Alternating Series and Absolute Convergence

Section 11.5-11.6

Outline

- Alternating Series
- Definition
- Alternating Series Test
- Estimating Sums
- Absolute Convergence
- Definition
- The Ratio Test
- The Root Test
- Rearrangements of Series

Alternating Series

- Definition:
- An alternating series is a series whose terms are alternately positive and negative.
- Example:

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}
$$

- Try to plot partial sums of the above "alternating harmonic series".

Estimating Sums

- Alternating Series Estimation Theorem:
- If $s=\sum(-1)^{n-1} b_{n}$ where $b_{n}>0$ and the series satisfies (i) $b_{n+1} \leq b_{n}$ for all n (ii) $\lim _{n \rightarrow \infty} b_{n}=0$, then we can estimate the ${ }_{\text {remainder term }}^{n \rightarrow \infty}$

$$
\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1} .
$$

Alternating Series Test

- Alternating Series Test:
- If the alternating series
$\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+\cdots, \quad b_{n}>0$
satisfies (i) $b_{n+1} \leq b_{n}$ for all n (ii) $\lim _{n \rightarrow \infty} b_{n}=0$ then the series converges.

Absolute Convergence

Definition: A series $\sum a_{n}$ is called absolutely convergent if $\sum\left|a_{n}\right|$, the series of absolute values, is convergent.

- Definition: A series $\sum a_{n}$ is called conditionally convergent if it is convergent but not absolutely convergent.
- Theorem: If a series is absolutely convergent, then it is convergent.

Absolute Convergence

- What is the difference between absolutely convergent series and conditionally convergent series?
- Theorem:
- Given a series $=$, let $a_{n}^{+}=\frac{a_{n}+\left|a_{n}\right|}{2}$, $a_{n}^{-}=\frac{a_{n}-\left|a_{n}\right|}{2}$. If is absolutely convergent, then both $\sum a_{n}^{+}$and $\sum a_{n}^{-}$are convergent. If is conditionally convergent, then both $\sum a_{n}^{+}$and $\sum a_{n}^{-}$are divergent.

The Root Test

- The root test:
- Case 1: If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L<1$, then $\sum a_{n}$ is absolutely convergent (and hence convergent).
- Case 2: If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L>1$, or $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\infty$ then $\sum a_{n}$ is divergent.
- Case 3: If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=1$, the root test is inconclusive.

The Ratio Test

- The ratio test:
- Case 1: If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$, then $\sum a_{n}$ is absolutely convergent (and hence convergent).
- Case 2: If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$, or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\propto$ then $\sum a_{n}$ is divergent.
- Case 3: If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, the ratio test is inconclusive.

The Root Test

- Note:
- If $L=1$ in the Ratio Test, don't try the Root Test because the limit will again be 1.
- If $L=1$ in the Root Test, don't try the Ratio Test because the limit either won't exist or the limit will be 1 .

Rearrangements of Series

- By a rearrangement of an infinite series $\sum a_{n}$ we mean a series obtained by simply changing the order of the terms.
- If we rearrange the order of the terms in a finite sum, then the value of the sum remains unchanged. But this is not always the case for an infinite series. (This is the main difference between conditional convergence series and absolute convergence series.)

Rearrangements of Series

- Theorem:
- If $\sum a_{n}$ is absolutely convergent with sum S, then any rearrangement of $\sum a_{n}$ has the same sum S.
- If $\sum a_{n}$ is conditionally convergent and r is any real number, then there is a rearrangement of $\sum a_{n}$ that has the sum equal to r. We can even rearrange $\sum a_{n}$ so that the new series diverges to positive infinity or negative infinity.

Rearrangements of Series

- Examples:
$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6} \cdots=\ln 2$
$1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\cdots=\frac{3}{2} \ln 2$
- You can find out some other interesting rearrangements of the alternating harmonic series !!

Review

- State the Alternating Series Test.
- How do we estimate the remainder term of an alternating series?
- What are the definitions of "absolute convergence" and "conditional convergence" of a series?
- State the Ratio Test and the Root Test.
- When will the rearrangements of a series always lead to the same sum?

