Second Order Conditions

Joseph Tao-yi Wang and Ya-Ju Tsai 2019/6/3

(Calculus 4, 19.3)

Recall the Hessian from Section 17.3

- Suppose $U \in \mathbf{R}^n$ is an open set, $F(\vec{x})$ is C^2 Let \vec{x}^* satisfies $\frac{\partial F}{\partial x_i}(\vec{x}) = 0, i = 1, \cdots, n$
- The Hessian at $\vec{x} = \vec{x}^*$ is

$$D^{2}F(\vec{x}) = \begin{pmatrix} \frac{\partial^{2}F}{\partial x_{1}^{2}}(\vec{x}^{*}) & \cdots & \frac{\partial^{2}F}{\partial x_{n}\partial x_{1}}(\vec{x}^{*}) \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2}F}{\partial x_{1}\partial x_{n}}(\vec{x}^{*}) & \cdots & \frac{\partial^{2}F}{\partial x_{n}^{2}}(\vec{x}^{*}) \end{pmatrix}$$

Thm 17.2: Unconstrained Max. SOC

- Suppose $U \in \mathbf{R}^n$ is an open set, $F(\vec{x})$ is C^2 Let \vec{x}^* satisfies $\frac{\partial F}{\partial x_i}(\vec{x}) = 0, i = 1, \cdots, n$
- 1. If the Hessian $D^2F(\vec{x}^*)$ is negative definite, then \vec{x}^* is a strict local max of F
- 2. If the Hessian $D^2F(\vec{x}^*)$ is positive definite, then \vec{x}^* is a strict local min of F
- 3. If $D^2F(\vec{x}^*)$ is indefinite, then \vec{x}^* is neither a strict local max nor a local min of F

Thm 19.7: One Equality Constraint SOC

- Let f, h be C^2 functions on \mathbf{R}^2
- To maximize f on the constraint set

$$C_h = \left\{ (x, y) \middle| h(\vec{x}) = c \right\}$$

• Form the Lagrangian

$$\mathcal{L}(\vec{x}, \vec{\mu}) = f(\vec{x}) - \mu[h(\vec{x}) - c]$$

• (x^*, y^*) is a local constrained max of f on C_h if:

Thm 19.7: One Equality Constraint SOC Exists μ^* such that (x^*, y^*, μ^*) satisfies:

1.
$$\frac{\partial \mathcal{L}}{\partial x} = 0, \quad \frac{\partial \mathcal{L}}{\partial y} = 0, \quad \frac{\partial \mathcal{L}}{\partial \mu} = 0 \text{ at } (x^*, y^*, \mu^*)$$

2.
$$\det \begin{pmatrix} 0 & \frac{\partial h}{\partial x} & \frac{\partial h}{\partial y} \\ \frac{\partial h}{\partial x} & \frac{\partial^2 \mathcal{L}}{\partial x^2} & \frac{\partial^2 \mathcal{L}}{\partial x \partial y} \\ \frac{\partial h}{\partial y} & \frac{\partial^2 \mathcal{L}}{\partial x \partial y} & \frac{\partial^2 \mathcal{L}}{\partial y^2} \end{pmatrix} > 0 \text{ at } (x^*, y^*, \mu^*)$$

Thm 19.6: Equality Constraints SOC

- Let f, h_1 ,..., h_k be C^2 functions on ${f R}^n$
- To maximize f on the constraint set $C_h = \{ \vec{x} : h_1(\vec{x}) = c_1, \cdots, h_k(\vec{x}) = c_k \}$
- Form the Lagrangian $\mathcal{L}(\vec{x}, \vec{\mu}) = f(\vec{x}) - \mu_1 [h_1(\vec{x}) - c_1]$ $- \cdots - \mu_k [h_k(\vec{x}) - c_k]$
- \vec{x}^* is a strict local constrained max of f on C_h if:

Thm 19.6: Equality Constraints SOC

1. $\vec{x}^* \in C_h$

2. Exists $\vec{\mu}^* = (\mu_1^*, \cdots, \mu_k^*)$ such that at $(\vec{x}^*, \vec{\mu}^*)$ $\frac{\partial \mathcal{L}}{\partial x_i} = 0$ (*i*=1,...,*n*), $\frac{\partial \mathcal{L}}{\partial \mu_i} = 0$ (*j*=1,...,*k*) 3. $D^2_{\vec{x}}\mathcal{L}(\vec{x}^*,\vec{\mu}^*)$, Hessian of \mathcal{L} w.r.t. \vec{x} at $(\vec{x}^*,\vec{\mu}^*)$ is negative definite on the linear constraint set $\{ \vec{v} : D\vec{h}(\vec{x}^*) \vec{v} = \vec{0} \}$. i.e. If $\vec{v} \neq \vec{0}$ and $D\vec{h}(\vec{x}^*)\vec{v} = \vec{0}$ $\Rightarrow \vec{v}^T [D_{\vec{x}}^2 \mathcal{L}(\vec{x}^*, \vec{\mu}^*)] \ \vec{v} < 0$

• How can we check condition 3.?

Condition 3. of Thm 19.6

3. $D^2_{\vec{x}} \mathcal{L}(\vec{x}^*, \vec{\mu}^*)$, Hessian of \mathcal{L} w.r.t. \vec{x} at $(\vec{x}^*, \vec{\mu}^*)$ is negative definite on the linear constraint set $\{\vec{v}: D\vec{h}(\vec{x^*})\vec{v} = \vec{0}\}$.

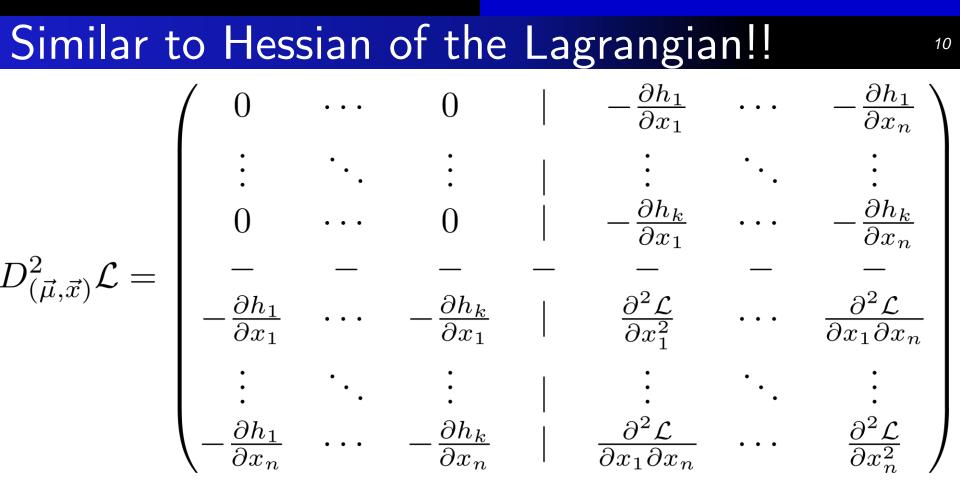
• Form
$$H = \begin{pmatrix} \vec{0} & D\vec{h}(\vec{x}^*) \\ D\vec{h}(\vec{x}^*)^T & D_{\vec{x}}^2 \mathcal{L}(\vec{x}^*, \vec{\mu}^*) \end{pmatrix}$$

- If the last (n-k) LPM of matrix H alternate in sign, and $(-1)^n \cdot \det H > 0$
- Then Condition 3. of Thm 19.6 holds.

Hessian for Thm 19.6: Equality Constraints

H =

$\int 0$	•••	0	$rac{\partial h_1}{\partial x_1}$	•••	$\frac{\partial h_1}{\partial x_n}$
•	••••	• •	• •	••••	• •
0	•••	0	$rac{\partial h_k}{\partial x_1}$	•••	$rac{\partial h_k}{\partial x_n}$
—			 		—
$rac{\partial h_1}{\partial x_1}$	•••	$rac{\partial h_k}{\partial x_1}$	$rac{\partial^2 \mathcal{L}}{\partial x_1^2}$	•••	$rac{\partial^2 \mathcal{L}}{\partial x_1 \partial x_n}$
•	••••	• •	• •	••••	• •
$iggl(rac{\partial h_1}{\partial x_n}iggr)$	•••	$rac{\partial h_k}{\partial x_n}$	$rac{\partial^2 \mathcal{L}}{\partial x_1 \partial x_n}$	•••	$\frac{\partial^2 \mathcal{L}}{\partial x_n^2} $



• Multiplying each row and each column by (-1) does not change the determinant and LPMs!

Thm 16.4: Definiteness of Quadratic Forms

- For $Q(\vec{x}^*) = \vec{x}^T A \vec{x}$ restricted to $B \vec{x} = \vec{0}$,
- Check the bordered matrix

$$H = \begin{pmatrix} \vec{0} & B \\ B^T & A \end{pmatrix}_{(n+m)\times(n+m)}$$

- and its Leading Principal Minors (LPM)
- The k-th order LPM is the determinant of the leading principal matrix A_k , derived by deleting last n-k rows and columns of a matrix A

Thm 16.4: Definiteness of Quadratic Forms

$$H = \begin{pmatrix} \vec{0} & B \\ B^T & A \end{pmatrix}_{(n+m) \times (n+m)}$$

- 1. If $(-1)^n \cdot \det H > 0$ and the last n m LPMalternate in sign, then Q is negative definite $(\vec{x} = \vec{0} \text{ is a strict local max of } F \text{ on } B\vec{x} = \vec{0})$
- 2. If det H and its last n m LPM all have same sign as $(-1)^m$, then Q is positive definite $(\vec{x} = \vec{0} \text{ is a strict local min of } F \text{ on } B\vec{x} = \vec{0})$
- 3. If neither, then Q is indefinite on $B\vec{x} = \vec{0}$

Thm 19.8: Add Inequality Constraints

- Let f, g_1 ,..., g_m , h_1 ,..., h_k be C^2 functions on ${f R}^n$
- To maximize f on the constraint set
 - $C_{g,h} = \{ \vec{x} \mid g_1(\vec{x}) \le b_1, \cdots, g_m(\vec{x}) \le b_m,$

$$h_1(\vec{x}) = c_1, \cdots, h_k(\vec{x}) = c_k$$

- Form the Lagrangian $\mathcal{L}(\vec{x}, \lambda, \vec{\mu}) =$ $f(\vec{x}) - \lambda_1 [g_1(\vec{x}) - b_1] - \dots - \lambda_m [g_m(\vec{x}) - b_m]$ $- \mu_1 [h_1(\vec{x}) - c_1] - \dots - \mu_k [h_k(\vec{x}) - c_k]$
- \vec{x}^* is a strict local constrained max of f on $C_{g,h}$ if:

Thm 19.8: Add Inequality Constraints

- 1. Exists $\vec{\lambda}^* = (\lambda_1^*, \cdots, \lambda_m^*), \vec{\mu}^* = (\mu_1^*, \cdots, \mu_k^*)$
- such that at $(\vec{x}^*, \vec{\lambda}^*, \vec{\mu}^*)$, $\frac{\partial \mathcal{L}}{\partial x_i} = 0$ (i=1,...,n)
- $\lambda_j^* \ge 0, \quad \lambda_j^* [g_j(\vec{x}^*) b_1] = 0 \quad (j=1,...,k)$

 $h_1(\vec{x}^*) = c_1, \cdots, h_k(\vec{x}^*) = c_k$ 2. $\vec{g}_E = (g_1, \cdots, g_e)$ binding $(g_{e+1}, \dots, g_m \text{ not})$ $D_{\vec{x}}^2 \mathcal{L}(\vec{x}^*, \vec{\lambda}^*, \vec{\mu}^*)$, Hessian of \mathcal{L} wrt \vec{x} at $(\vec{x}^*, \vec{\lambda}^*, \vec{\mu}^*)$ is negative definite on the linear constraint set $\{\vec{v}: D\vec{q}_E(\vec{x}^*)\vec{v} = \vec{0} \text{ and } D\vec{h}(\vec{x}^*)\vec{v} = \vec{0}\}$

Condition 2. of Thm 19.8

2. $\vec{g}_E = (g_1, \cdots, g_e)$ binding $(g_{e+1}, \dots, g_m \text{ not})$ $D^2_{\vec{x}}\mathcal{L}(\vec{x}^*, \vec{\lambda}^*, \vec{\mu}^*)$, Hessian of \mathcal{L} wrt \vec{x} at $(\vec{x}^*, \vec{\lambda}^*, \vec{\mu}^*)$ is negative definite on the linear constraint set $\{\vec{v}: D\vec{g}_E(\vec{x}^*)\vec{v} = \vec{0} \text{ and } D\vec{h}(\vec{x}^*)\vec{v} = \vec{0}\}$ I.e. $\vec{v} \neq \vec{0}, D\vec{g}_E(\vec{x}^*)\vec{v} = \vec{0}, D\vec{h}(\vec{x}^*)\vec{v} = \vec{0}$ $\Rightarrow \vec{v}^T \cdot \left| D_{\vec{x}}^2 \mathcal{L}(\vec{x}^*, \vec{\lambda}^*, \vec{\mu}^*) \right| \cdot \vec{v} < 0$ Bordered Hessian H and check if the last n-(e+k)LPM of matrix H alternate in sign, and $(-1)^n \cdot \det H > 0$

Н	ess	ian	for 7	⁻ hm	19.8:	+	Ineq	uality	Con	straint
(0	• • •	0	0	• • •	0		$rac{\partial g_1}{\partial x_1}$	• • •	$\left(\begin{array}{c} \frac{\partial g_1}{\partial x_n} \end{array} \right)$
	• •	•	• •	• •	••••	• •		•	••••	:
	0	•••	0	0	•••	0	Ì	$rac{\partial g_e}{\partial x_1}$	•••	$rac{\partial g_k}{\partial x_n}$
	0	•••	0	0	•••	0		$rac{\partial g_e}{\partial x_1} \ rac{\partial h_1}{\partial x_1}$	•••	$\frac{\frac{\partial x_n}{\partial x_n}}{\frac{\partial h_1}{\partial x_n}}$
	• •	••••	• •	• •	•••	• •		÷	•••	÷
	0	•••	0	0	•••	0	İ	$rac{\partial h_k}{\partial x_1}$	•••	$rac{\partial h_k}{\partial x_n}$
			_		_		_	-		
	$rac{\partial g_1}{\partial x_1}$	•••	$rac{\partial g_e}{\partial x_1}$	$rac{\partial h_1}{\partial x_1}$	•••	$rac{\partial h_k}{\partial x_1}$		$rac{\partial^2 \mathcal{L}}{\partial x_1^2}$	•••	$rac{\partial^2 \mathcal{L}}{\partial x_1 \partial x_n}$
	• •	••••	•	• •	•••	• •		•	•••	÷
$\int \frac{d}{dt}$	$\frac{\partial g_1}{\partial x_n}$	•••	$rac{\partial g_e}{\partial x_n}$	$rac{\partial h_1}{\partial x_n}$	•••	$\frac{\partial h_k}{\partial x_n}$		$\frac{\partial^2 \mathcal{L}}{\partial x_1 \partial x_n}$	•••	$\frac{\partial^2 \mathcal{L}}{\partial x_n^2}$)