and Weigelt (AER 1998)

- Robustness checks:
- High stakes (Fig.1.3 - small effect lowering numbers)
- Median vs. Mean (Nagel 1999 - same): BGT Figure 5.1
$-p^{*}($ Median+18): Equilibrium is inside
- Subject Pool Variation:
- Portfolio managers, Econ PhD, Caltech undergrads
- Caltech Board of Trustees (CEOs)
- Readers of Financial Times and Expansion
- Experience vs. Inexperience (for the same game)
- Slonim (EE 2005) - Experience good only for $1^{\text {st }}$ round

Level-k Reasoning

- Theory for Initial Response (BGT, Ch. 5) vs. Theory for Equilibration (BGT, Ch. 6)
- First: Stahl and Wilson (GEB 1995)
- Better: Costa-Gomes, Crawford \& Broseta (Econometrica 2001)
- Best 1: Camerer, Ho and Chong (QJE 2004) - Poisson Cognitive Hierarchy
- Best 2: Costa-Gomes \& Crawford (AER 2006)

Level-k Theory: Stahl \& Wilson (GEB 1995)

- Stahl and Wilson (GEB 1995)
- Level-0: Random play
- Level-1: BR to Random play
- Level-2: BR to Level-1
- Nash: Play Nash Equilibrium
- Worldly: BR to distribution of Level-0, Level-1 and Nash types

Level-k Theory: Stahl \& Wilson (GEB 1995)

TABLE IV
Parameter Estimates and Confidence Intervals for Mixture Model without RE Types

	Estimate	Std. Dev.	95 perc	nf. int.
γ_{1}	0.2177	0.0425	0.1621	0.3055
μ_{2}	0.4611	0.0616	$\begin{gathered} 0.2014 \\ {[0.2360} \end{gathered}$	$\begin{aligned} & 0.8567 \\ & 0.8567 \end{aligned}$
$\boldsymbol{\gamma}_{2}$	3.0785	0.5743	$\begin{aligned} & 1.9029 \\ & {[2.5631} \end{aligned}$	$\begin{aligned} & 4.9672 \\ & 5.0000 \end{aligned}$
γ_{3}	4.9933	0.9357	1.9964	5.0000
μ_{4}	0.0624	0.0063	0.0527	0.0774
ϵ_{4}	0.4411	0.0773	0.2983	0.5882
γ_{4}	0.3326	0.0549	0.2433	0.4591
α_{0}	$\begin{aligned} & 0.1749 \\ & 0.2072 \\ & 0.0207 \\ & 0.1666 \\ & 0.4306 \end{aligned}$	0.0587	0.0675	0.3047
α_{1} α_{2} α_{3}		Type distribution...		
α_{4}		0.0782	0.2810	0.5723
\mathcal{L}	-442.727			

Joseph Tao-yi Wang Level-k Reasoning

Level-k Theorv: CGCB (ECMA 2001)

- Costa-Gomes, Crawford \& Broseta (2001)
- 18 2-player NF games designed to separate:
- Naive (L1), Altruistic (max sum)
- Optimistic (maximax), Pessimistic (maximin)
- L2 (BR to L1)
- D1/D2 (1/2 round of DS deletion)
- Sophisticated (BR to empirical)
- Equilibrium (play Nash)

Level-k Theory: CGCB (ECMA 2001)

- Three treatments (all no feedback):
- Baseline (B)
- Mouse click to open payoff boxes
- Open Box (OB)
- Payoff boxes always open
- Training (TS)
- Rewarded to choose equilibrium strategies

Level-k Theory: CGCB (Econometrica 2001)

- Results 1: Consistency of Strategies with Iterated Dominance
- B, OB: 90%, $65 \%, 15 \%$ equilibrium play - For Equilibria requiring 1, 2, 3 levels of ID
- TS: 90-100\% equilibrium play
- For all levels
- Game-theoretic reasoning is not computationally difficult, but unnatural.

Result 2: Estimate Subject Decision Rule Rule E(u) Choice (\%) Choice+Lookup (\%) $\begin{array}{llll}\text { Altruistic } & 17.11 & 8.9 & 2.2\end{array}$

Pessimistic 20.93
$\begin{array}{lll}\text { Naïve } & 21.38 & 22.7\end{array}$
Optimistic 21.38
$\begin{array}{lll}\text { L2 } & 24.87 & 44.2 \\ \text { D1 } & 24.13 & 19.5\end{array}$
D2 $\quad 23.95$
Equilibrium 24.19
Sophisticated 24.93
0
4.5
44.8
2.2
44.1

0
0

Joseph Tao-yi Wang Level-k Reasoning

Result 3: Information Search Patterns

Subject / \uparrow own payoff \leftrightarrow other payoff
Rule Predicted Actual Predicted Actual

TS (Equil.)	>31	63.3	>31	69.3
Equilibrium	>31	21.5	>31	79.0
Naive/Opt.	<31	21.1	-	48.3
Altruistic	<31	21.1	-	60.0
L2	>31	39.4	$=31$	30.3
D1	>31	28.3	>31	61.7

Level-k Theory: CGCB (ECMA 2001)

- Result 3: Information Search Patterns
- Occurrence (weak requirement)
- All necessary lookups exist somewhere
- Adjacency (strong requirement)
- Payoffs compared by rule occur next to each other
- H-M-L: \% of Adjacency | 100\% occurrence

Result 3：Information Search Patterns

TABLE V

Aggregate Rates of Compliance with Types＇Occurrence and Adjacency for TS and Baseline Subjects，and for Baseline Subjects by Most Likely Type Estimated from Decisions Alone，in percentages（－vacuous）

Treatment （\＃subjects）	$\begin{gathered} \text { Altruistic } \\ J=H, M, L, 0 \end{gathered}$	$\begin{gathered} \text { Pessimistic } \\ j-H, M, L, 0 \end{gathered}$	Naïve $j=H, M, L, 0$	$\begin{gathered} \text { Optimistic } \\ j-A, 0 \end{gathered}$	$\stackrel{L 2}{j-H, M, L, 0}$	$\begin{gathered} D 1 \\ j-H, M, L, 0 \end{gathered}$	$\stackrel{D 2}{\substack{-H, M, L, 0}}$	$\begin{aligned} & \text { Equilibrium } \\ & j-H, M, L, 0 \end{aligned}$	Sophisticated $j-H, M, L, 0$
TS（12）	3，10，50，27	44，7，36，13	83，2，0，15	86，14	76，2，0，22	92，3，1，5	92，3，1，5	96，1，1，3	75，1，1，24
Baseline（45）	14，11，51，24	74，2，11，14	78，4，4，14	85，15	67，14，5，14	52，19，15，14	50，19，15，14	42，23，19，16	39，21，20，21
Altruistic（2）	78，6，11，6	56，8，33，3	53，3，42，3	97，3	47，8，39，6	36，6，56，3	33，8，56，3	31，11，56，3	28，14，56，3
Pessimistic（0）	－，－，－，	一，	－，－，－，－	－，－	－，	－，－，－，－	，	－，	－，一，－，－
Naïve／Optim．（11）	9，5，53，33	85，1，9，5	89，5，3，4	96，4	42，24，3，31	45，22，20，13	43，18，23，16	26，24，28，23	23，23，27，27
L2（23）	8，12，58，22	72，2，9，17	78，3，0，18	80，20	85，6，3，6	57，20，9，15	54，21，10，15	49，24，12，15	46，22，12，20
D1（7）	23，21，26，29	59，3，16，23	63，7，6，23	77，23	53，21，6，21	48，17，14，20	45，19，15，21	42，20，17，21	38，14，21，27
D2（0）	－，一，－，－	－，－，－，－	－，一，－，－	－，－	－，－，一，一	－，－，	，－，	，－，一	，
Equilibrium（2）	6，8，86，0	100，0，0，0	97，3，0，0	100，0	64，36，0，0	69，17，14，0	67，19，14，0	56，25，19，0	53，19，28，0
Sophisticated（0）	－，－，－，	－，－，－，	－，－，－，	，－	－，－，－，	－，－，－，	，－，－	，一，一，	－，一，一，

Joseph Tao－yi Wang Level－k Reasoning

Level-k Theory: Cognitive Hierarchy

- Camerer, Ho and Chong (QJE 2004)
- Poisson distribution of level-k thinkers $f(k \mid \tau)$ $-\tau=$ mean number of thinking steps
- Level-0: choose randomly or use heuristics
- Level- k thinkers use k steps of thinking BR to a mixture of lower-step thinkers
- Belief about others is Truncated Poisson
- Easy to compute; Explains many data

Level-k Theory: CGC (AER 2006)

- Costa-Gomes \& Crawford (2006)
- 2-Person Guessing Games (p-beauty contest)
- Player 1's guesses 300-500, target $=0.7$
- Player 2's guesses 100-900, target $=1.5$ $-0.7 \times 1.5=1.05>1 \ldots$
- Unique Equilibrium @ upper bound $(500,750)$
- In general:
- Target1 x Target2 > 1: Nash @ upper bounds
- Target1 x Target2 < 1: Nash @ lower bounds

Level-k Theory: CGC (AER 2006)

- 16 Different Games
- Limits:
- $\alpha=[100,500], \beta=[100,900]$,
- $\gamma=[300,500], \delta=[300,900]$
- Target: $1=0.5,2=0.7,3=1.3,4=1.5$
- No feedback - Elicit Initial Responses

Level-k Theory: CGC (AER 2006)

- Define Various Types:
- Equilibrium (EQ): BR to Nash (play Nash)
- Defining L0 as uniformly random
- Based on evidence from past normal-form games
- Level-k types L1, L2, and L3:
- L1: BR to L0
- L2: BR to L1
- L3: BR to L2

Level-k Theory: CGC (AER 2006)

- Dominance types:
- D1: Does one round of dominance and BR to a uniform prior over partner's remaining decisions
- D2: Does two rounds and BR to a uniform prior
- Sophisticated (SOPH): BR to empirical distribution of others' decisions
- Ideal type (if all SOPH, coincide with Equilibrium)
- See if anyone has a transcended understanding of others' decisions

Level-k Theory: CGC (AER 2006)

- 43 (out of 88) subjects in the baseline made exact guesses ($+/-0.5$) in 7 or more games
- Distribution: (L1, L2, L3, EQ) $=(20,12,3,8)$

Table 1—Summary of Baseline and OB Subjects' Estimated Type Distributions

	Apparent from guesses	Econometric from guesses	Econometric from guesses, excluding random	Econometric from guesses, with specification test	Econometric from guesses and search, with specification test
Type	20	43	37	27	29
L1	12	20	20	17	14
L2	3	3	3	1	1
L3	0	5	1	0	
D1	0	0	0	11	0
D2	8	14	13	1	10
Eq.	0	2	30	1	
Soph.	0	10		33	
Unclassified	45				

Note: The far-right-hand column includes 17 OB subjects classified by their econometric-from-guesses type estimates.
Joseph Tao-yi Wang Level-k Reasoning

Level-k Theory: CGC (AER 2006)

- No Dk types
- No SOPH types
- No L0 (only in the minds of L1...)
- Deviation from Equilibrium is cognitive
- Cannot distinguish/falsify Cognitive Hierarchy
- BR against lower types, not just $L(k-1)$
- But distribution is not Poisson (against CH)
- Is the Poisson assumption crucial?

Level-k Theory: CGC (AER 2006)

- Pseudotypes: Constructed with subjects' guesses in the 16 games (Pseudo-1~Pseudo-88)
- Specification Test: Compare the likelihood of subject's type with likelihoods of pseudotypes
- Should beat at least $87 / 8=11$ pseudotypes - Unclassified if failed
- Omitted Type Test: Find clusters that
- (a) Look like each other, but (b) not like others
- Pseudotype likelihoods high within, low outside

Level-k Theory: CGC (AER 2006)

- 5 small clusters; total $=11$ of 88 subjects
- Other clusters?
- Could find more smaller clusters in a larger sample, but size smaller than 2/88 (approx. 2\%)
- Smaller clusters could be treated as errors
- No point to build one model per subject...
- A model for only 2% of population is not general enough to make it worth the trouble

Level-k Theory: CGC (AER 2006)

- Level-k model explains a large fraction of subjects' deviations from equilibrium - (that can be explained by a model)
- Although the model explains only half+ of subjects' deviations from equilibrium,
- it may still be optimal for a modeler to treat the rest of the deviations as errors
- Since the rest is not worth modeling...

How Level-k Model Explains Hide-and-Seek Games?

- Aggregate RTH Hide-and-Seek Game Results:
- Both Hiders and Seekers over-choose central A
- Seekers choose central A even more than hiders

	A	B	A	A
Hiders (624)	0.2163	0.2115	0.3654	0.2067
Seekers (560)	0.1821	0.2054	0.4589	0.1536

Joseph Tao-yi Wang Level-k Reasoning

Hide-and-Seek Games: Crawford \& Ireberri (2007)

- Can a strategic theory explain this?
- Level-k: Each role is filled by $\angle k$ types: $\angle 0$, L1, L2, L3, or $\angle 4$ (probabilities to be estimated)
- Note: In Hide and Seek the types cycle after $\angle 4 \ldots$
- High types anchor beliefs in a naive $\angle 0$ type and adjusts with iterated best responses:
- $\angle 1$ best responds to $\angle 0$ (with uniform errors)
- $L 2$ best responds to $\angle 1$ (with uniform errors)
- $\angle k$ best responds to $\angle k-1$ (with uniform errors)

Hide-and-Seek Games: Anchoring Type Level-0

- L0 Hiders and Seekers are symmetric
- Favor salient locations equally

1. Favor B: choose with probability $q>1 / 4$
2. Favor end A: choose with prob. $p / 2>1 / 4$

- Choice probabilities: $(p / 2, q, 1-p-q, p / 2)$
- Note: Specification of Anchoring Type $\angle 0$ is the key to model's explanatory power
- See Crawford and Ireberri (AER 2007) for other LO
- Cannot use uniform $\angle 0$ (coincide with equilibrium)...

Hide-and-Seek Games: Crawford \& Ireberri (2007)

- More (or less) attracted to $\mathrm{B}: p / 2<q(p / 2>q)$
- L1 Hiders choose central A

Table 2-Types' Expected Payoffs and Choice Probabilities in RTH's Games when $p>1 / 2$ and $q>1 / 4$

Hide-and-Seek Games: Crawford \& Ireberri (2007)

- More (or less) attracted to B: $p / 2<q(p / 2>q)$
- L1 Seekers avoid central A (pick B or end A)

Table 2-Types' Expected Payoffs and Choice Probabilities in RTH's Games when $p>1 / 2$ and $q>1 / 4$

Hider	Expected payoff	Choice probability	Expected payoff	Choice probability	Seeker	Expected payoff	Choice probability	Expected payoff	Choice probability	
$L 0$ (Pr.r)	More B		Less B		$\overline{L O(\operatorname{Pr}, r)}$	More B		Less B		
A	-	$p / 2$	- p/2				$p / 2$	-	$p / 2$	
B	-		-		B		9			
A	-	$1-p-q \times 1-p-q$			A	$\pm 1-p-q$		-		
A	-	$p / 2$			A				$p / 2$	
$L 1$ (Pr. s)					+7-			$p / 2>1 / 4 \times 1 / 2$		
A	$1-p / 2<3 / 4$	0	$1-p / 2<3 / 4$	0	A	,				
B	$1-q<3 / 4$	0	$1-q<3 / 4$	0		$q>1 / 4$	3	$q>1 / 4$$-p \rightarrow q<1 / 4$	$7^{1 / 2} 0$	
A	$p+q>3 / 4$	1	$p+q>3 / 4$	1		$1-p-q<1 / 4$	$\left(\begin{array}{l} \\ 0 \\ 0\end{array}\right)$		0	
A	1-p/2<3/4	0	$1-p / 2<3 / 4$	0				$2>1 / 4$	-1/2	
L2 (Pr.t)					${ }_{\mathrm{A}}^{L 2}(\mathrm{Pr} . t)$	0	0	0		
A	0	1/3	1/2	${ }^{0}$						
B	0	0	1	1/2	B	0	0	0	0	

Hide-and-Seek Games: Crawford \& Ireberri (2007) - More (or less) attracted to B: $p / 2<q(p / 2>q)$
 - L2 Hiders choose central A with prob. in [0.1]
 Table 2-Types' Expected Payoffs and Choice Probabilities in RTH's Games when $p>1 / 2$ and $q>1 / 4$

Hider	Expected payoff	Choice probability	Expected payoff	Choice probability	Seeker	Expected payoff	Choice probability	Expected payoff	Choice probability
$L 0$ (Pr.r r)	More B		Less B		$L O(\operatorname{Pr} . r)$	More B		Less B	
A	-	$p / 2$	-	$p / 2$	A	-	$p / 2$	-	$p / 2$
B	-	q	-	q	B	-	q	-	q
A	-	$1-p-q$	-	$1-p-q$	A	-	$1-p-q$	-	$1-p-q$
A	-	$p / 2$	-	$p / 2$	A	-	$p / 2$	-	$p / 2$
$L 1$ (Pr.s)					$L 1$ (Pr.s)				
A	$1-p / 2<3 / 4$	0	$1-p / 2<3 / 4$	0	A	$p / 2>1 / 4$	0	$p / 2>1 / 4$	-1/2
B	$1-q<3 / 4$	0	$1-q<3 / 4$	0	B	$q>1 / 4$	-	$1 / 4$	0
A	$p+q>3 / 4$	1	$p+q>3 / 4$,	A	-n	O	$p-q<1$	0
A	$1-p / 2<3 / 4$	0	$1-p / 2<3 / 4$	0	A	p/2 1/4	0	$2>1 / 4$	1/2
$\underset{\mathrm{A}}{L 2}(\operatorname{Pr} . t)$	1	$1 / 3$	+	0			T	0	0
B	0	0	1	1/2	B	0	0	0	0
A	1	1/3	1		,	1	1	1	1
A	1	(1/3)	1/2	0	A	0	0	0	0

Hide-and-Seek Games: Crawford \& Ireberri (2007) - More (or less) attracted to B: $p / 2<q(p / 2>q)$

- L2 Seekers choose central A for sure

Table 2-Types' Expected Payoffs and Choice Probabilities in RTH's Games when $p>1 / 2$ and $q>1 / 4$

Hider	Expected payoff	Choice probability	Expected payoff	Choice probability	Seeker	Expected payoff	Choice probability	Expected payoff	Choice probability
	More B		Less B -			More B		Less B	
A		$p / 2$	-	$p / 2$	A	-	$p / 2$	-	$p / 2$
B	-	q	-	q	B	-	q	-	q
A	-	$1-p-q$	-	$1-p-q$	A	-	$1-p-q$	-	$1-p-q$
A	-	$p / 2$	-	$p / 2$	A	-	$p / 2$	-	$p / 2$
$L 1$ (Pr.s)					L1 (Pr.s)				
A	$1-p / 2<3 / 4$	0	$1-p / 2<3 / 4$	0	A	$p / 2>1 / 4$	0	$p / 2>1 / 4$	1/2
B	$1-q<3 / 4$	0	$1-q<3 / 4$	0	B	$q>1 / 4$	1	$q>1 / 4$	0
A	$p+q>3 / 4$	1	$p+q>3 / 4$	1	A	$1-p-q<1 / 4$	0	$1-p-q<1 / 4$	0
A	$1-p / 2<3 / 4$	0	$-p / 2<3 / 4$	0		$p / 2>1 / 4$	0	$p / 2>1 / 4$	1/2
$L 2(\operatorname{Pr} . t)$									
B	0	1/3	1/2	1/2		0	0	2	0
A	1	1/3	1	1/2		1	1	1	1
A	1	1/3	1/2	0		0	0	0	0

Joseph Tao-yi Wang Level-k Reasoning

Joseph Tao-yi Wang Level-k Reasoning

Joseph Tao-yi Wang Level-k Reasoning

Hider	Expected payoff	Choice probability	Expected payoff	Choice probability	Seeker	Expected payoff	Choice probability	Expected payoff	Choice probability
LO(Pr.r)	More B		Less B		$L 0(\text { Pr. } r)$	More B		Less	
A	-	$p / 2$	-	$p / 2$	A	-	$p / 2$	-	$p / 2$
B	-	q	-	q	B	-	q	-	q
A	-	$1-p-q$	-	$1-p-q$	A	-	$1-p-q$	-	$1-p-q$
A	-	$p / 2$	-	$p / 2$	A	-	$p / 2$	-	$p / 2$
$L 1$ (Pr.s)					L1 (Pr.s)				
A	$1-p / 2<3 / 4$	0	$1-p / 2<3 / 4$	0	A	$p / 2>1 / 4$	0	$p / 2>1 / 4$	1/2
B	$1-q<3 / 4$	0	$1-q<3 / 4$	0	B	$q>1 / 4$	1	$q>1 / 4$	0
A	$p+q>3 / 4$	1	$p+q>3 / 4$	1	A	$1-p-q<1 / 4$	0	$1-p-q<1 / 4$	0
A	$1-p / 2<3 / 4$	0	$1-p / 2<3 / 4$	0	A	$p / 2>1 / 4$	0	$p / 2>1 / 4$	1/2
$L 2(\operatorname{Pr} . t)$					$L 2(\operatorname{Pr} . t)$				
A	1	1/3	1/2	0	A	0	0	0	0
B	0	0	1	1/2	B	0	0	0	0
A	1	1/3	1	1/2	A	1	1	,	1
A	1	1/3	1/2	0	A	0	0	0	0
L3 (Pr. u)					L3 (Pr. u)				
A	1	1/3	1	1/3	A	1/3	1/3	0	0
B	1	1/3	1	1/3	B	0	- 0	1/2	1/2
A	0	0	0	0	A	1/5	1/3	1/2	-1/2
A	1	1/3	1	1/3	A	1/3	1/3	/	0
L4 (Pr.v) ${ }_{\text {l }}$									
B	1	$1 \leqslant$	1/2	0	-	1/3	1/3	1/3	1/3
A	2/3	0		0	A	0	0	0	0

Hider	Expected payoff	Choice probability	Expected payoff	Choice probability	Seeker	Expected payoff	Choice probability	Expected payoff	Choice probability
$L O($ Pr. r)	More B		LeSS		$L O($ Pr. r)	More B		Less	
A	-	$p / 2$	-	$p / 2$	A	-	$p / 2$	-	$p / 2$
B	-	q	-	q	B	-	q	-	q
A	-	$1-p-q$	-	$1-p-q$	A	-	$1-p-q$	-	$1-p-q$
A	-	$p / 2$	-	$p / 2$	A	-	$p / 2$	-	$p / 2$
L1 (Pr.s)					$L 1$ (Pr.s)				
A	$1-p / 2<3 / 4$	0	$1-p / 2<3 / 4$	0	A	$p / 2>1 / 4$	0	$p / 2>1 / 4$	1/2
B	$1-q<3 / 4$	0	$1-q<3 / 4$	0	B	$q>1 / 4$	1	$q>1 / 4$	0
A	$p+q>3 / 4$	1	$p+q>3 / 4$	1	A	$1-p-q<1 / 4$	0	$1-p-q<1 / 4$	0
A	$1-p / 2<3 / 4$	0	$1-p / 2<3 / 4$	0	A	$p / 2>1 / 4$	0	$p / 2>1 / 4$	1/2
$L 2(\operatorname{Pr} . t)$					L2 (Pr.t) 0 0 0				
A	1	$1 / 3$ 0	1/2	0 $1 / 2$	A	0	0	0	0
B	0	0	1	1/2	B	0	0	0	0
A	1	1/3	1	1/2	A	1	1	1	1
A	1	1/3	1/2	0	A	0	0	0	0
L3 (Pr. u)					L3 (Pr. u)				
A	1	1/3	1	1/3	A	1/3	1/3	0	0
B	1	1/3	1	1/3	B	0	0	1/2	1/2
A	0	0	0	0	A	1/3	1/3	1/2	1/2
A	1	1/3		1/3		1/3	1/3	0	0
$L 4(\operatorname{Pr} . v)$	2/3	0	1	1/2	$\frac{L}{\mathrm{~A}}(\operatorname{Pr} \cdot v)$	$1 / 3$		1/3	
B	1	1	1/2	0					
A	2/3	0	1/2	0	A		0		0

Joseph Tao-yi Wang Level-k Reasoning

Hide-and-Seek Games: Explain Stylized Facts

- Given $L 0$ playing $(p / 2, q, 1-p-q, p / 2)$, - $\angle 1$ Hiders choose central A (avoid $\angle 0$ Seekers) - L1 Seekers avoid central A (search for LO Hiders)
- L2 Hiders choose central A with prob. in [0,1]
- L2 Seekers choose central A for sure
- L3 Hiders avoid central A
- L3 Seekers choose central A w/ prob. in $[0,1]$
- L4 Hiders and Seekers both avoid central A

Hide-and-Seek Games: Explain Stylized Facts

- Heterogeneous Population (L0, L1, L2, L3, L4) = (r, s, t, u, v) with $r=0, t, u$ large and s not too large can reproduce the stylized facts
- Need $s<(2 t+u) / 3$ (More B) or $s<(t+u) / 2$ (Less B)
- estimated $r=0, s=19 \%, t=32 \%, \mathrm{u}=24 \%, \mathrm{v}=25 \%$

Total

$$
\begin{array}{cc}
p<2 q & p>2 q \\
r p / 2+(1-\varepsilon)[t / 3+u / 3] & r p / 2+(1-\varepsilon)[u / 3+v / 2] \\
+(1-r) \varepsilon / 4 & +(1-r) \varepsilon / 4
\end{array}
$$

B

Hide-and-Seek Games: Out of Sample Prediction

- Estimate on one treatment and predict other five treatments
- 30 Comparisons: 6 estimations, each predict 5
- This Level-k Model with symmetric LO beats other models (LQRE, Nash + noise)
- Mean Squared prediction Error (MSE) 18\% lower
- Better predictions in 20 of 30 comparisons

HS Level-k Model Ported to Joker Game

- Can Level-k Reasoning developed from the Hide-and-Seek Game predict results of other games?
- Try O'Neil (1987)'s Joker Game
- Stylized Facts:
- Aggregate Frequencies close MSE
- Ace Effect (A chosen more often than 2 or 3);
- Not captured by QRE

The Joker Game: O' Neill (1987)

	A	2	3	J	MSE Actual QRE		
A	-5	5	5	-5	0.2	0.221	0.213
2	5	-5	5	-5	0.2	0.215	0.213
3	5	5	-5	-5	0.2	0.203	0.213
J	-5	-5	-5	5	0.4	0.362	0.360

MSE	0.2	0.2	0.2	0.4	- Actual frequencies are

Actual 0.2260 .1790 .1690 .426

- QRE better, but cannot get the Ace effect

HS Level-k Model Ported to Joker Game

- Level- k model w/ symmetric LO (favor A\&J)
- LO: $(a,(1-a-j) / 2,(1-a-j) / 2, j), a, j>1 / 4$
- A and J, 'face' cards and end locations, are more salient than 2 and $3 . .$.
- Higher $L k$ type BR to $L(k-1)$ (Table A3-A4)
- Challenge: To get the Ace Effect (without L0), need a population of almost all L4 or L3 - This is an empirical question, but very unlikely

HS Level-k Model Ported to Joker Game

- Could there be no Ace Effect in the initial rounds of O'Neil's data?
- The Level-k model predicts a Joker Effect instead!
- Crawford and Ireberri asked for O'Neil's data - And they found...
- Initial Choice Frequencies
- (A, 2, 3, J) $=(8 \%, 24 \%, 12 \%, 56 \%)$ for Player 1
$-(A, 2,3, J)=(16 \%, 12 \%, 8 \%, 64 \%)$ for Player 2

Table 5. Comparison of the Leading Models in O'Neill's Game

Model	Parameter estimates	Observed or predicted choice frequencies					MSE
		Player	A	2	3	J	
Observed frequencies $\text { (25 Player 1s, } 25 \text { Player 2s) }$		2	0.0800 0.1600	$\begin{aligned} & 0.2400 \\ & 0.1200 \end{aligned}$	$\begin{aligned} & 0.1200 \\ & 0.0800 \end{aligned}$	$\begin{aligned} & 0.5600 \\ & 0.6400 \end{aligned}$	-
Equilibrium without perturbations		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.2000 \\ & 0.2000 \end{aligned}$	$\begin{aligned} & 0.2000 \\ & 0.2000 \end{aligned}$	$\begin{aligned} & 0.2000 \\ & 0.2000 \end{aligned}$	$\begin{aligned} & 0.4000 \\ & 0.4000 \end{aligned}$	$\begin{aligned} & 0.0120 \\ & 0.0200 \end{aligned}$
Level- k with a role-symmetric LO that favors salience	$\begin{gathered} a>1 / 4 \text { and } j>1 / 4 \\ 3 j-a<1, a+2 j<1 \end{gathered}$	2	$\begin{aligned} & 0.0824 \\ & 0.1640 \end{aligned}$	$\begin{aligned} & 0.1772 \\ & 0.1640 \end{aligned}$	$\begin{aligned} & 0.1772 \\ & 0.1640 \end{aligned}$	$\begin{aligned} & 0.5631 \\ & 0.5081 \end{aligned}$	
Level- k with a role-symmetric $\angle O$ that favors salience	$\begin{gathered} a>1 / 4 \text { and } j>1 / 4 \\ 3 j-a<1, a+2 j>1 \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.2720 \end{aligned}$	$\begin{aligned} & 0.2541 \\ & 0.0824 \end{aligned}$	$\begin{aligned} & 0.2541 \\ & 0.0824 \end{aligned}$	0.4919	0.0073 0.0050
Level- k with a role-symmetric $\angle O$ that avoids salience	$a<1 / 4$ and $j<1 / 4$	2	$\begin{aligned} & 0.4245 \\ & 0.1670 \end{aligned}$	$\begin{aligned} & 0.1807 \\ & 0.1807 \end{aligned}$	0.1807 0.1807	0.2142 0.4717	0.0614 0.0105
Level- k with a role-asymmetric $L O$ that favors salience for locations for which player is a seeker and avoids it for	$\begin{gathered} a_{1}<1 / 4, j_{1}>1 / 4 \\ a_{2}>1 / 4, j_{2}<1 / 4 \\ 3 j_{1}-a_{1}<1, a_{1}+2 j_{1}< \end{gathered}$	1	0.1804	0.2729	0.2729	0.2739	0.0291

Joseph Tao-yi Wang Level-k Reasoning

Conclusion

- Limit of Strategic Thinking: 2-3 steps
- Theory (for initial responses)
- Level-k Types:
- Stahl-Wilson (GEB 1995), CGCB (ECMA 2001)
- Costa-Gomes and Crawford (AER 2006)
- Chen, Huang and Wang (mimeo 2013)
- Cognitive Hierarchy:
- CHC (QJE 2004)

Applications

- p-Beauty Contest:
- Costa-Gomes and Crawford (AER 2006)
- Chen, Huang and Wang (mimeo 2013)
- MSE:
- Hide-and-Seek: Crawford and Iriberri (AER 2007)
- LUPI: Ostling, Wang, Chou and Camerer (AEJ 2011)
- Auctions:
- Overbidding: Crawford and Iriberri (AER 2007)
- Repeated eBay Auctions: Wang (2006)

More Applications

- Coordination-Battle of the Sexes (Simple Market Entry Game):
- Camerer, Ho and Chong (QJE 2004)
- Crawford (2007)
- Pure Coordination Games:
- Crawford, Gneezy and Rottenstreich (AER 2008)
- Pre-play Communication:
- Crawford (AER 2003)
- Ellingsen and Ostling (AER 2011)

More Applications

- Strategic Information Communication:
- Crawford (AER 2003)
- Cai and Wang (GEB 2006)
- Kawagoe and Takizawa (GEB 2008)
- Wang, Spezio and Camerer (AER 2010)
- Brown, Leveno and Camerer (AEJ 2012)
- Lai, Lim and Wang (GEB 2015)
- Battaglini, Lai, Lim and Wang (work-in-progress)
－C．Monica Capra \＆Jacob K Goeree \＆Rosario Gomez \＆ Charles A Holt，2002．＂Learning and Noisy Equilibrium Behavior in an Experimental Study of Imperfect Price Competition，＂International Economic Review， Department of Economics，University of Pennsylvania and Osaka University Institute of Social and Economic Research Association，vol．43（3），pages 613－636，August． （ 16和17頁投影片）
－＂Anomalous Behavior in a Traveler＇s Dilemma？，＂ American Economic Review，American Economic Association，American Economic Association，vol．89（3）， pages 678－690，June．（19頁投影片）
－感謝以上的教授與期刊願意讓我們使用圖片

致謝

－Nagel，Rosemarie，1995．＂Unraveling in Guessing Games：An Experimental Study，＂American Economic Review，American Economic Association，vol．85（5），pages 1313－26，December． （第21，22張投影片）
－Ho，Teck－Hua \＆Camerer，Colin \＆Weigelt，Keith，1998．＂Iterated Dominance and Iterated Best Response in Experimental \＆quot；p－ Beauty Contests．\＆quot；，＂American Economic Review，American Economic Association，vol．88（4），pages 947－69，September． （ p．27，28，30，32，34，35，37，38，39，40， 46 ）
－Stahl Dale O．\＆Wilson Paul W．，1995．＂On Players＇Models of Other Players：Theory and Experimental Evidence，＂Games and Economic Behavior，Elsevier，vol．10（1），pages 218－254，July．（ 第 54頁投影片）
－感謝以上的教授與期刊願意讓我們使用圖片

致謝

－Costa－Gomes，Miguel \＆Crawford，Vincent P \＆Broseta，Bruno， 2001．＂Cognition and Behavior in Normal－Form Games：An Experimental Study，＂Econometrica，Econometric Society， Econometric Society，vol．69（5），pages 1193－1235，September． （第61頁投影片）
－Vincent P．Crawford \＆Miguel A．Costa－Gomes，2006．＂Cognition and Behavior in Two－Person Guessing Games：An Experimental Study，＂American Economic Review，American Economic Association，vol．96（5），pages 1737－1768，December． （第68張投影片）
－Vincent P．Crawford \＆Nagore Iriberri，2007．＂Fatal Attraction： Salience，Naïveté，and Sophistication in Experimental \＆quot；Hide－ and－Seek\＆quot；Games，＂American Economic Review，American Economic Association，vol．97（5），pages 1731－1750，December．（第 76－83張投影片）
－感謝以上的教授與期刊願意讓我們使用圖片

