Lagrange Multiplier in Economics

Name
Major
Student ID
Consider the production function $q=f(K, L)$. Given that the unit cost of capital is P_{K} and the unit cost of labor is P_{L}, the total cost of production is $g(K, L)=P_{K} \cdot K+P_{L} \cdot L$. A firm may want to maximize production under fixed budget or minimize cost under fixed production.

1. For the Cobb-Douglas production function $q=f(K, L)=A K^{1-\alpha} L^{\alpha}, A>0,0<\alpha<1$, find $\left(K^{*}, L^{*}\right)$ that maximizes the production q subject to the budget constraint $g(K, L)=I$ where I is a constant.
2. In general, show that $\left(K^{*}, L^{*}\right)$ satisfies $\frac{\frac{\partial f}{\partial K}\left(K^{*}, L^{*}\right)}{P_{K}}=\frac{\frac{\partial f}{\partial L}\left(K^{*}, L^{*}\right)}{P_{L}}$. What is the economic interpretation of this equation?
3. Now suppose that the production is fixed at $\bar{q}=f(K, L)=A K^{1-\alpha} L^{\alpha}$ where \bar{q} is a constant. What values of K and L would minimize the cost function $g(K, L)=P_{K} \cdot K+P_{L} \cdot L$?
4. Consider production function $q=f(K, L)=K^{\frac{1}{3}}+L^{\frac{2}{3}}$. Find $\left(K^{*}, L^{*}\right)$ that maximizes q subject to the budget constraint $K+2 L=I$. If I increases, will $\frac{K^{*}}{L^{*}}$ increase (prefer to employ more capital K) or decrease (prefer to employ more labor L)?
