Second Order Conditions for Constrained Optimization

Name
Major

Student ID

Let f, h be C^{2} functions on R^{2}. To maximize f on the constraint set $C_{h}=\{(x, y) \mid h(\vec{x})=c\}$, Form the Lagrangian

$$
\mathcal{L}(\vec{x}, \vec{\mu})=f(\vec{x})-\mu[h(\vec{x})-c] .
$$

$\left(x^{*}, y^{*}, \mu^{*}\right)$ is a local constrained max of f on C_{h} if there exists μ^{*} such that $\left(x^{*}, y^{*}, \mu^{*}\right)$ satisfies:

1. FOC:

$$
\frac{\partial \mathcal{L}}{\partial x}=0, \quad \frac{\partial \mathcal{L}}{\partial y}=0, \quad \frac{\partial \mathcal{L}}{\partial \mu}=0 \text { at }\left(x^{*}, y^{*}, \mu^{*}\right)
$$

2. Bordered Matrix satisfies:

$$
\operatorname{det}\left(\begin{array}{ccc}
0 & \frac{\partial h}{\partial x} & \frac{\partial h}{\partial y} \\
\frac{\partial h}{\partial x} & \frac{\partial^{2} \mathcal{L}}{\partial x^{2}} & \frac{\partial^{2} \mathcal{L}}{\partial x y} \\
\frac{\partial h}{\partial y} & \frac{\partial^{2} \mathcal{L}}{\partial x \partial y} & \frac{\partial^{2} \mathcal{L}}{\partial y^{2}}
\end{array}\right)>0 \text { at }\left(x^{*}, y^{*}, \mu^{*}\right)
$$

Complete the following questions:

1. Suppose $\frac{\partial h}{\partial x}\left(x^{*}, y^{*}\right) \neq 0$. How does Simon and Blume (1994) prove the above Theorem?
2. Now suppose $\frac{\partial h}{\partial x}\left(x^{*}, y^{*}\right)=0$. Write your own proof assuming instead that $\frac{\partial h}{\partial y}\left(x^{*}, y^{*}\right) \neq 0$.
3. Prove the inequality version of the above theorem:

Let f, g be C^{2} functions on R^{2}. To maximize f on the constraint set $C_{g}=\{(x, y) \mid g(\vec{x}) \leq$ $b\}$, Form the Lagrangian

$$
\mathcal{L}(\vec{x}, \vec{\mu})=f(\vec{x})-\lambda[g(\vec{x})-b] .
$$

Then, $\left(x^{*}, y^{*}, \lambda^{*}\right)$ is a local constrained max of f on C_{g} if there exists λ^{*} such that $\left(x^{*}, y^{*}, \lambda^{*}\right)$ satisfies:
(a) FOC:

$$
\frac{\partial \mathcal{L}}{\partial x}=0, \quad \frac{\partial \mathcal{L}}{\partial y}=0, \quad \lambda^{*} \geq 0, \quad \lambda^{*}\left[g(\vec{x}-b]=0 \text { at }\left(x^{*}, y^{*}, \mu^{*}\right)\right.
$$

(b) Suppose g is binding at $\left(x^{*}, y^{*}\right)$, then Bordered Matrix satisfies:

$$
\operatorname{det}\left(\begin{array}{ccc}
0 & \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial^{2} \mathcal{L}}{\partial x^{2}} & \frac{\partial^{2} \mathcal{L}}{\partial x y} \\
\frac{\partial g}{\partial y} & \frac{\partial^{2} \mathcal{L}}{\partial x \partial y} & \frac{\partial^{2} \mathcal{L}}{\partial y^{2}}
\end{array}\right)>0 \text { at }\left(x^{*}, y^{*}, \lambda^{*}\right)
$$

Otherwise, if g is not binding, the Hessian of the Lagrangian is negative definite, or

$$
\frac{\partial^{2} \mathcal{L}}{\partial x^{2}}<0, \text { and } \operatorname{det}\left(\begin{array}{cc}
\frac{\partial^{2} \mathcal{L}}{\partial x^{2}} & \frac{\partial^{2} \mathcal{L}}{\partial x \partial y} \\
\frac{\partial^{2} \mathcal{L}}{\partial x \partial y} & \frac{\partial^{2} \mathcal{L}}{\partial y^{2}}
\end{array}\right)>0 \text { at }\left(x^{*}, y^{*}, \lambda^{*}\right) .
$$

