The 2x2 Exchange Economy

Joseph Tao-yi Wang 2019/6/13 (Calculus 4, Applications)

Road Map for 2x2 Exchange Economy

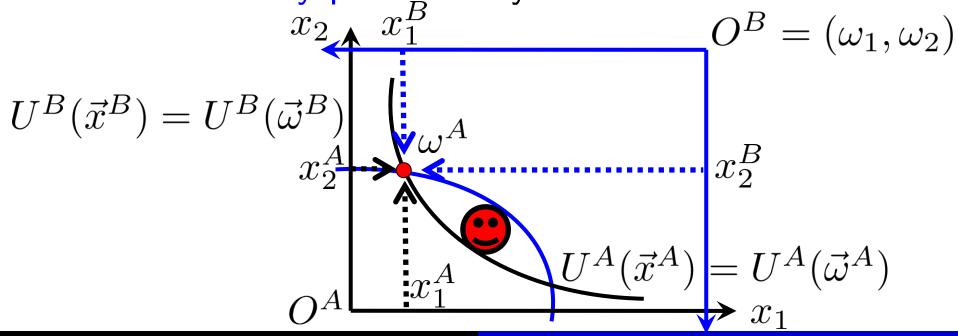
- Pareto Efficiency Allocation (PEA)
 - Cannot make one better off without hurting others
- Walrasian (Price-taking) Equilibrium (WE)
 - When Supply Meets Demand
 - Focus on Exchange Economy First
- 1st Welfare Theorem:
 - Any WE is PEA (Adam Smith Theorem)
- 2nd Welfare Theorem:
 - Any PEA can be supported as a WE with transfers

2x2 Exchange Economy

- 2 Commodities: Good 1 and 2
- 2 Consumers: Alex and Bev h = A, B
 - Endowment: $\vec{\omega}^h = (\omega_1^h, \omega_2^h), \, \omega_i = \omega_i^A + \omega_i^B$
 - Consumption Set: $\vec{x}^h = (x_1^h, x_2^h) \in \mathbb{R}^2_+$
 - Strictly Monotonic Utility:
 - $U^h(\vec{x}^h) = U^h(x_1^h, x_2^h), \quad \frac{\partial U^h}{\partial x_i^h}(\vec{x}^h) > 0$
- Edgeworth Box
 - These consumers could be representative agents, or literally TWO people (bargaining)

Pareto Efficiency

- A feasible allocation is Pareto efficient if
- there is no other feasible allocation that is
- strictly preferred by at least one consumer
- and is weakly preferred by all consumers.



Joseph Tao-yi Wang 2x2 Exchange Economy

Pareto Efficient Allocations

For $\vec{\omega} = (\omega_1, \omega_2)$, consider $\max_{\vec{x}^{A}, \vec{x}^{B}} \left\{ U^{A}(\vec{x}^{A}) \middle| U^{B}(\vec{x}^{B}) \ge U^{B}(\hat{x}^{B}), \vec{x}^{A} + \vec{x}^{B} \le \vec{\omega} \right\}$ Need $MRS^A(\hat{x}^A) = MRS^B(\hat{x}^A)$ (interior solution) x_2 $O^B = (\omega_1, \omega_2)$ $U^B(\vec{x}^B) = U^B(\hat{x}^B)$ \hat{x}^A \hat{x}^B $U^A(\vec{x}^A) = U^A(\hat{x}^A)$ x_1

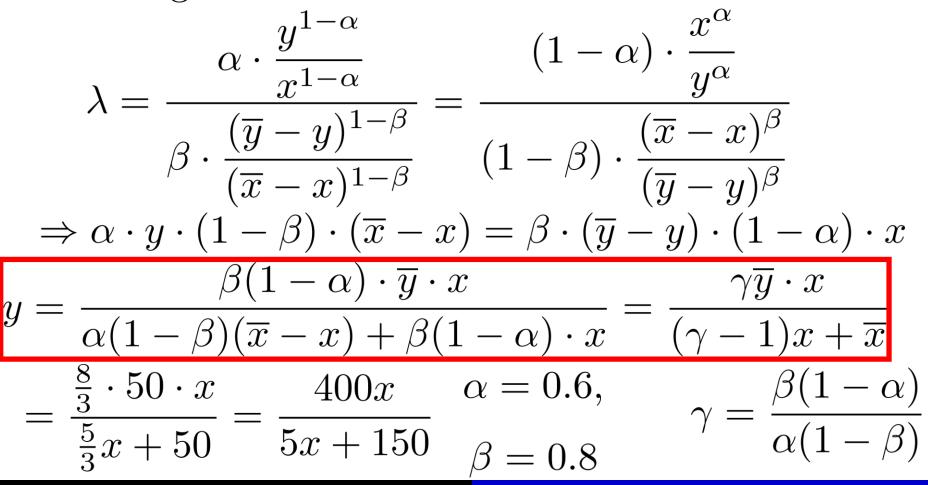
PEA with Cobb-Douglas Utility

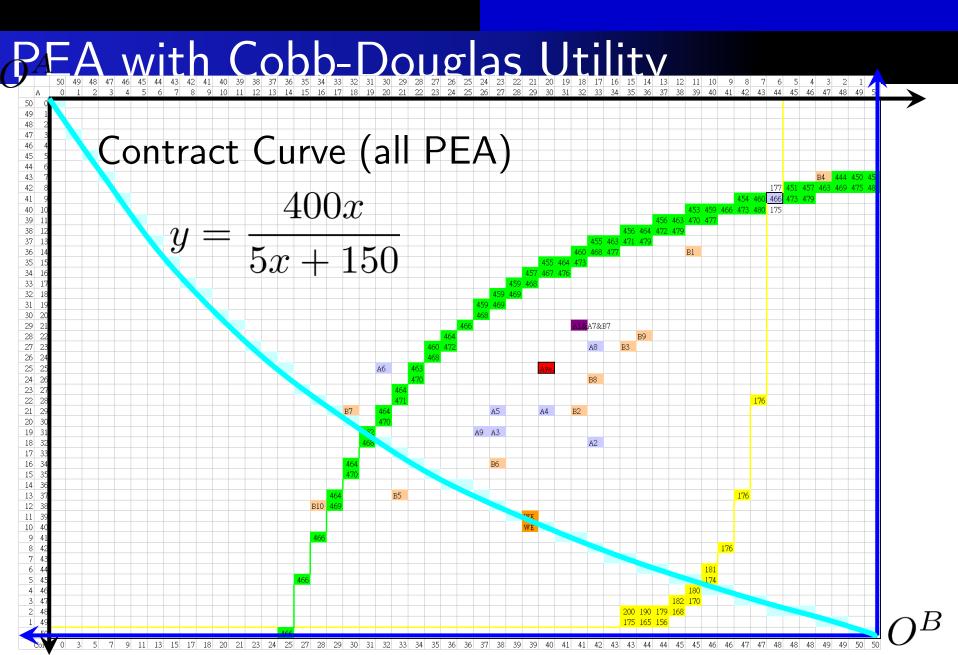
$$\max_{x,y} U^{A}(x,y) = x^{\alpha} y^{1-\alpha}$$

s.t. $U^{B} = (\overline{x} - x)^{\beta} (\overline{y} - y)^{1-\beta} \ge U^{B}$
 $\mathcal{L} = x^{\alpha} y^{1-\alpha} - \lambda \cdot \left[U^{B} - (\overline{x} - x)^{\beta} (\overline{y} - y)^{1-\beta} \right]$
FOC: (for interior solutions)
 $\frac{\partial \mathcal{L}}{\partial x} = \alpha \cdot \frac{y^{1-\alpha}}{x^{1-\alpha}} - \beta \lambda \cdot \frac{(\overline{y} - y)^{1-\beta}}{(\overline{x} - x)^{1-\beta}} = 0$
 $\frac{\partial \mathcal{L}}{\partial y} = (1 - \alpha) \cdot \frac{x^{\alpha}}{y^{\alpha}} - (1 - \beta) \lambda \cdot \frac{(\overline{x} - x)^{\beta}}{(\overline{y} - y)^{\beta}} = 0$
 $\frac{\partial \mathcal{L}}{\partial \lambda} = U^{B} - (\overline{x} - x)^{\beta} (\overline{y} - y)^{1-\beta} = 0$

PEA with Cobb-Douglas Utility

Meaning of FOC: $MRS^A = MRS^B$





Walrasian Equilibrium - 2x2 Exchange Economy

- All Price-takers: Price vector $\vec{p} \ge 0$
- 2 Consumers: Alex and Bev $h \in \mathcal{H} = \{A, B\}$ - Endowment: $\vec{\omega}^h = (\omega_1^h, \omega_2^h), \, \omega_i = \omega_i^A + \omega_i^B$
 - Consumption Set: $\vec{x}^h = (x_1^h, x_2^h) \in \mathbb{R}^2_+$ - Wealth: $W^h = \vec{p} \cdot \vec{\omega}^h$
- Market Demand: $\vec{x}(\vec{p}) = \sum_{h} \vec{x}^{h}(\vec{p}, \vec{p} \cdot \vec{\omega}^{h})$ (Solution to consumer problem) $_{h}$
- Vector of Excess Demand: $\vec{z}(\vec{p}) = \vec{x}(\vec{p}) \vec{\omega}$ - Vector of total Endowment: $\vec{\omega} = \sum \vec{\omega}^h$

Definition: Market Clearing Prices

- Let Excess Demand for Commodity j be $z_j(\vec{p})$
- The Market for Commodity j Clears if
 - Excess Demand = 0 or Price = 0 (and ED < 0)
 - Excess demand = shortage; negative ED means surplus

$$z_j(\vec{p}) \leq 0$$
 and $p_j \cdot z_j(\vec{p}) = 0$

- Why is this important?
- 1. Walras Law

- The last market clears if all other markets clear

2. Market clearing defines Walrasian Equilibrium

Local Non-Satiation Axiom (LNS)

- For any consumption bundle $\vec{x} \in C \subset \mathbb{R}^n$ and any δ -neighborhood $N(\vec{x}, \delta)$ of \vec{x} , there is some bundle $\vec{y} \in N(\vec{x}, \delta)$ s.t. $\vec{y} \succ_h \vec{x}$
- LNS implies consumer must spend all income
- If not, we have $\vec{p} \cdot \vec{x}^h < \vec{p} \cdot \vec{\omega}^h$ for optimal \vec{x}^h
- But then there exist δ -neighborhood $N(\vec{x}^h, \delta)$
- In the budget set for sufficiently small $\delta > 0$
- LNS $\Rightarrow \vec{y} \in N(\vec{x}^h, \delta), \vec{y} \succ_h \vec{x}^h, \vec{x}^h$ is not optimal!

Walras Law

• For any price vector \vec{p} , the market value of excess demands must be zero, because:

1

`

$$\vec{p} \cdot \vec{z}(\vec{p}) = \vec{p} \cdot (\vec{x} - \vec{\omega}) = \vec{p} \cdot \left(\sum_{h} (\vec{x}^{h} - \vec{\omega}^{h})\right)$$
$$= \sum_{h} (\vec{p} \cdot \vec{x}^{h} - \vec{p} \cdot \vec{\omega}^{h}) = 0 \text{ by LNS}$$
$$= p_{1}z_{1}(\vec{p}) + p_{2}z_{2}(\vec{p}) = 0$$

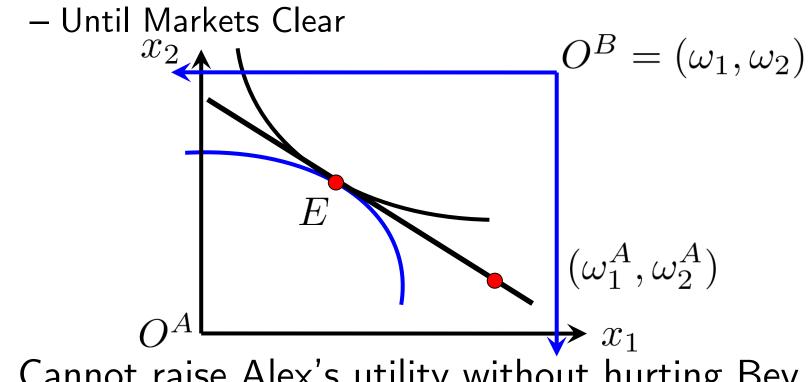
• If one market clears, so must the other.

Definition: Walrasian Equilibrium

- The price vector p ≥ 0 is a Walrasian
 Equilibrium price vector if all markets clear.
 − WE = price vector!!!
- EX: Excess supply (surplus) of commodity 1... x_2 $= (\omega_1, \omega_2)$ $\neg A$ $\mathcal{X}_{\mathcal{I}}$ Slope p_1/p_2 x_2^B \mathcal{X}_1

Definition: Walrasian Equilibrium

• Lower price for commodity 1 if excess supply



 Cannot raise Alex's utility without hurting Bev – Hence, we have FWT...

First Welfare Theorem: WE \rightarrow PEA

- If preferences satisfy LNS, then a Walrasian Equilibrium allocation (in an exchange economy) is Pareto efficient.
- Sketch of Proof:
- 1. Any weakly (strictly) preferred bundle must cost at least as much (strictly more) as WE
- 2. Markets clear
 - \rightarrow Pareto preferred allocation not feasible

Walrasian Equilibrium: Consumer A Problem

$$\max_{x,y} U^{A}(x,y) = x^{\alpha}y^{1-\alpha}$$

s.t. $P_{x} \cdot x + P_{y} \cdot y \leq I^{A} = P_{x} \cdot \omega_{x}^{A} + P_{y} \cdot \omega_{y}^{A}$
 $\mathcal{L} = x^{\alpha}y^{1-\alpha} - \lambda \cdot \left[P_{x} \cdot x + P_{y} \cdot y - I^{A}\right]$
FOC: (for interior solutions)
$$\frac{\partial \mathcal{L}}{\partial x} = \alpha \cdot \frac{y^{1-\alpha}}{x^{1-\alpha}} - \lambda \cdot P_{x} = 0$$

$$\frac{\partial \mathcal{L}}{\partial y} = (1-\alpha) \cdot \frac{x^{\alpha}}{y^{\alpha}} - \lambda \cdot P_{y} = 0$$

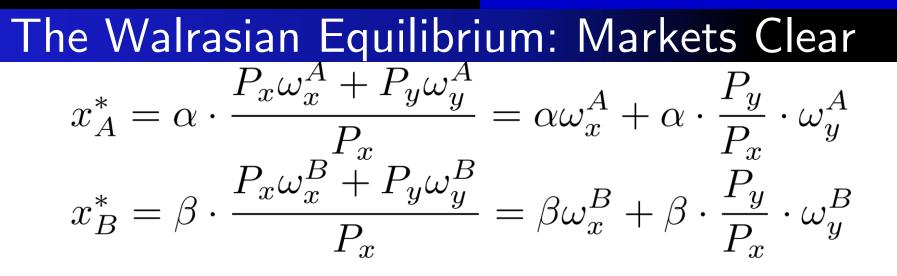
$$\frac{\partial \mathcal{L}}{\partial \lambda} = P_{x} \cdot x + P_{y} \cdot y - I^{A} = 0$$

Walrasian Equil.: Consumer Optimal Choice

Meaning of FOC: $MRS^A = \frac{P_x}{P_y}$

$$\frac{P_x}{P_y} = \frac{\alpha}{1-\alpha} \cdot \frac{y}{x} \quad \Rightarrow x = \frac{\alpha}{1-\alpha} \cdot \frac{P_y}{P_x} \cdot y$$
$$\Rightarrow I^A = P_x \cdot x + P_y \cdot y = \frac{P_y}{1-\alpha} \cdot y$$
$$\Rightarrow y^*_A = (1-\alpha) \cdot \frac{I^A}{P_y}, \quad x^*_A = \alpha \cdot \frac{I^A}{P_x}$$

Similarly,
$$y_B^* = (1 - \beta) \cdot \frac{1}{P_y}, \ x_B^* = \beta \cdot \frac{1}{P_x}$$



Markets Clear: $x_A^* + x_B^* = \omega_x^A + \omega_x^B$ $\Rightarrow \left(\alpha \cdot \omega_y^A + \beta \cdot \omega_y^B\right) \cdot \frac{P_y}{P_x} = (1 - \alpha)\omega_x^A + (1 - \beta)\omega_x^B$

$$\frac{P_y}{P_x} = \frac{(1-\alpha)\omega_x^A + (1-\beta)\omega_x^B}{\alpha \cdot \omega_y^A + \beta \cdot \omega_y^B}$$

Walras. Equil. in Edgeworth Box Experiment

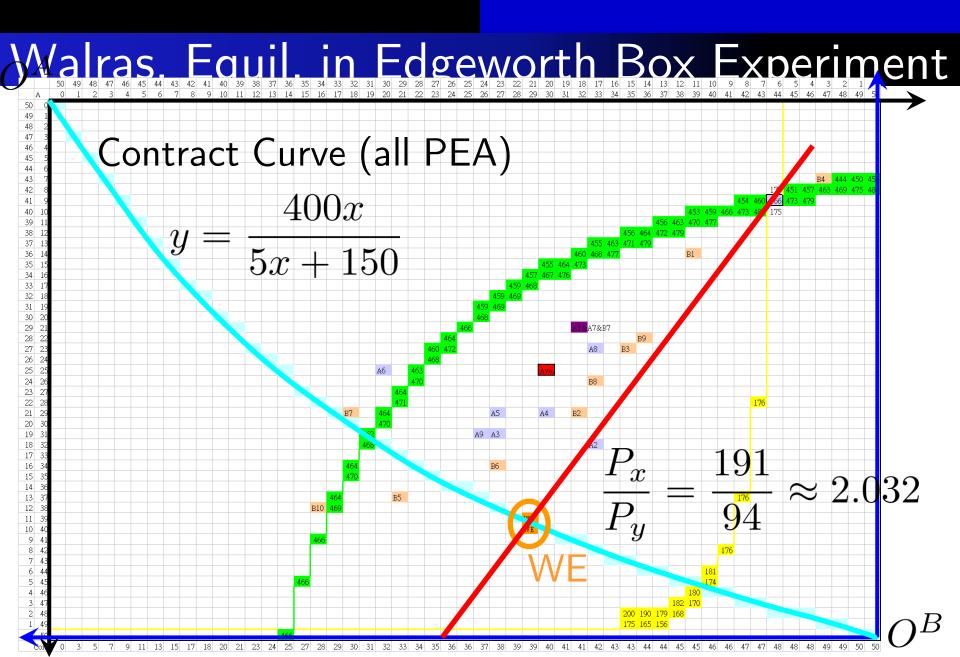
$$\alpha = 0.6, \beta = 0.8$$

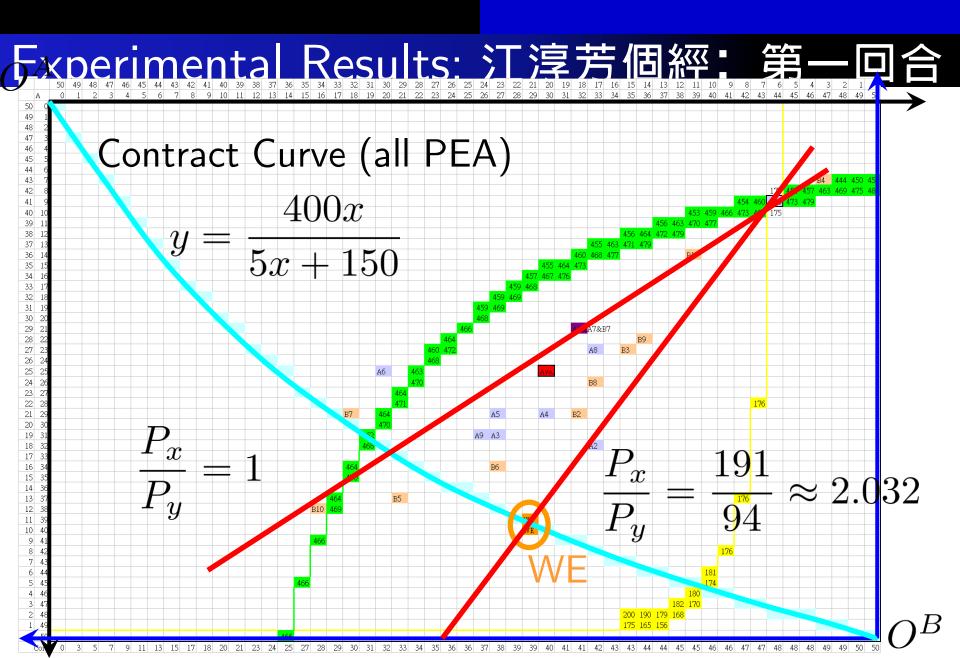
$$(\omega_x^A, \omega_y^A) = (44, 9), \quad (\omega_x^B, \omega_y^B) = (6, 41),$$

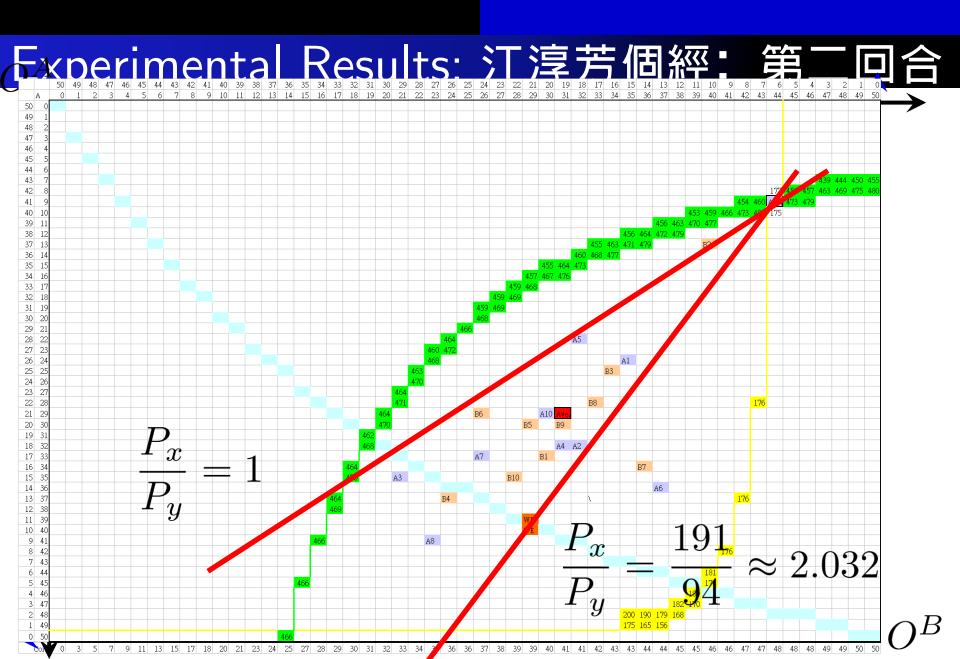
$$\Rightarrow \frac{P_y}{P_x} = \frac{(1-\alpha)\omega_x^A + (1-\beta)\omega_x^B}{\alpha \cdot \omega_y^A + \beta \cdot \omega_y^B}$$
$$= \frac{(0.4)44 + (0.2)6}{0.6 \cdot 9 + 0.8 \cdot 41} = \frac{17.6 + 1.2}{5.4 + 32.8} = \frac{94}{191}$$
$$\Rightarrow \frac{P_x}{P_y} = \frac{191}{94} \approx 2.032$$

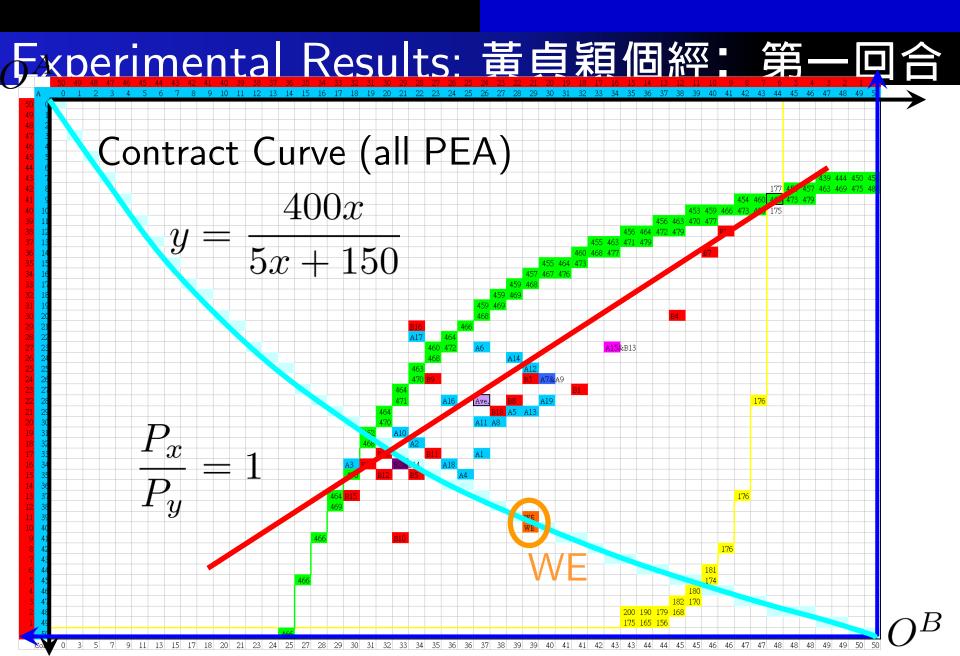
Edgeworth Box Experiment

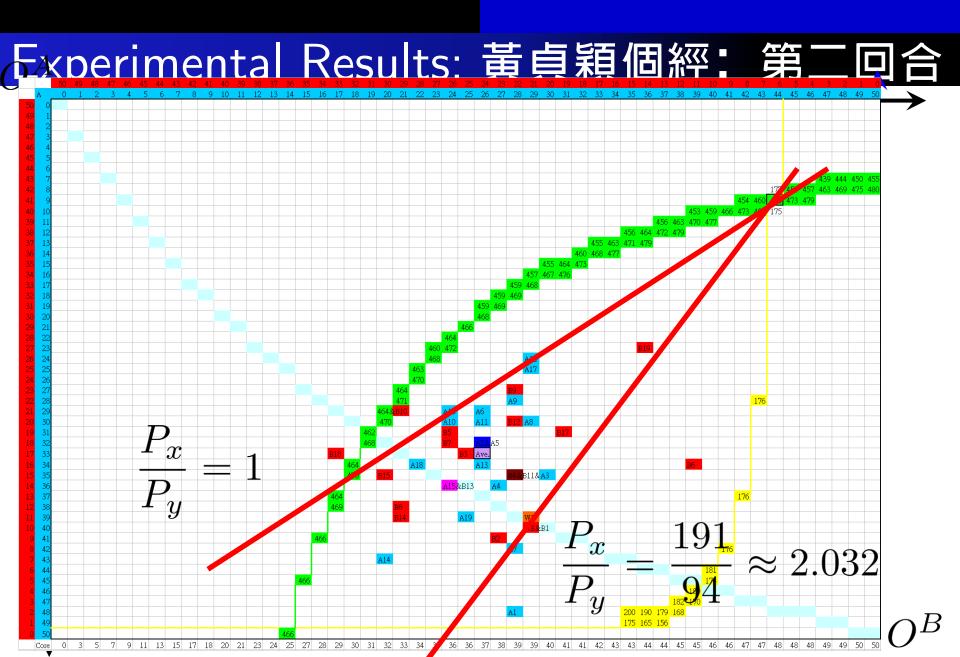
Joseph Tao-yi Wang 2019/6/13 (Calculus 4, Applications)

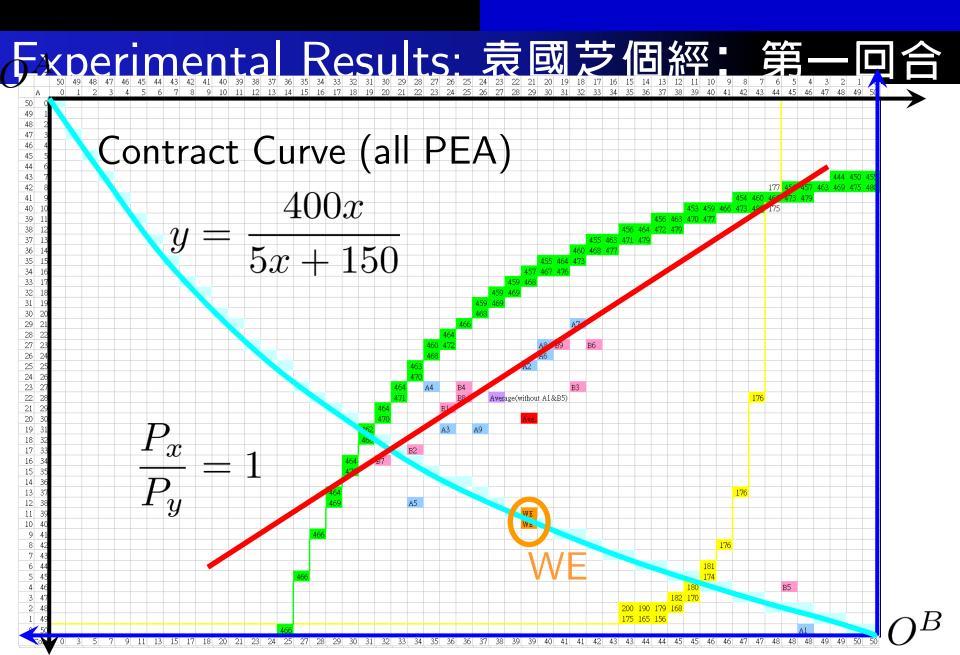


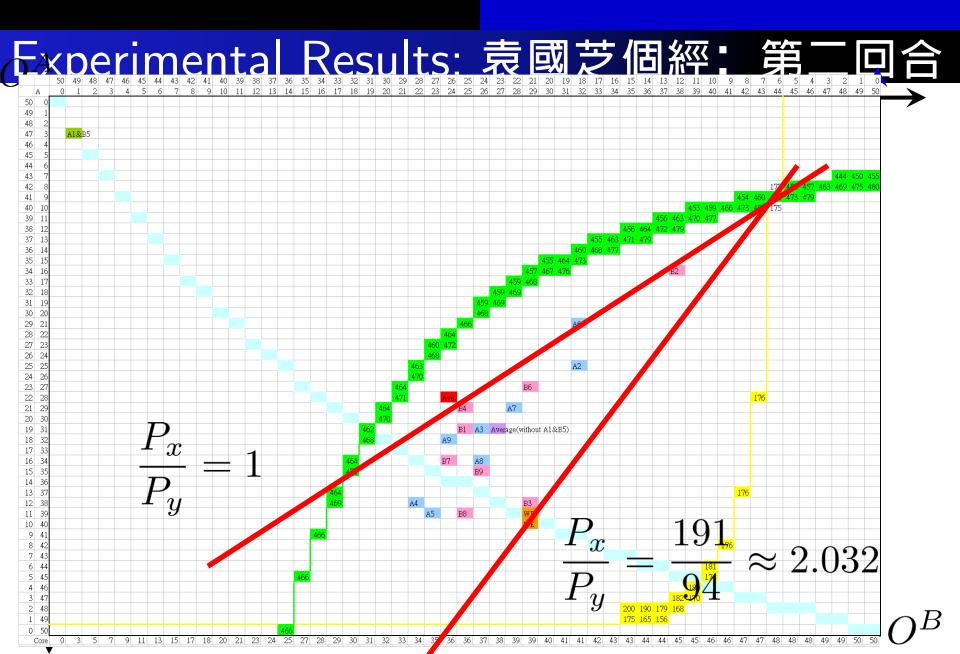


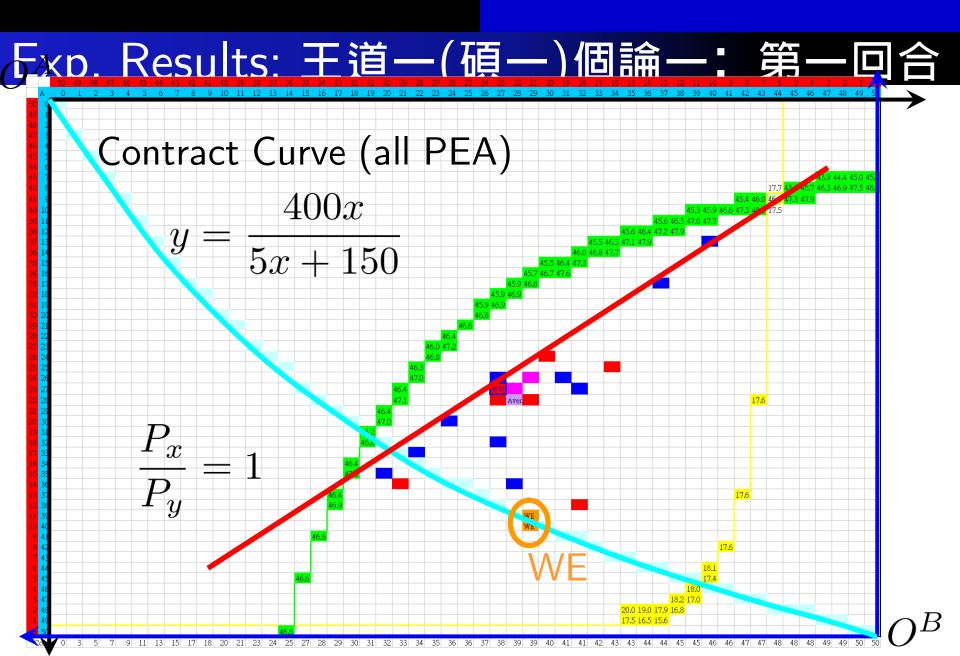


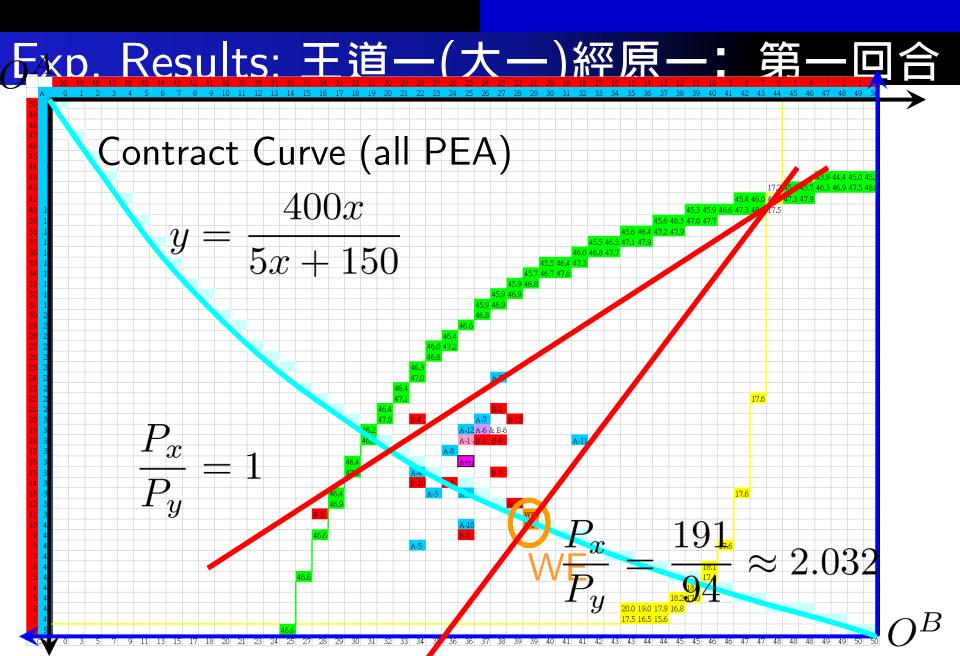












What Have We Learned?

- Bilateral trade happens in the Eye
- Prices converge toward WE prices
- Final positions converge toward core and WE

 Average closer in 2nd round; variance decreases
- Still a lot of noise (but does not effect results)
- Markets work without full information (Hayek)
- What provided the force of competition?
 Existence of perfect substitute (other A and Bs)
- How can we get further converge?
 - Experience? Larger space? Other trading rules?