Calculus 4 With Applications in Economics and Management - Final Exam

PART A: True or False

Determine whether the following statements are True or False:

1. (2\%) Every bounded nonempty set of rational numbers has a least upper bound which is also a rational number.
2. (2\%) If $\left\{a_{n}\right\}$ is a bounded increasing sequence, then $\left\{a_{n}\right\}$ converges to the least upper bound of $\left\{a_{n}\right\}$.
3. (2%) If b is the least upper bound of S, a subset of real numbers, then for every $\epsilon>0$, there is an $s \in S$ such that $b-\epsilon<s \leq b$.
4. (2%) Every bounded sequence has a convergent subsequence.
5. (2%) Suppose that $f(x, y)$ is continuous on \mathbb{R}^{2} and $f\left(x_{0}, y_{0}\right)=0, f\left(x_{1}, y_{1}\right)=1$. Let $p_{0}=\left(x_{0}, y_{0}\right)$ and $p_{1}=\left(x_{1}, y_{1}\right)$. Then, for every $0<\lambda<1$, there is some $\left(x_{\lambda}, y_{\lambda}\right)$ on the line segment $\overline{p_{0} p_{1}}$ such that $f\left(x_{\lambda}, y_{\lambda}\right)=\lambda$. (Ans: FTTTT)

PART B: (15\%) Find the interval of convergence of the power series

$$
\sum_{n=2}^{\infty} a_{n}=\sum_{n=2}^{\infty} \frac{1}{4^{n} \cdot n \cdot \ln n}(x-3)^{n} .
$$

Ans: $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{n \ln n}{4(n+1) \ln (n+1)}|x-3|=\frac{n}{n+1} \cdot \frac{\ln n}{\ln (n+1)} \cdot \frac{|x-3|}{4} \rightarrow \frac{|x-3|}{4}$ as $n \rightarrow \infty$.
By the ratio test, if $\frac{|x-3|}{4}<1, \sum_{n=2}^{\infty} a_{n}$ converges absolutely. If $\frac{|x-3|}{4}>1$, then $\sum_{n=2}^{\infty} a_{n}$ diverges. Therefore, the radius of convergence is 4 .
For $x-3=4, \sum_{n=2}^{\infty} a_{n}=\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln n}$. Consider the function $f(x)=\frac{1}{x \ln x}, f(x)$ is positive, continuous and decreasing on $[2, \infty)$ and $f(n)=a_{n}$. Hence, by the integral test, $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ converges if and only if $\int_{2}^{\infty} f(x) d x$ converges. Therefore, $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ diverges since

$$
\int_{2}^{\infty} f(x) d x=\lim _{T \rightarrow \infty} \int_{2}^{T} f(x) d x=\left.\lim _{T \rightarrow \infty} \ln (\ln (x))\right|_{x=2} ^{T}=\lim _{T \rightarrow \infty} \ln (\ln T)-\ln (\ln 2)=\infty
$$

For $x-3=-4, \sum_{n=2}^{\infty} a_{n}=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \cdot \ln n}$. Since $\left\{\frac{1}{n \ln n}\right\}$ is positive, decreasing and $\lim _{n \rightarrow \infty} \frac{1}{n \ln n}=0$, the alternating series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \ln n}$ converges. Thus, the power series converges for $x \in[-1,7)$.

PART C: Consumer Theory

Consider a consumer who enjoys n goods $\vec{x}=\left(x_{1}, \cdots, x_{n}\right)$, and has the utility function $U\left(x_{1}, \cdots, x_{n}\right)=-\sum_{i=1}^{n} a_{i}\left(x_{i}-b_{i}\right)^{2}, a_{i}>0, b_{i}>0$, which is defined on $x_{1} \geq 0, \cdots, x_{n} \geq 0$. We assume the consumer has income I to spend, and faces market price $\vec{p}=\left(p_{1}, \cdots, p_{n}\right)$. Assuming I, p_{1}, \cdots and $p_{n}>0$, consumer's budget constraint is $\sum_{i=1}^{n} p_{i} x_{i} \leq I$.

1. (5%) State the Kuhn-Tucker version Lagrangian function and its first order conditions.

Ans: $\quad \tilde{\mathcal{L}}\left(x_{1}, \cdots, x_{n}, \lambda\right)=-\sum_{i=1}^{n} a_{i}\left(x_{i}-b_{i}\right)^{2}-\lambda\left(\sum_{i=1}^{n} p_{i} x_{i}-I\right)$
The first order conditions are

$$
\begin{aligned}
& \frac{\partial \tilde{\mathcal{L}}}{\partial x_{i}}=-2 a_{i}\left(x_{i}-b_{i}\right)-\lambda p_{i} \leq 0, \quad x_{i} \geq 0, \text { for } 1 \leq i \leq n \\
& \quad x_{i} \cdot \frac{\partial \tilde{\mathcal{L}}}{\partial x_{i}}=x_{i} \cdot\left(-2 a_{i} x_{i}+a_{i} b_{i}-\lambda p_{i}\right)=0 \text { for } 1 \leq i \leq n \\
& \frac{\partial \tilde{\mathcal{L}}}{\partial \lambda}=I-\sum_{i=1}^{n} p_{i} x_{i} \geq 0, \quad \lambda \geq 0 \\
& \quad \lambda \cdot \frac{\partial \tilde{\mathcal{L}}}{\partial \lambda}=\lambda\left(I-\sum_{i=1}^{n} p_{i} x_{i}\right)=0
\end{aligned}
$$

2. (10%) Now suppose $\sum_{i=1}^{n} p_{i} b_{i}>I$. Is there a $\vec{x}^{*}(\vec{p}, I)=\left(x_{1}^{*}\left(p_{1}, \cdots, p_{n}, I\right), \cdots, x_{n}^{*}\left(p_{1}, \cdots, p_{n}, I\right)\right)$ with $x_{i}^{*}>0$ for $i=1, \cdots, n$ that satisfies the first order conditions? Find such $\vec{x}^{*}(\vec{p}, I)$. Note that $\vec{x}^{*}(\vec{p}, I)$ maximizes utility subject to the budget constraint, so it is called the demand function.
Ans: If $\left(x_{1}^{*}, \cdots, x_{n}^{*}\right)$ satisfies the above first order conditions and $x_{i}>0$ for $1 \leq i \leq n$, then from $x_{i} \cdot \frac{\partial \tilde{\mathcal{L}}}{\partial x_{i}}=0$ we derive $-2 a_{i} x_{i}+2 a_{i} b_{i}-\lambda p_{i}=0$. Hence, $x_{i}=b_{i}-\lambda \cdot \frac{p_{i}}{2 a_{i}}$ for $1 \leq i \leq n$. If $\lambda=0$, then $x_{i}=b_{i}$, but then $I-\sum_{i=1}^{n} p_{i} b_{i}<0$ violating the budget constraint. Hence, $\lambda>0$. So, $I=\sum_{i=1}^{n} p_{i} x_{i}=\sum_{i=1}^{n} p_{i}\left(b_{i}-\lambda \cdot \frac{p_{i}}{2 a_{i}}\right)$, or $\lambda \cdot\left(\sum_{i=1}^{n} \frac{p_{i}^{2}}{2 a_{i}}\right)=\sum_{i=1}^{n} p_{i} b_{i}-I$. Thus, $\lambda=\frac{\sum_{i=1}^{n} p_{i} b_{i}-I}{\sum_{i=1}^{n} \frac{p_{i}^{2}}{2 a_{i}}}>0$, and we have derived $x_{i}^{*}=b_{i}-\frac{\sum_{i=1}^{n} p_{i} b_{i}-I}{\sum_{i=1}^{n} \frac{p_{i}^{2}}{2 a_{i}}} \cdot \frac{p_{i}}{2 a_{i}}$ for $1 \leq i \leq n$.
3. (5%) (Continued) Find the maximized utility $V(\vec{p}, I)=\max \left\{U\left(x_{1}, \cdots, x_{n}\right) \mid \sum_{i=1}^{n} p_{i} x_{i} \leq I\right\}$. Ans: $V(\vec{p}, I)=U\left(x_{1}^{*}, \cdots, x_{n}^{*}\right)=-\sum_{i=1}^{n} a_{i}\left(x_{i}^{*}-b_{i}\right)^{2}$

$$
=-\sum_{i=1}^{n} a_{i} \cdot \frac{p_{i}^{2}}{4 a_{i}^{2}} \cdot\left(\frac{\sum_{j=1}^{n} p_{j} b_{j}-I}{\sum_{j=1}^{n} \frac{p_{j}^{2}}{2 a_{j}}}\right)^{2}=-\frac{\left(\sum_{j=1}^{n} p_{j} b_{j}-I\right)^{2}}{\sum_{j=1}^{n} \frac{p_{j}^{2}}{a_{j}}} .
$$

4. (5%) Use Envelope Theorem to derive $\frac{\partial V}{\partial I}(\vec{p}, I)$ and $\frac{\partial V}{\partial p_{i}}(\vec{p}, I)$. What is the relationship between $\frac{\frac{\partial V}{\partial p_{i}}(\vec{p}, I)}{\frac{\partial V}{\partial I}(\vec{p}, I)}$ and the demand function?
Ans: By the Envelope Theorem, we have

$$
\frac{\partial V}{\partial I}(\vec{p}, I)=\frac{\partial \mathcal{L}}{\partial I}=\frac{\partial \tilde{\mathcal{L}}}{\partial I}=\lambda^{*}, \quad \frac{\partial V}{\partial p_{i}}(\vec{p}, I)=\frac{\partial \mathcal{L}}{\partial p_{i}}=\frac{\partial \tilde{\mathcal{L}}}{\partial p_{i}}=-\lambda^{*} x_{i}^{*}
$$

Hence, $-\frac{\frac{\partial V}{\partial p_{i}}}{\frac{\partial V}{\partial I}}=\frac{\lambda^{*} x_{i}^{*}}{\lambda^{*}}=x_{i}^{*}(\vec{p}, I)$. This is called the Roy's identity in microeconomic theory.
5. (bonus) What is the maximum achievable utility $U^{\max }$ for all possible $x_{i} \geq 0$ and $I \geq 0$? What is the minimum $U^{\text {min }}$?
Ans: $U^{\max }=0$ at $x_{i}=b_{i}>0$. At $I=0$, we have $U^{\min }=-\sum_{i=1}^{n} a_{i} b_{i}^{2}$.
6. (bonus) For all feasible $\bar{U} \in\left[U^{\min }, U^{\max }\right]$, solve for the expenditure function $M(\vec{p}, \bar{U})=$ $\min \left\{\sum_{i=1}^{n} p_{i} x_{i} \mid U\left(x_{1}, \cdots, x_{n}\right) \geq \bar{U}\right\}$. (Hint: Use what you already know from above!)
Ans: Note that $V(\vec{p}, M(\vec{p}, \bar{U}))=\bar{U}$ for $V(\vec{p}, I)=-\frac{\left(\sum_{j=1}^{n} p_{j} b_{j}-I\right)^{2}}{\sum_{j=1}^{n} \frac{p_{j}^{2}}{a_{j}}}$. This is called duality.
Hence, we have $\bar{U}=-\frac{\left(\sum_{j=1}^{n} p_{j} b_{j}-M(\vec{p}, \bar{U})\right)^{2}}{\sum_{j=1}^{n} \frac{p_{j}^{2}}{a_{j}}}$, or $M(\vec{p}, \bar{U})=\sum_{j=1}^{n} p_{j} b_{j}-\sqrt{(-\bar{U}) \sum_{j=1}^{n} \frac{p_{j}^{2}}{a_{j}}}$.
Also note that we can derive compensated demand using Envelope Theorem:

$$
\frac{\partial M}{\partial p_{i}}=x^{c}(\vec{p}, \bar{U})=b_{i}+\frac{\frac{\bar{U} p_{i}}{a_{i}}}{\sqrt{(-\bar{U}) \sum_{j=1}^{n} \frac{p_{j}^{2}}{a_{j}}}}
$$

PART D: Joint Production

Suppose a monopoly farm breeds q_{0} chicken to produce q_{1} chicken drumsticks and q_{2} chicken breasts. $q_{0}, q_{1}, q_{2} \in \mathbb{R}, q_{0}, q_{1}, q_{2} \geq 0$. Since each chicken has two legs and one breast, output $\vec{q}=\left(q_{1}, q_{2}\right)$ cannot exceed production constraints $q_{1} \leq 2 q_{0}$ and $q_{2} \leq q_{0}$. Breeding chicken q_{0} requires a fixed cost $F=10,000$ and constant marginal cost $c_{0}=200$, and selling each product requires a constant marginal cost of packaging, $\vec{c}=\left(c_{1}, c_{2}\right)=(5,10)$. Hence, the farm's total cost is

$$
C\left(q_{0}, \vec{q}\right)=F+c_{0} q_{0}+c_{1} q_{1}+c_{2} q_{2}=10,000+200 q_{0}+5 q_{1}+10 q_{2} .
$$

Let the demand function for each product depend on consumption of both products:

$$
\begin{aligned}
& p_{1}=p_{1}(\vec{q})=p_{1}\left(q_{1}, q_{2}\right)=955-\frac{1}{3} q_{1}^{2}-q_{2} \\
& p_{2}=p_{2}(\vec{q})=p_{2}\left(q_{1}, q_{2}\right)=320-q_{1}-q_{2}
\end{aligned}
$$

1. (5%) Write down the profit-maximization problem for this farm.

Ans: Since total revenue is $R\left(q_{0}, q_{1}, q_{2}\right)=p_{1}\left(q_{1}, q_{2}\right) \cdot q_{1}+p_{2}\left(q_{1}, q_{2}\right) \cdot q_{2}$, the firm solves:

$$
\begin{gathered}
\max \pi\left(q_{0}, q_{1}, q_{2}\right)=\left(955-\frac{1}{3} q_{1}^{2}-q_{2}\right) \cdot q_{1}+\left(320-q_{1}-q_{2}\right) \cdot q_{2}-\left(10,000+200 q_{0}+5 q_{1}+10 q_{2}\right) \\
\text { s. t. } \\
g_{1}\left(q_{0}, q_{1}, q_{2}\right)=q_{1}-2 q_{0} \leq 0 \\
\\
g_{2}\left(q_{0}, q_{1}, q_{2}\right)=q_{2}-q_{0} \leq 0 \\
\\
q_{0} \geq 0, q_{1} \geq 0, q_{2} \geq 0
\end{gathered}
$$

Note that q_{0}, q_{1}, q_{2} are continuous variables, instead of discrete. This is of course unrealistic, but can be a good approximation, especially when quantities are large.
2. (10\%) State the Kuhn-Tucker version Lagrangian. Is the corresponding NDCQ satisfied?

Ans: $\tilde{\mathcal{L}}\left(q_{0}, q_{1}, q_{2}\right)=\pi\left(q_{0}, q_{1}, q_{2}\right)-\lambda_{1} g_{1}\left(q_{0}, q_{1}, q_{2}\right)-\lambda_{2} g_{2}\left(q_{0}, q_{1}, q_{2}\right)$
$=955 q_{1}-\frac{1}{3} q_{1}^{3}-q_{1} q_{2}+320 q_{2}-q_{1} q_{2}-q_{2}^{2}-10,000-200 q_{0}-5 q_{1}-10 q_{2}-\lambda_{1}\left(q_{1}-2 q_{0}\right)-\lambda_{2}\left(q_{2}-q_{0}\right)$ The Kuhn-Tucker NDCQ requires full rank for $\left(\frac{\partial g_{i}}{\partial q_{j}}\right)\left(\vec{q}^{*}, \vec{\lambda}^{*}\right)$ over binding g_{i} and $q_{j}>0$. If $q_{0}^{*}=0$, then $q_{1}^{*}=q_{2}^{*}=0$. Therefore, the matrix is empty and NDCQ is trivially satisfied. If $q_{0}^{*}>0$ and g_{i} is binding, then either $q_{1}^{*}=q_{0}^{*}$ or $q_{2}^{*}=2 q_{0}^{*}$, which means that $q_{i}^{*}>0$. Hence, the matrix $\left(\frac{\partial g_{i}}{\partial q_{j}}\right)$ has the terms $\frac{\partial g_{i}}{\partial q_{0}}, \frac{\partial g_{i}}{\partial q_{i}}$ depending on which binds. Since gradients are

$$
\begin{aligned}
& \vec{\nabla} g_{1}=\left(\frac{\partial g_{1}}{\partial q_{0}}, \frac{\partial g_{1}}{\partial q_{1}}, \frac{\partial g_{1}}{\partial q_{2}}\right)=(-2,1,0) \\
& \vec{\nabla} g_{2}=\left(\frac{\partial g_{2}}{\partial q_{0}}, \frac{\partial g_{2}}{\partial q_{1}}, \frac{\partial g_{2}}{\partial q_{2}}\right)=(-1,0,1)
\end{aligned}
$$

NDCQ is indeed satisfied regardless of which conatraints binds: When only $q_{1}>0,(-2,1)$ and $(-1,0)$ are linearly independent. When only $q_{2}>0,(-2,0)$ and $(-1,1)$ are linearly independent. When both $q_{1}, q_{2}>0$, the two gradients above are linearly independent.
3. 5%) State the corresponding first order conditions.

Ans: The first order conditions are

$$
\begin{array}{ll}
\frac{\partial \tilde{\mathcal{L}}}{\partial q_{0}}=-200+2 \lambda_{1}+\lambda_{2} \leq 0, \quad q_{0} \geq 0, & q_{0} \cdot \frac{\partial \tilde{\mathcal{L}}}{\partial q_{0}}=q_{0} \cdot\left(-200+2 \lambda_{1}+\lambda_{2}\right)=0 \\
\frac{\partial \tilde{\mathcal{L}}}{\partial q_{1}}=955-q_{1}^{2}-2 q_{2}-5-\lambda_{1} \leq 0, \quad q_{1} \geq 0, & q_{1} \cdot \frac{\partial \tilde{\mathcal{L}}}{\partial q_{1}}=q_{1} \cdot\left(955-q_{1}^{2}-2 q_{2}-5-\lambda_{1}\right)=0 \\
\frac{\partial \tilde{\mathcal{L}}}{\partial q_{2}}=320-2 q_{1}-10-\lambda_{2} \leq 0, q_{2} \geq 0, & q_{2} \cdot \frac{\partial \tilde{\mathcal{L}}}{\partial q_{2}}=q_{2} \cdot\left(310-2 q_{1}-\lambda_{2}\right)=0 \\
\frac{\partial \tilde{\mathcal{L}}}{\partial \lambda_{1}}=2 q_{0}-q_{1} \geq 0, \quad \lambda_{1} \geq 0 & \lambda_{1} \cdot \frac{\partial \tilde{\mathcal{L}}}{\partial \lambda_{1}}=\lambda_{1}\left(2 q_{0}-q_{1}\right)=0 \\
\frac{\partial \tilde{\mathcal{L}}}{\partial \lambda_{2}}=q_{0}-q_{2} \geq 0, \quad \lambda_{2} \geq 0 & \lambda_{2} \cdot \frac{\partial \tilde{\mathcal{L}}}{\partial \lambda_{2}}=\lambda_{2}\left(q_{0}-q_{2}\right)=0
\end{array}
$$

4. Consider the case of $q_{1}^{*}<2 q_{0}^{*}$. First assume $q_{0}^{*}>0$.
(a) (15%) Is there a set of $\left(q_{0}^{*}, q_{1}^{*}, q_{2}^{*}\right)$ satisfying the first order conditions under this case? Ans: If $q_{0}^{*}>0, q_{1}^{*}<2 q_{0}^{*}$, then $-200+2 \lambda_{1}+\lambda_{2}=0$. Since $\lambda_{1}^{*}\left(2 q_{0}^{*}-q_{1}^{*}\right)=0$, we have $\lambda_{1}^{*}=0$ and $\lambda_{2}^{*}=200$. Hence, $q_{0}^{*}=q_{2}^{*}>0$. Therefore, the first order condition of q_{2} becomes $310-2 q_{1}^{*}-2 q_{2}^{*}-\lambda_{2}^{*}=110-2 q_{1}^{*}-2 q_{2}^{*}=0$.
If $q_{1}^{*}=0$, then $q_{2}^{*}=\frac{110}{2}=55=q_{0}^{*}$ and the first order condition of q_{1} becomes $950-\left(q_{1}^{*}\right)^{2}-2 q_{2}^{*}-\lambda_{1}^{*}=950-110>0$. But this contradicts FOC ≤ 0, so we conclude that $q_{1}^{*}>0$. Thus, the first order condition of q_{1} becomes $950-\left(q_{1}^{*}\right)^{2}-2 q_{2}=0$. Combining the two equations, we have $110-2 q_{1}^{*}=2 q_{2}^{*}=950-\left(q_{1}^{*}\right)^{2}$. Therefore, $\left(q_{1}^{*}\right)^{2}-2 q_{1}^{*}-840=0=\left(q_{1}^{*}-30\right)\left(q_{1}^{*}+28\right)$. Hence, $q_{1}^{*}=30$ (since $-28<0$), and $q_{2}^{*}=\frac{1}{2}(110-2 \cdot 30)=25=q_{0}^{*}$. Thus, $\left(q_{0}^{*}, q_{1}^{*}, q_{2}^{*}, \lambda_{1}^{*}, \lambda_{2}^{*}\right)=(25,30,25,0,200)$ satisfies all first order conditions.
(b) (10%) Check second order conditions at this $\left(q_{1}^{*}, q_{2}^{*}, q_{0}^{*}\right)$. Is it a local maximum, local minimum, or saddle point?
Ans: Consider the matrix

$$
\left(\begin{array}{cc}
0 & \vec{\nabla} g_{2} \\
\left(\vec{\nabla} g_{2}\right)^{T} & \left(\frac{\partial^{2} \tilde{\mathcal{L}}}{\partial q_{i} q_{j}}\right)
\end{array}\right)=\left(\begin{array}{cccc}
0 & -1 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & 0 & -2 q_{1} & -2 \\
1 & 0 & -2 & -2
\end{array}\right)
$$

Since only $g_{2}\left(q_{0}, q_{1}, q_{2}\right)=q_{2}-q_{0}$ is binding and $n=3$, we need to check the last two leading principle minors at $(25,30,25,0,200)$

$$
\operatorname{det}\left(\begin{array}{cccc}
0 & -1 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & 0 & -60 & -2 \\
1 & 0 & -2 & -2
\end{array}\right)=-116, \text { and } \operatorname{det}\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -60
\end{array}\right)=60
$$

Since the determinant of the entire matrix has the same sign as $(-1)^{n}=(-1)^{3}$ and the last two leading principle minors alternate in sign, we conclude that $(25,30,25)$ is a local maximum.
(c) (5%) Verify that the maximized profit at $\left(q_{1}^{*}, q_{2}^{*}, q_{0}^{*}\right)$ is indeed larger than the profit if one chooses $q_{0}^{* *}=0$ (to rule out this case).
Ans: $\pi(25,30,25)=(955-300-25) \cdot 30+(320-55) \cdot 25-(10,000+5000+150+250)=$ $630 \cdot 30+265 \cdot 25-15,400=18,900+6,625-15,400=10,125$.
When $q_{0}^{*}=0, q_{1}^{*}=q_{2}^{*}=0$. Then, $\pi(0,0,0)=-10,000<\pi(25,30,25)$. Hence, $q_{0}^{* *}=0$ does not maximize profit π.
5. (bonus) Show that there is no $\left(q_{1}^{*}, q_{2}^{*}, q_{0}^{*}\right)$ satisfying the first order conditions if $q_{2}^{*}<q_{0}^{*}$. Ans: Exercise.
6. (bonus) Are there other possibilities? What is the solution to this maximization problem?

Ans: Exercise.

