Calculus 4 With Applications in Economics and Management — Final Exam

PART A: True or False

Determine whether the following statements are True or False:

1. (2%) Every bounded nonempty set of rational numbers has a least upper bound which is

also a rational number.

2. (2%) If {a,} is a bounded increasing sequence, then {a,} converges to the least upper
bound of {a,}.

3. (2%) If b is the least upper bound of S, a subset of real numbers, then for every e > 0,
there is an s € S such that b —e < s <b.

4. (2%) Every bounded sequence has a convergent subsequence.

5. (2%) Suppose that f(z,y) is continuous on R?* and f(z¢,4%0) = 0, f(z1,11) = 1. Let
po = (70, y0) and p; = (x1,y1). Then, for every 0 < A < 1, there is some (zy,y,) on the
line segment popy such that f(xy,yn) = A. (Ans: FTTTT)

PART B: (15%) Find the interval of convergence of the power series
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c—anen- Inn

nlnn v 3] n Inn |z — 3| . |z — 3| .
= r—3| = : : as n — oo.
4in+1)In(n+1) n+1 In(n+1) 4 4

an+1

Ans:

an

By the ratio test, if |2 1 | <1, nz a, converges absolutely. If |2 1 | > 1, then Z a,, diverges.
Therefore, the radius of convergence is 4.
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converges. Thus, the power series converges for = € [—1,7).




PART C: Consumer Theory

Consider a consumer who enjoys n goods ¥ = (x1, -+ ,x,), and has the utility function
Uz, @) = — Yoy ai(z; — b))%, a; > 0, b; > 0, which is defined on z; >0, -+, x,, > 0. We
assume the consumer has income I to spend, and faces market price p'= (p1,--- ,p,). Assuming

I, p1, --- and p, > 0, consumer’s budget constraint is Zpixi <I.
i=1

1. (5%) State the Kuhn-Tucker version Lagrangian function and its first order conditions.
Ans: ﬁ(:pl, Cee T, A) = — Z@z‘(fﬂi —b)? =\ <Zpi:13i — I)
i=1 i=1

The first order conditions are

oL
5 = —2a;(z; = b;) = Ap; <0, z; >0, for1 <i<n
Z;
oL
Tit 5 =ux; - (—2a;x; + a;b; — Ap;) =0 for 1 <i<n
oL &
— =1 - i, >0, A >0,
) ;px—/ =

aEN n
A-mA<I—;pm) =0

2. (10%) Now suppose sz'bi > [. Istherea Z*(p, 1) = (2} (p1, -+ s pu L), -+ 2 (p1, -+ oy 1))

=1
with «f > 0 for ¢ = 1,--- ,n that satisfies the first order conditions? Find such &*(p,I).
Note that #*(p, I) maximizes utility subject to the budget constraint, so it is called the

demand function.

Ans: If (z7,--- ,2%) satisfies the above first order conditions and z; > 0 for 1 < i < n,
then from z; - — = 0 we derive —2a;x; + 2a;b; — A\p; = 0. Hence, x; = b; — \ - 2p7 for
ZT; a;

1 <i<n. If \=0, then x; = b;, but then I — sz‘bi < 0 violating the budget constraint.

i=1
Hence, A > 0. SO.I:iijj:ipj b;—)\'& ,0r \- " i :ipjbj__[.
/ = =\ 20 i=1 2a; =
Snh-1 S nh-1
Thus, A = =1 > (0, and we have derived x} = b; — =t . bi for 1 <i<n.
n 2 n 2 2a
s 2
2CLi 2(11'



3. (5%) (Continued) Find the maximized utility V(p, I) = max { (X1, ,x

xz<l}.

Ans: V(ﬁ; ]) = U(T? e T;:) - Z?:l a2<T:< - bl)Q

- a b; Jj=1 Jj=1
- 2 : ) n 2 - n 2
= da S p;
2a; a
j=1 J j=1 7

4. (5%) Use Envelope Theorem to derive 2% (p,I) and 2“ o (0. 1). What is the relationship

& (1)
between =& and the demand function?

or (5. 1)
Ans: By the Envelope Theorem, we have
% oL oL oV oL oL
a7 P ) =27 = 57 : 3pi(p7 ) o0 O z;
OV gy
Hence, — gz"j = T*l = z;(p, I). This is called the Roy’s identity in microeconomic theory.

ol

. (bonus) What is the maximum achievable utility U™ for all possible z; > 0 and I > 07

What is the minimum U™n?
n

Ans: U™ =0 at 2; =b; > 0. At I =0, we have U™" = —Zaib?.

=1

. (bonus) For all feasible U € [U™® U™] solve for the expenditure function M (p,U) =

n
i=1

Uz, ,xn) > U}. (Hint: Use what you already know from above!)

n 2
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Ans: Note that V (p, M(p,U)) = U for V(p,I) = . This is called duality.
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Hence, we have U = — , or M(p,U
~ 7

1 4

j=




PART D: Joint Production

Suppose a monopoly farm breeds ¢q chicken to produce ¢; chicken drumsticks and ¢y chicken
breasts. qo,q1,92 € R, qo,q1,92 > 0. Since each chicken has two legs and one breast, output
¢ = (q1,¢q2) cannot exceed production constraints ¢; < 2¢g and ¢ < qo. Breeding chicken ¢
requires a fixed cost F' = 10,000 and constant marginal cost ¢y = 200, and selling each product
requires a constant marginal cost of packaging, ¢ = (c1,¢o) = (5,10). Hence, the farm’s total
cost is

C(q0, Q) = F + coqo + c1q1 + c2q2 = 10,000 + 200g0 + 5q1 + 10¢s.

Let the demand function for each product depend on consumption of both products:

1
P =p1(q) = p1(q1, ¢2) = 955 — gfﬁ — @

P2 = p2(q) = p2(q1,q2) = 320 — 1 — ¢

1. (5%) Write down the profit-maximization problem for this farm.

Ans: Since total revenue is R(qo, ¢1,¢2) = p1(q1,q2) - @1 + p2(q1, G2) - go, the firm solves:

1
max 7(qo, q1, q2) = (955 - §Q% - 92> ~q1+ (320 — q1 — 2) - g2 — (10,000 + 2000 + 5¢1 + 10g2)
s. t. 91(q0, q1,%2) = 1 —2q0 <0
92(90,q1,2) = @2 — g0 < 0

g9 >0,¢1 > 0,02 >0

Note that qg, g1, g2 are continuous variables, instead of discrete. This is of course unrealistic,

but can be a good approximation, especially when quantities are large.

2. (10%) State the Kuhn-Tucker version Lagrangian. Is the corresponding NDCQ satisfied?

Ans: L(qo, q1,92) = 7(q0, 415 g2) — M91(q0, q1,G2) — A292(q0, q1, G2)
1.
= 955¢1 = 61— 162 +32042 12— ¢ — 10,000~ 2000 —5¢ — 104 = A1 (41— 20) — A (42— o)

The Kuhn-Tucker NDCQ requires full rank for (ZQL
q

(q", X*) over binding g; and ¢; > 0.
J

If ¢5 = 0, then ¢f = ¢5 = 0. Therefore, the matrix is empty and NDCQ is trivially satisfied.

If ¢5 > 0 and g; is binding, then either ¢i = ¢; or ¢5 = 2¢;, which means that ¢ > 0. Hence,

the matrix (Q%) has the terms 8gi’ %
dq; dq0 " Oy

= dg1 Ogq a91)
v = Yy Ay A — _2, ]_, 0
N (8% 0q1 0gs ( )

= gz 0gs 892)
v - a_ 99 2o = 71,0717
. (6% dq1” Oqo ( )

NDCQ is indeed satisfied regardless of which conatraints binds: When only ¢; > 0, (=2, 1)

depending on which binds. Since gradients are

and (—1,0) are linearly independent. When only ¢2 > 0, (—=2,0) and (—1,1) are linearly
independent. When both ¢, ¢, > 0, the two gradients above are linearly independent.
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3. (%) State the corresponding first order conditions.

Ans:
ot

The first order conditions are

oL
:—200+2>\1+)\2§0, qOZO, qoazqo(—200+2)\1+)\2):0
0
oL
=955 —q; —2¢a —5— X\ <0, q >0, 91'%ZQ1'(955—Q%—292—5—)\1):0
1
oL
2320—2q1—10—/\2§0,qQ20, qQ'%ZQQ‘(310_2q1_)\2):0
2
oL
=20—q¢1 >0, \y >0 M- m—=M2¢p—q)=0
oM\
oL
=q—q >0, \a>0 )\Q'aT:)\Q(QO_QQ):O
2

4. Consider the case of ¢ < 2¢;. First assume g5 > 0.

(a)

(15%) Is there a set of (qg, ¢7, ¢3) satisfying the first order conditions under this case?
Ans: If ¢f > 0, ¢f < 2¢¢, then —200 4 2A; + Ay = 0. Since A\j(2¢f — ¢}) = 0, we have
A} = 0 and A5 = 200. Hence, ¢; = ¢35 > 0. Therefore, the first order condition of g,
becomes 310 — 2¢7 — 2¢; — A5 = 110 — 2¢7 — 2¢5 = 0.
If gf = 0, then ¢ = % = 55 = ¢} and the first order condition of ¢; becomes
950 — (¢7)? —2¢5 — A} = 950 — 110 > 0. But this contradicts FOC < 0, so we conclude
that ¢} > 0. Thus, the first order condition of ¢; becomes 950 — (¢})? — 2¢> = 0.
Combining the two equations, we have 110 — 2¢; = 2¢5 = 950 — (¢})?. Therefore,
(q7)* — 2¢; — 840 = 0 = (¢f — 30)(q; + 28). Hence, ¢f = 30 (since —28 < 0), and
¢ = (110 — 2 30) = 25 = ¢;. Thus, (¢}, 4}, ¢, A}, A3) = (25,30,25,0,200) satisfies
all first order conditions.
(10%) Check second order conditions at this (¢}, ¢5, ¢). Is it a local maximum, local
minimum, or saddle point?

Ans: Consider the matrix

0 Ve, Y\ | -1 0 0 0
(Voo (s R
1 0 -2 =2
Since only ¢2(qo, ¢1,G2) = g2 — qo is binding and n = 3, we need to check the last two
leading principle minors at (25, 30, 25, 0, 200)

0 -1 0 1

1 0 0 0 oo
det = —116, and det | —1 0 0 = 60.
0 0 —-60 -2
0 0 —60

10 -2 =2



Since the determinant of the entire matrix has the same sign as (—1)" = (—1)® and
the last two leading principle minors alternate in sign, we conclude that (25,30, 25)

is a local maximum.

(¢) (5%) Verify that the maximized profit at (qf, g5, ¢5) is indeed larger than the profit if
one chooses ¢¢* = 0 (to rule out this case).
Ans: 7(25,30,25) = (955—300—25)-30+ (320 55)-25— (10, 000+ 5000+ 150 +250) =
630 - 30 + 265 - 25 — 15,400 = 18,900 + 6,625 — 15,400 = 10, 125.
When ¢f = 0, ¢ = ¢35 = 0. Then, 7(0,0,0) = —10,000 < 7(25,30,25). Hence,

q5* = 0 does not maximize profit .

5. (bonus) Show that there is no (qf, ¢3, ¢5) satisfying the first order conditions if ¢ < ¢g.

Ans: Exercise.

6. (bonus) Are there other possibilities? What is the solution to this maximization problem?

Ans: Exercise.



