For Risk and Time Preferences (9/21)

Consider the relationship between Professor Joseph and Student Yu. Professor Joseph has expected utility function satisfying $u'(x) = x^{-R}$ where R > 0, while Student Yu has expected utility function satisfying $v'(x) = x^{-r}$ with r < R. Consider the ten lottery choices of Holt and Laury (2002) listed below:

Decision	Lottery A	Lottery B	Your choice (A or B)
Question 1	1: Gain NT\$200	1 : Gain NT\$385	
	$2 \sim 10$: Gain NT\$160	$2\sim 10$: Gain NT\$10	
Question 2	$1 \sim 2$: Gain NT\$200	$1 \sim 2$: Gain NT\$385	
	$3 \sim 10$: Gain NT\$160	$3 \sim 10$: Gain NT\$10	
Question 3	$1 \sim 3$: Gain NT\$200	$1 \sim 3$: Gain NT\$385	
	$4 \sim 10$: Gain NT\$160	$4 \sim 10$: Gain NT\$10	
Question 4	$1 \sim 4$: Gain NT\$200	$1 \sim 4$: Gain NT\$385	
	$5 \sim 10$: Gain NT\$160	$5 \sim 10$: Gain NT\$10	
Question 5	$1 \sim 5$: Gain NT\$200	$1 \sim 5$: Gain NT\$385	
	$6 \sim 10$: Gain NT\$160	$6 \sim 10$: Gain NT\$10	
Question 6	$1 \sim 6$: Gain NT\$200	$1 \sim 6$: Gain NT\$385	
	$7 \sim 10$: Gain NT\$160	$7 \sim 10$: Gain NT\$10	
Question 7	$1 \sim 7$: Gain NT\$200	$1 \sim 7$: Gain NT\$385	
	$8 \sim 10$: Gain NT\$160	$8 \sim 10$: Gain NT\$10	
Question 8	$1 \sim 8$: Gain NT\$200	$1 \sim 8$: Gain NT\$385	
	$9 \sim 10$: Gain NT\$160	$9 \sim 10$: Gain NT\$10	
Question 9	$1 \sim 9$: Gain NT\$200	$1 \sim 9$: Gain NT\$385	
	10 : Gain NT\$160	10 : Gain NT\$ 10	
Question 10	$1 \sim 10$: Gain NT\$200	$1 \sim 10$: Gain NT\$385	

You will roll a ten-sided die an	nd get paid according to yo	ur decision (choice A or B):
----------------------------------	-----------------------------	------------------------------

- 1. Show that both Professor Joseph and Student Yu exhibit constant relative risk aversion. Hence or otherwise, solve for their Von Neumann-Morgenstern utility functions u(.), v(.), and corresponding degree of relative risk aversion R(x).
- 2. Show that a risk neutral person would choose lottery A for Questions 1~4 and lottery B otherwise.
- 3. Would Professor Joseph choose more or less lottery A's than a risk neutral person? Why or why not? What about Student Yu (compared to a risk neutral person and/or to Professor Joseph)?

Experimental Economics I: Behavioral Game Theory Homework (15F)

- Show that if Professor Joseph chooses lottery B in Question k, he would also choose lottery B in Question (k+1).
- 5. Show that if a person follows expected utility theory and chooses lottery B in Question k, he would also choose lottery B in Question (k+1).
- 6. What is the critical assumption required for the above statement to be true? Is expected utility theory really required? Why or why not?