
Calculus 4 With Applications in Economics and Management – Final Exam

PART A: True or False
Determine whether the following statements are True or False:

1. (2%) Every bounded nonempty set of rational numbers has a least upper bound which is
also a rational number.

2. (2%) If {an} is a bounded increasing sequence, then {an} converges to the least upper
bound of {an}.

3. (2%) If b is the least upper bound of S, a subset of real numbers, then for every ϵ > 0,
there is an s ∈ S such that b− ϵ < s ≤ b.

4. (2%) Every bounded sequence has a convergent subsequence.

5. (2%) Suppose that f(x, y) is continuous on R2 and f(x0, y0) = 0, f(x1, y1) = 1. Let
p0 = (x0, y0) and p1 = (x1, y1). Then, for every 0 < λ < 1, there is some (xλ, yλ) on the
line segment p0p1 such that f(xλ, yλ) = λ. (Ans: FTTTT)

PART B: (15%) Find the interval of convergence of the power series
∞∑
n=2

an =
∞∑
n=2

1

4n · n · lnn
(x− 3)n.

Ans:
∣∣∣∣an+1

an

∣∣∣∣ = n lnn

4(n+ 1) ln(n+ 1)
|x− 3| = n

n+ 1
· lnn

ln(n+ 1)
· |x− 3|

4
→ |x− 3|

4
as n → ∞.

By the ratio test, if |x− 3|
4

< 1,
∞∑
n=2

an converges absolutely. If |x− 3|
4

> 1, then
∞∑
n=2

an diverges.

Therefore, the radius of convergence is 4.

For x − 3 = 4,
∞∑
n=2

an =
∞∑
n=2

1

n · lnn
. Consider the function f(x) =

1

x lnx
, f(x) is positive,

continuous and decreasing on [2,∞) and f(n) = an. Hence, by the integral test,
∞∑
n=2

1

n lnn

converges if and only if
∫ ∞

2

f(x)dx converges. Therefore,
∞∑
n=2

1

n lnn
diverges since

∫ ∞

2

f(x)dx = lim
T→∞

∫ T

2

f(x)dx = lim
T→∞

ln(ln(x))
∣∣∣∣T
x=2

= lim
T→∞

ln(lnT )− ln(ln 2) = ∞.

For x−3 = −4,
∞∑
n=2

an =
∞∑
n=2

(−1)n

n · lnn
. Since

{
1

n lnn

}
is positive, decreasing and lim

n→∞

1

n lnn
= 0,

the alternating series
∞∑
n=2

(−1)n

n lnn
converges. Thus, the power series converges for x ∈ [−1, 7).
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PART C: Consumer Theory
Consider a consumer who enjoys n goods x⃗ = (x1, · · · , xn), and has the utility function

U(x1, · · · , xn) = −
∑n

i=1 ai(xi − bi)
2, ai > 0, bi > 0, which is defined on x1 ≥ 0, · · · , xn ≥ 0. We

assume the consumer has income I to spend, and faces market price p⃗ = (p1, · · · , pn). Assuming

I, p1, · · · and pn > 0, consumer’s budget constraint is
n∑

i=1

pixi ≤ I.

1. (5%) State the Kuhn-Tucker version Lagrangian function and its first order conditions.

Ans: L̃(x1, · · · , xn, λ) = −
n∑

i=1

ai(xi − bi)
2 − λ

(
n∑

i=1

pixi − I

)

The first order conditions are

∂L̃
∂xi

= −2ai(xi − bi)− λpi ≤ 0, xi ≥ 0, for 1 ≤ i ≤ n

xi ·
∂L̃
∂xi

= xi · (−2aixi + aibi − λpi) = 0 for 1 ≤ i ≤ n

∂L̃
∂λ

= I −
n∑

i=1

pixi ≥ 0, λ ≥ 0,

λ · ∂L̃
∂λ

= λ

(
I −

n∑
i=1

pixi

)
= 0

2. (10%) Now suppose
n∑

i=1

pibi > I. Is there a x⃗∗(p⃗, I) =
(
x∗
1(p1, · · · , pn, I), · · · , x∗

n(p1, · · · , pn, I)
)

with x∗
i > 0 for i = 1, · · · , n that satisfies the first order conditions? Find such x⃗∗(p⃗, I).

Note that x⃗∗(p⃗, I) maximizes utility subject to the budget constraint, so it is called the
demand function.
Ans: If (x∗

1, · · · , x∗
n) satisfies the above first order conditions and xi > 0 for 1 ≤ i ≤ n,

then from xi ·
∂L̃
∂xi

= 0 we derive −2aixi + 2aibi − λpi = 0. Hence, xi = bi − λ · pi
2ai

for

1 ≤ i ≤ n. If λ = 0, then xi = bi, but then I−
n∑

i=1

pibi < 0 violating the budget constraint.

Hence, λ > 0. So, I =
n∑

i=1

pixi =
n∑

i=1

pi

(
bi − λ · pi

2ai

)
, or λ ·

(
n∑

i=1

p2i
2ai

)
=

n∑
i=1

pibi − I.

Thus, λ =

n∑
i=1

pibi − I

n∑
i=1

p2i
2ai

> 0, and we have derived x∗
i = bi−

n∑
i=1

pibi − I

n∑
i=1

p2i
2ai

· pi
2ai

for 1 ≤ i ≤ n.
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3. (5%) (Continued) Find the maximized utility V (p⃗, I) = max
{
U(x1, · · · , xn)

∣∣∣∣ n∑
i=1

pixi ≤ I

}
.

Ans: V (p⃗, I) = U(x∗
1, · · · , x∗

n) = −
∑n

i=1 ai(x
∗
i − bi)

2

= −
n∑

i=1

ai ·
p2i
4a2i

·


n∑

j=1

pjbj − I

n∑
j=1

p2j
2aj


2

= −

(
n∑

j=1

pjbj − I

)2

n∑
j=1

p2j
aj

.

4. (5%) Use Envelope Theorem to derive ∂V
∂I
(p⃗, I) and ∂V

∂pi
(p⃗, I). What is the relationship

between
∂V
∂pi

(p⃗, I)
∂V
∂I
(p⃗, I)

and the demand function?

Ans: By the Envelope Theorem, we have
∂V

∂I
(p⃗, I) =

∂L
∂I

=
∂L̃
∂I

= λ∗,
∂V

∂pi
(p⃗, I) =

∂L
∂pi

=
∂L̃
∂pi

= −λ∗x∗
i .

Hence, −
∂V
∂pi
∂V
∂I

=
λ∗x∗

i

λ∗ = x∗
i (p⃗, I). This is called the Roy’s identity in microeconomic theory.

5. (bonus) What is the maximum achievable utility Umax for all possible xi ≥ 0 and I ≥ 0?
What is the minimum Umin?
Ans: Umax = 0 at xi = bi > 0. At I = 0, we have Umin = −

n∑
i=1

aib
2
i .

6. (bonus) For all feasible U ∈ [Umin, Umax], solve for the expenditure function M(p⃗, U) =

min
{

n∑
i=1

pixi

∣∣∣∣U(x1, · · · , xn) ≥ U

}
. (Hint: Use what you already know from above!)

Ans: Note that V
(
p⃗,M(p⃗, U)

)
= U for V (p⃗, I) = −

(
n∑

j=1

pjbj − I

)2

n∑
j=1

p2j
aj

. This is called duality.

Hence, we have U = −

(
n∑

j=1

pjbj −M(p⃗, U)

)2

n∑
j=1

p2j
aj

, or M(p⃗, U) =
n∑

j=1

pjbj −

√√√√(−U)
n∑

j=1

p2j
aj
.

Also note that we can derive compensated demand using Envelope Theorem:

∂M

∂pi
= xc(p⃗, U) = bi +

Upi
ai√√√√(−U)

n∑
j=1

p2j
aj

.
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PART D: Joint Production
Suppose a monopoly farm breeds q0 chicken to produce q1 chicken drumsticks and q2 chicken

breasts. q0, q1, q2 ∈ R, q0, q1, q2 ≥ 0. Since each chicken has two legs and one breast, output
q⃗ = (q1, q2) cannot exceed production constraints q1 ≤ 2q0 and q2 ≤ q0. Breeding chicken q0

requires a fixed cost F = 10, 000 and constant marginal cost c0 = 200, and selling each product
requires a constant marginal cost of packaging, c⃗ = (c1, c2) = (5, 10). Hence, the farm’s total
cost is

C(q0, q⃗) = F + c0q0 + c1q1 + c2q2 = 10, 000 + 200q0 + 5q1 + 10q2.

Let the demand function for each product depend on consumption of both products:

p1 = p1(q⃗) = p1(q1, q2) = 955− 1

3
q21 − q2

p2 = p2(q⃗) = p2(q1, q2) = 320− q1 − q2

1. (5%) Write down the profit-maximization problem for this farm.
Ans: Since total revenue is R(q0, q1, q2) = p1(q1, q2) · q1 + p2(q1, q2) · q2, the firm solves:

max π(q0, q1, q2) =
(
955− 1

3
q21 − q2

)
· q1 + (320− q1 − q2) · q2 − (10, 000 + 200q0 + 5q1 + 10q2)

s. t. g1(q0, q1, q2) = q1 − 2q0 ≤ 0

g2(q0, q1, q2) = q2 − q0 ≤ 0

q0 ≥ 0, q1 ≥ 0, q2 ≥ 0

Note that q0, q1, q2 are continuous variables, instead of discrete. This is of course unrealistic,
but can be a good approximation, especially when quantities are large.

2. (10%) State the Kuhn-Tucker version Lagrangian. Is the corresponding NDCQ satisfied?
Ans: L̃(q0, q1, q2) = π(q0, q1, q2)− λ1g1(q0, q1, q2)− λ2g2(q0, q1, q2)

= 955q1−
1

3
q31−q1q2+320q2−q1q2−q22−10, 000−200q0−5q1−10q2−λ1(q1−2q0)−λ2(q2−q0)

The Kuhn-Tucker NDCQ requires full rank for
(
∂gi
∂qj

)
(q⃗∗, λ⃗∗) over binding gi and qj > 0.

If q∗0 = 0, then q∗1 = q∗2 = 0. Therefore, the matrix is empty and NDCQ is trivially satisfied.
If q∗0 > 0 and gi is binding, then either q∗1 = q∗0 or q∗2 = 2q∗0, which means that q∗i > 0. Hence,

the matrix
(
∂gi
∂qj

)
has the terms ∂gi

∂q0
, ∂gi
∂qi

depending on which binds. Since gradients are

∇⃗g1 =

(
∂g1
∂q0

,
∂g1
∂q1

,
∂g1
∂q2

)
= (−2, 1, 0)

∇⃗g2 =

(
∂g2
∂q0

,
∂g2
∂q1

,
∂g2
∂q2

)
= (−1, 0, 1),

NDCQ is indeed satisfied regardless of which conatraints binds: When only q1 > 0, (−2, 1)

and (−1, 0) are linearly independent. When only q2 > 0, (−2, 0) and (−1, 1) are linearly
independent. When both q1, q2 > 0, the two gradients above are linearly independent.
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3. (5%) State the corresponding first order conditions.
Ans: The first order conditions are
∂L̃
∂q0

= −200 + 2λ1 + λ2 ≤ 0, q0 ≥ 0, q0 ·
∂L̃
∂q0

= q0 · (−200 + 2λ1 + λ2) = 0

∂L̃
∂q1

= 955− q21 − 2q2 − 5− λ1 ≤ 0, q1 ≥ 0, q1 ·
∂L̃
∂q1

= q1 · (955− q21 − 2q2 − 5− λ1) = 0

∂L̃
∂q2

= 320− 2q1 − 10− λ2 ≤ 0, q2 ≥ 0, q2 ·
∂L̃
∂q2

= q2 · (310− 2q1 − λ2) = 0

∂L̃
∂λ1

= 2q0 − q1 ≥ 0, λ1 ≥ 0 λ1 ·
∂L̃
∂λ1

= λ1 (2q0 − q1) = 0

∂L̃
∂λ2

= q0 − q2 ≥ 0, λ2 ≥ 0 λ2 ·
∂L̃
∂λ2

= λ2 (q0 − q2) = 0

4. Consider the case of q∗1 < 2q∗0. First assume q∗0 > 0.

(a) (15%) Is there a set of (q∗0, q∗1, q∗2) satisfying the first order conditions under this case?
Ans: If q∗0 > 0, q∗1 < 2q∗0, then −200 + 2λ1 + λ2 = 0. Since λ∗

1(2q
∗
0 − q∗1) = 0, we have

λ∗
1 = 0 and λ∗

2 = 200. Hence, q∗0 = q∗2 > 0. Therefore, the first order condition of q2
becomes 310− 2q∗1 − 2q∗2 − λ∗

2 = 110− 2q∗1 − 2q∗2 = 0.
If q∗1 = 0, then q∗2 = 110

2
= 55 = q∗0 and the first order condition of q1 becomes

950− (q∗1)
2−2q∗2 −λ∗

1 = 950−110 > 0. But this contradicts FOC ≤ 0, so we conclude
that q∗1 > 0. Thus, the first order condition of q1 becomes 950− (q∗1)

2 − 2q2 = 0.
Combining the two equations, we have 110 − 2q∗1 = 2q∗2 = 950 − (q∗1)

2. Therefore,
(q∗1)

2 − 2q∗1 − 840 = 0 = (q∗1 − 30)(q∗1 + 28). Hence, q∗1 = 30 (since −28 < 0), and
q∗2 = 1

2
(110 − 2 · 30) = 25 = q∗0. Thus, (q∗0, q∗1, q∗2, λ∗

1, λ
∗
2) = (25, 30, 25, 0, 200) satisfies

all first order conditions.

(b) (10%) Check second order conditions at this (q∗1, q
∗
2, q

∗
0). Is it a local maximum, local

minimum, or saddle point?
Ans: Consider the matrix

 0 ∇⃗g2

(∇⃗g2)
T
(

∂2L̃
∂qi∂qj

)  =


0 −1 0 1

−1 0 0 0

0 0 −2q1 −2

1 0 −2 −2

 .

Since only g2(q0, q1, q2) = q2 − q0 is binding and n = 3, we need to check the last two
leading principle minors at (25, 30, 25, 0, 200)

det


0 −1 0 1

−1 0 0 0

0 0 −60 −2

1 0 −2 −2

 = −116, and det


0 −1 0

−1 0 0

0 0 −60

 = 60.
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Since the determinant of the entire matrix has the same sign as (−1)n = (−1)3 and
the last two leading principle minors alternate in sign, we conclude that (25, 30, 25)

is a local maximum.

(c) (5%) Verify that the maximized profit at (q∗1, q∗2, q∗0) is indeed larger than the profit if
one chooses q∗∗0 = 0 (to rule out this case).
Ans: π(25, 30, 25) = (955−300−25)·30+(320−55)·25−(10, 000+5000+150+250) =

630 · 30 + 265 · 25− 15, 400 = 18, 900 + 6, 625− 15, 400 = 10, 125.

When q∗0 = 0, q∗1 = q∗2 = 0. Then, π(0, 0, 0) = −10, 000 < π(25, 30, 25). Hence,
q∗∗0 = 0 does not maximize profit π.

5. (bonus) Show that there is no (q∗1, q
∗
2, q

∗
0) satisfying the first order conditions if q∗2 < q∗0.

Ans: Exercise.

6. (bonus) Are there other possibilities? What is the solution to this maximization problem?
Ans: Exercise.
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