Bridging the Gap to Advanced Theorems of Constrained Optimization

Old Theorem

- The method of Lagrange multipliers can be applied to find extreme values of a function of n variables, say $f(\vec{x})$ where \vec{x} is a vector of n variables, $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ subject to $m \leq n-1$ constraints ,

$$
g_{1}(\vec{x})=0, \ldots, g_{m}(\vec{x})=0 .
$$

Old Theorem

- Lagrange Multiplier Method:
- We want to find the extreme values of a function $f(x, y, z)$ subject to two constraints of the form $g(x, y, z)=k$ and $h(x, y, z)=c$.
- Suppose that the extreme value occurs at $\left(x_{0}, y_{0}, z_{0}\right)$ and $\nabla g\left(x_{0}, y_{0}, z_{0}\right)$ is not parallel to $\nabla h\left(x_{0}, y_{0}, z_{0}\right)$.
- Then at $\left(x_{0}, y_{0}, z_{0}\right), \nabla f=\lambda \nabla g+\mu \nabla h$.

Old Theorem

- Assume that f and all of the function g_{j} have continuous first derivatives in a neighborhood of the point P where the extreme value occurs, and the intersection of the constraint surfaces is smooth near P. Then P is the critical point of the $(n+m)$-variable
Lagrangian function

$$
L\left(\vec{x}, \lambda_{1}, \lambda_{1}, \ldots, \lambda_{m}\right)=f(\vec{x})+\sum_{j=1}^{m} \lambda_{j} g_{j}(\vec{x})
$$

Old Theorem, New Formulation

Theorem 18.2 Maximize $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$
Question

Lagrangian	$L\left(x_{1}, \ldots, x_{n}, \mu_{1}, \ldots, \mu_{m}\right)=$
Function	$f(\vec{x})-\mu_{1}\left[h_{1}(\vec{x})-a_{1}\right]-\cdots-\mu_{m}\left[h_{m}(\vec{x})-a_{m}\right]$

Nondegenerate At the extreme point \vec{x}^{*}, the rank of the $m \times n$ matrix of Constraint Jacobian derivatives
$D h\left(\vec{x}^{*}\right)=\left(\frac{\partial h_{i}}{\partial x_{j}}\right)_{i j}^{\text {is maximal. }}$
(NDCQ)
First Order
Conditions
There are $\mu_{1}^{*}, \ldots, \mu_{m}^{*}$ such that for $1 \leq i \leq n$ and $1 \leq j \leq m$ $\frac{\partial L}{\partial x_{i}}\left(\vec{x}^{*}, \mu_{1}^{*}, \ldots, \mu_{m}^{*}\right)=0 \quad \frac{\partial L}{\partial \mu_{j}}\left(\vec{x}^{*}, \mu_{1}^{*}, \ldots, \mu_{m}^{*}\right)=0$

Some New Languages

- Lagrangian Function
- Nondegenerate Constraint Qualification
- Linear independent vectors
- Rank of a matrix

Some New Languages

- Definition:
- The vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are said to be linear independent if the equation
$a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{k} \vec{v}_{k}=0$
can only be satisfied by $a_{1}=a_{2}=\cdots=a_{k}=0$

Some New Languages

- Definition:
- The vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are said to be linear dependent if there exists $a_{1}, a_{2}, \ldots, a_{k}$, not all zeros, such that $a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{k} \vec{v}_{k}=0$.
- Properties:
- If vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are linear dependent, then one of the vectors can be written as the linear combination of the others.

Some New Languages

- Definition:
- The rank of a $m \times n$ matrix is the dimension of the linear space spanned by the row vectors of the matrix.
- Definition:
- A $m \times n$ matrix $(m<n)$ is said to have maximal rank, if the rank is m, which means that the row vectors are linear independent.

