Dominance-Solvable Games 優勢可解賽局實驗

Joseph Tao-yi Wang (王道一) Lecture 7, EE-BGT

Dominance

- Dominance
 - Strategy A gives you better payoffs than
 Strategy B regardless of opponent strategy
- Dominance Solvable
 - A game that can be solved by iteratively deleting dominated strategy

Dominance

- Do people obey dominance?
 - Looking both sides to cross a 1-way street
 - "If you can see this, I <u>can't</u> see you."
 - p-Beauty Contest behavior (guess above 67)
- Will you bet on others obeying dominance?
 - Workers respond to incentives rationally
 - Companies do not use optimal contracts
- SOPH: Knowing other's steps of reasoning

Belief of Iterated Dominance

- 1. Obey Dominance,
- 2. Believe that others obey dominance,
- 3. Believe that others believe you will obey dominance,
- 4. Believe that others believe that you believe they obey dominance,
- 5. Believe that others believe that you believe that they believe you obey dominance, etc.

Outline

- A Simple Test: Beard and Beil (MS 1994)
- Centipede:
 - McKelvey and Palfrey (Econometrica 1992)
- Mechanism Design:
 - Sefton and Yavas (GEB 1996)
- Dirty Face:
 - Weber (EE 2001)

A Simple Test: Beard and Beil (MS 1994)

Iterated dominance game						
Player 1	Player 2 move					
Player 1 Move		r				
L	9.7	5, 3				
R	3, 4.75	10, 5				

A Simple	Test:	Beard a	and B	eil (MS	19	94)
		ayoffs fron	Frequency				
Treatment	(L, I)	(R, I)	(R, r)	L	r R		P(r R)
1 (baseline)	(9.75,3)	(3, 4.75)	(10, 5)	66%	83%	35	97%

(3, 4.75)

(18, 28.5)

(9.75,3)

(9.75, 6)

(9.75,5)

58.5,18

4(more assurance)

(more resentment)

more reciprocity)

7 (1/6 payoff)

6 (less risk,

47%

(86%)

(31%)

(67%)

(10, 5)

(10,10)

(60,30)

Joseph Tao-yi Wang Dominance-Solvable Game

100%

100%

100%

100% 30

32

26

97%

97%

95%

A Simple Test: Beard and Beil (MS 1994)

- Player 2 mostly DO obey dominance
- Player 1 is inclined to believe this
 - Though they can be convinced if incentives are strong for the other side to comply
- Follow-up studies show similar results:
 - Goeree and Holt (PNAS 1999)
 - Schotter, Weigelt and Wilson (GEB 1994)

Follow-up 1: Goeree & Holt (PNAS 1999)

		Thres-		Frequency			
Condition	N	hold P(r R)	(L)	(R, I)	(R, r)	(L)	(r R)
Baseline 1	25	33%	(70, 60)	(60, 10)	(90, 50)	12%	100%
Lower Assurance	25	33%	(70, 60)	(60, <u>48</u>)	(90, 50)	32%	53%
Baseline 2	15	85%	(80, 50)	(20, 10)	(90, 70)	13%	100%
Low Assurance	25	85%	(80, 50)	(20, <u>68</u>)	(90, 70)	52%	75%
Very Low Assurance	25	85%	(400,250)	(100,348)	(450,350)	80%	80%

Follow-up 2: Schotter-Weigelt-Wilson (GEB 94)

Normal Form	Play	er 2	Game 1M
Player 1	l	r	Frequency
L	<u>4</u> , <u>4</u>	4, <u>4</u>	(57%)
R	0, 1	<u>6</u> , <u>3</u>	(43%)
Frequency	(20%)	(80%)	
Sequential Form			Game 1S
L	4, 4		(8%)
	1	r	
R	0, 1	6, 3	(92%)
Frequency	(2%)	(98%)	

Joseph Tao-yi Wang Dominance-Solvable Game

Follow-up 2: Schotter-Weigelt-Wilson (GEB 94)

- Schotter et al. (1994)'s conclusion:
- Limited evidence of iteration of dominance (beyond 1-step), or SPE, forward induction
 - Can more experience fix this?
- No for forward induction in 8 periods...
 - Brandts and Holt (1995)
- But, Yes for 3-step iteration in 160 periods
 - Rapoport and Amaldoss (1997): Patent Race

Centipede Game: 4-Move SPNE

McKelvey and Palfrey (Econometrica 1992)

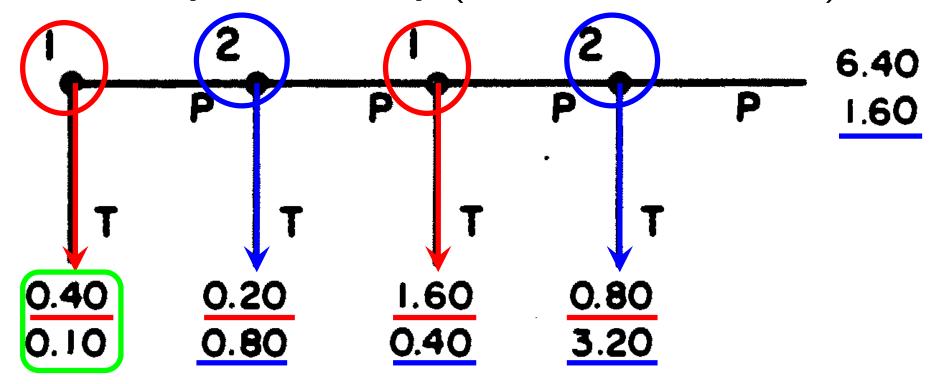


FIGURE 1.—The four move centipede game.

Centipede Game: 6-Move SPNE

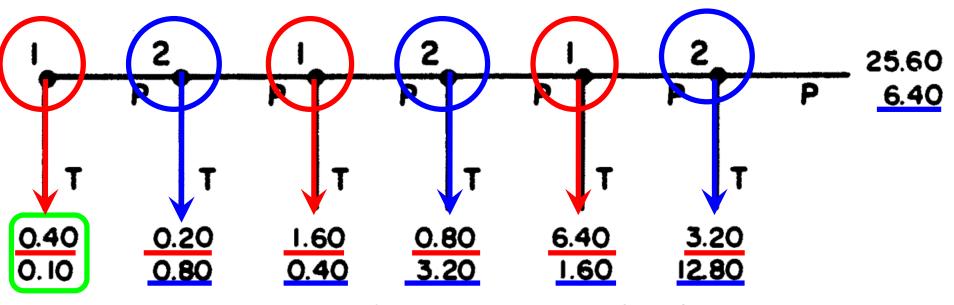


FIGURE 2.—The six move centipede game.

Centipede Game: Outcome

TABLE IIA
PROPORTION OF OBSERVATIONS AT EACH TERMINAL NODE

										<u></u>
		Session	N	f_1	f_2	f_3	f_4	f_5	f_6	f_7
Four Move	1 2 3	(PCC) (PCC) (CIT)	100 81 100	.06 .10 .06	.26 .38 .43	.44 .40 .28	.20 .11 .14	.04 .01 .09		
	Total	1–3	281	.071	.356	.370	.153	.049		
High Payoff	4	(High-CIT)	100	.150	.370	.320	.110	.050		
Six Move	5 6 7	(CIT) (PCC) (PCC)	100 81 100	.02 .00 .00	.09 .02 .07	.39 .04 .14	.28 .46 .43	.20 .35 .23	.01 .11 .12	.01 .02 .01
	Total	5–7	281	.007	.064	.199	.384	.253	.078	.014
									,	

Centipede Game: Pr(Take)

IMPLIED TAKE PROBABILITIES FOR THE CENTIPEDE GAME

	Session	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	p ₅	<i>p</i> ₆
	1 (PCC)	.06 (100)	.28 (94)	.65 (68)	<u>83</u> (24)		
Four Move	2 (PCC)	.10 (81)	.42 (73)	.76 (42)	.90		
Wiove	3 (CIT)	.06 (100)	.46 (94)	.55 (51)	.61 (23)		
	Total 1–3	.07 (281)	.38 (261)	.65 (161)	.75 (57)		
High Payoff	4 (CIT)	.15 (100)	.44 (85)	.67 (48)	.69 (16)		
	5 (CIT)	.02 (100)	.09 (98)	.44 (89)	.56 (50)	.91 (22)	.50 (2)
Six Move	6 (PCC)	.00 (81)	.02 (81)	.04 (79)	.49 (76)	.72 (39)	.82
MOVE	7 (PCC)	.00 (100)	.07 (100)	.15 (93)	.54 (79)	.64 (36)	.92
	Total 5–7	.01 (281)	.06 (279)	.21 (261)	.53 (205)	.73 (97)	.85 (26)

Joseph Tao-yi Wang Dominance-Solvable Game

Centipede Game: Learning Effect (1-5/6-10)

TABLE IIIB

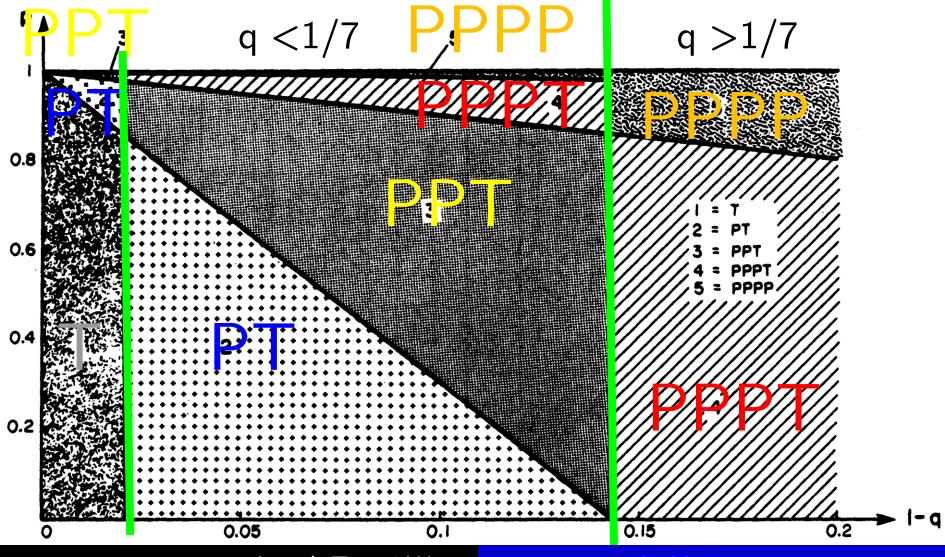
IMPLIED TAKE PROBABILITIES

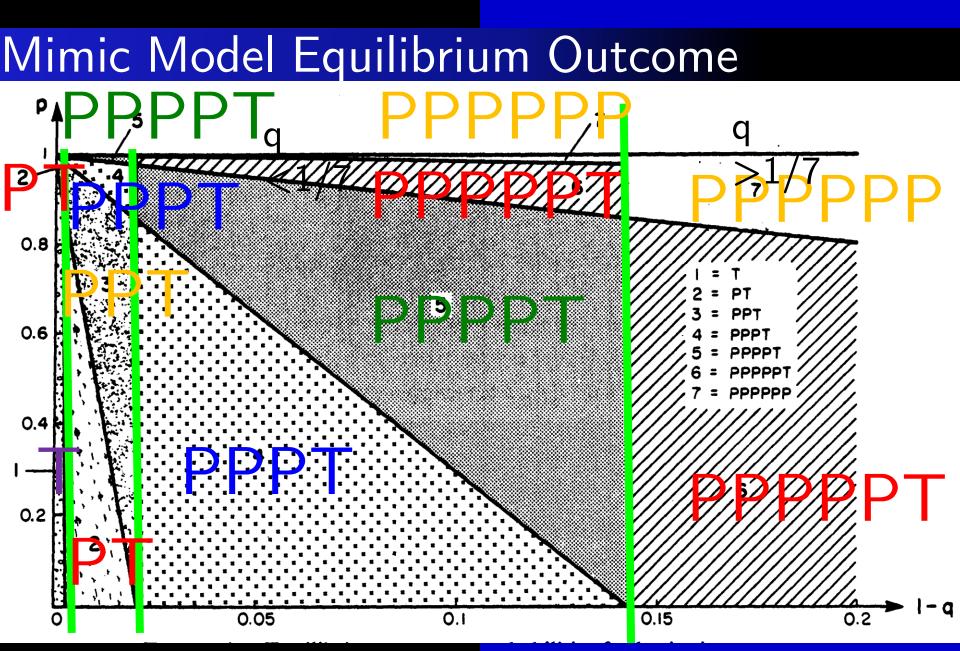
COMPARISON OF EARLY VERSUS LATE PLAYS IN THE LOW PAYOFF CENTIPEDE GAMES

Treatment	Game	p_1	p_2	<i>p</i> ₃ .	p_4	p_5	p_6
Four Move	1–5 6–10	.06 (145) .08 (136)	.32 (136) .49 (125)	.57 (92) .75 (69)	.75 (40) .82 (17)		
Four Move	1–5 6–10	.00 (145) .01 (136)	.06 (145) .07 (134)	.18 (137) .25 (124)	.43 (112) .65 (93)	.75 (64) .70 (33)	.81 (16) .90 (10)

Centipede Game: Mimic Model

- What theory can explain this?
- Altruistic Types (7%): Prefer to Pass
- Selfish Types:
 - Mimic altruistic types up to a point (to gain)
- Unraveling: error rate shrinks over time


Centipede Game: Mimic Model


- Selfish guys sometimes pass (mimic altruist)
- Imitating an altruist might lure an opponent into passing at the next move
 - Raising one's final payoff in the game
- Equilibrium imitation rate depends directly on beliefs about the likelihood (1-q) of a randomly selected player being an altruist
 - The more likely players believe there are altruists, the more imitation there is

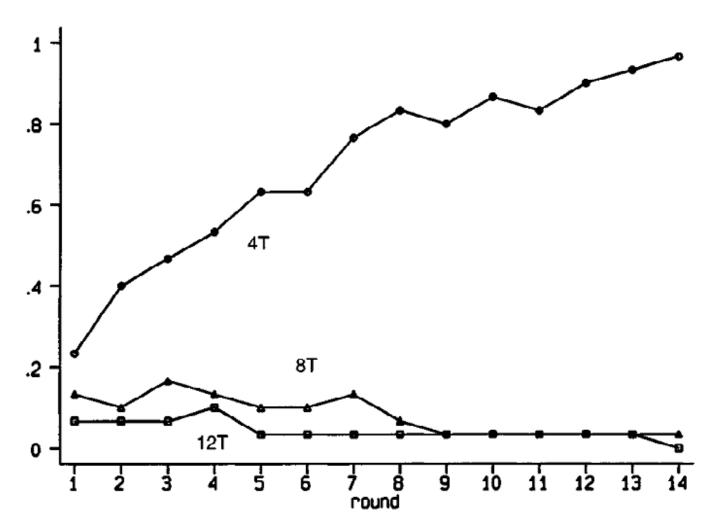
Mimic: Predictions for Normal Types

- 1. On the last move, Player 2 TAKE for any q
- 2. If 1-q > 1/7, both Player 1 and 2 PASS
 - Except on the last move Player 2 always TAKE
- 3. If $0 < 1 q < 1/7 \rightarrow Mixed Strategy Equilibrium$
- 4. If 1- q = 0 both Player 1 and Player 2 TAKE

Mimic Model Equilibrium Outcome

Centipede: Mimic Model Add Noisy Play

- We model noisy play in the following way.
- In game t, at node s, if p^* is the equilibrium probability of TAKE
- Assume player actually chooses TAKE with probability $(1-\varepsilon_{\rm t})p^*$, and makes a random move with probability $\varepsilon_{\rm t}$
- $\varepsilon_t = \varepsilon e^{-\delta(t-1)}$
- Explains further deviation from mimic model


Centipede Game: Follow-ups

- Fey, McKelvey and Palfrey (IJGT 1996)
 - Use constant-sum to kill social preferences
 - Take 50% at 1^{st} , 80% at 2^{nd}
- Nagel and Tang (JMathPsych 1998)
 - Don't know other's choice if you took first
 - Take about half way
- Rapoport et al. (GEB 2003)
 - 3-person & high stakes: Many take immediately
 - CH can explain this (but not QRE) see theory

- Pure coordination game with \$1.20 & \$0.60
- How can you implement a Pareto-inferior equilibrium in a pure coordination games?
- Abreu & Matsushima (Econometrica 1992)
 - Slice the game into T periods
 - -F: Fine paid by first subject to deviate
 - Will not deviate if F > 1.20/T
 - Can set T=1, F=\$1.20; more credible if T large

- Glazer and Rosenthal (Economtrica 1992)
 - Comment: AM mechanism requires more steps of iterated deletion of dominated strategies
- Abreu & Matsushima (Econometrica 1992)
 - Respond: "[Our] gut instinct is that our mechanism will not fare poorly in terms of the essential feature of its construction, that is, the significant multiplicative effect of 'fines.' "
- This invites an experiment!

- Sefton and Yavas (GEB 1996)
- F = \$0.225
- T = 4, 8, or 12
 - Theory: Play inferior NE at T=8, 12, not T=4
- Results: Opposite, and diverge...
- Why? Choose only 1 switch-point in middle
 - Goal: switch soon, but 1 period after opponent

- Glazer and Perry (GEB 1996)
 - Implemental can work in sequential game via backward induction
- Katok, Sefton and Yavas (JET 2002)
 - Does not work either
- Can any approximately rational explanation get this result?
 - Maybe "Limited steps of IDDS + Learning"?

- Three ladies, A, B, C, in a railway carriage all have dirty faces and are all laughing.
- It sudden flashes on A:
- Why doesn't B realize C is laughing at her?
 Heavens! / must be laughable.
 - Littlewood (1953), A Mathematician's Miscellany
- Requires A to think that B is rational enough to draw inference from C

Dirty Face Game: Weber (Exp. Econ. 2001)

- Independent types X (prob=.8) or O (prob=.2)
 X is like "dirty face"
- Commonly told "At least one player is type X." $-P(XX) = 0.64 \rightarrow 2/3$, $P(XO) = 0.32 \rightarrow 1/3$
- Observe other's type
- Choose Up or Down (figure out one is type X)
- If nobody chooses Down, reveal other's choice and play again

	_	Ту	'pe
		X	O
Proba	bility	8.0	0.2
۸ ما: م ۱۰	Up	\$0	\$0
Action	Down	\$1	-\$5

- Case XO: Players play (Up, Down)
- Type X player thinks...
 - I know that "at least one person is type X"
 - I see the other person is type O
- So, I must be type $X \rightarrow Chooses Down$
- Type O player thinks...
 - I know that "at least one person is type X"
 - I see the other person is type X
- No inference → Chooses Up

- Case XX First round:
- No inference (since at least one is type X, but the other guy is type X) → Both choose Up
- Case XX Second round:
- Seeing UU in first
 - the other is not sure about his type
 - He must see me being type X
- I must be Type X → Both choose Down

		Trial 1		Tria	al 2
		XO	XX	XO	XX
Dound	UU	0	<u>7*</u>	1	<u>7*</u>
Round 1	DU	<u>3*</u>	3	<u>4*</u>	1
1	DD	0	0	0	0
Round	UU	-	1	_	2
2	DU	-	5	-	2
(after	DD	-	1*	-	<u>3*</u>
UU)	Other	_	_	1	-

- Results: 87% rational in XO, but only 53% in 2nd round of XX
- Significance:
- Choices reveal limited reasoning, not pure cooperativeness
 - More iteration is better here...
- Upper bound of iterative reasoning
 - Even Caltech students cannot do 2 steps!

Conclusion

- Do you obey dominance?
- Would you count on others obeying dominance?
- Limit of Strategic Thinking: 2-3 steps
- Compare with Theories of Initial Responses
 - Level-k: Stahl-Wilson95, CGCB01, CGC06
 - Cognitive Hierarchy: CHC04

致謝

感謝The Econometric Society 和 Richard D. McKelvey 和 Thomas R. Palfrey這兩位教授讓我們使用下面這篇論文中的圖片

Richard D. McKelvey and Thomas R. Palfrey

"An Experimental Study of the Centipede Game," *Econometrica*, Vol. 60, No. 4 (Jul., 1992), pp. 803-836

感謝Games and Economic Behavior與 Martin Sefton和Abdullah Yavas 這兩位教授讓我們使用下面這篇論文中的圖片

Martin Sefton and Abdullah Yavas

"Abreu-Matsushima Mechanisms: Experimental Evidence,"

Games and Economic Behavior, Volume 16, Issue 2, October 1996, Pages 280–302