Bridging the Gap to Advanced Theorems of Constrained Optimization

Old Theorem

- Lagrange Multiplier Method:
- We want to find the extreme values of a function f(x, y, z) subject to two constraints of the form g(x, y, z) = k and h(x, y, z) = c.
- Suppose that the extreme value occurs at (x_0, y_0, z_0) and $\nabla g(x_0, y_0, z_0)$ is not parallel to $\nabla h(x_0, y_0, z_0)$.
- Then at (x_0, y_0, z_0) , $\nabla f = \lambda \nabla g + \mu \nabla h$.

Old Theorem

• The method of Lagrange multipliers can be applied to find extreme values of a function of *n* variables, say $f(\vec{x})$ where \vec{x} is a vector of *n* variables, $\vec{x} = (x_1, \dots, x_n)$ subject to $m \le n - 1$ constraints,

 $g_1(\vec{x}) = 0, \dots, g_m(\vec{x}) = 0.$

Old Theorem

Assume that f and all of the function g_j have continuous first derivatives in a neighborhood of the point P where the extreme value occurs, and the intersection of the constraint surfaces is smooth near P. Then P is the critical point of the (n + m)-variable Lagrangian function : m

$$L(\vec{x}, \lambda_1, \lambda_1, \dots, \lambda_m) = f(\vec{x}) + \sum_{j=1} \lambda_j g_j(\vec{x})$$

Old Theorem,	
New Formulation	
Theorem 18.2 Question	Maximize $f(x_1, x_2, \cdots, x_n)$
	Under constraints $h(\vec{x}) = a_1, \dots, h_m(\vec{x}) = a_m$
Lagrangian Function	$L(x_1, \dots, x_n, \mu_1, \dots, \mu_m) = f(\vec{x}) - \mu_1[h_1(\vec{x}) - a_1] - \dots - \mu_m[h_m(\vec{x}) - a_m]$
Nondegenerate Constraint Qualification (NDCQ)	At the extreme point \vec{x}^* , the rank of the $m \times n$ matrix of Jacobian derivatives $Dh(\vec{x}^*) = \left(\frac{\partial h_i}{\partial x_j}\right)_{ij}^{\text{is maximal.}}$
First Order Conditions	There are μ_1^*, \dots, μ_m^* such that for $1 \le i \le n$ and $1 \le j \le m$ $\frac{\partial L}{\partial x_i}(\vec{x}^*, \mu_1^*, \dots, \mu_m^*) = 0$ $\frac{\partial L}{\partial \mu_j}(\vec{x}^*, \mu_1^*, \dots, \mu_m^*) = 0$

Some New Languages

- Lagrangian Function
- Nondegenerate Constraint Qualification
 - Linear independent vectors
 - Rank of a matrix

Some New Languages

- Definition:
- The vectors $\vec{v}_1, \ldots, \vec{v}_k$ are said to be *linear independent* if the equation

 $a_1 \vec{v}_1 + a_2 \vec{v}_2 + \dots + a_k \vec{v}_k = 0$

can only be satisfied by $a_1 = a_2 = \cdots = a_k = 0$

Some New Languages

- Definition:
- The vectors $\vec{v}_1, \ldots, \vec{v}_k$ are said to be *linear* dependent if there exists a_1, a_2, \ldots, a_k , not all zeros, such that $a_1\vec{v}_1 + a_2\vec{v}_2 + \cdots + a_k\vec{v}_k = 0$.
- Properties:
- If vectors $\vec{v}_1, \ldots, \vec{v}_k$ are linear dependent, then one of the vectors can be written as the linear combination of the others.

Some New Languages

- Definition:
- The rank of a m × n matrix is the dimension of the linear space spanned by the row vectors of the matrix.
- Definition:
- A m × n matrix (m < n) is said to have maximal rank, if the rank is m, which means that the row vectors are linear independent.