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Low-dimensional materials could display anomalous thermal conduction that the thermal conductivity
(κ) diverges with increasing lengths, in ways inconceivable in any bulk materials. However, previous
theoretical or experimental investigations were plagued with many finite-size effects, rendering the results
either indirect or inconclusive. Indeed, investigations on the anomalous thermal conduction must demand
the sample length to be sufficiently long so that the phenomena could emerge from unwanted finite-size
effects. Here we report experimental observations that the κ’s of single-wall carbon nanotubes continuously
increase with their lengths over 1 mm, reaching at least 8640 W=mK at room temperature. Remarkably, the
anomalous thermal conduction persists even with the presence of defects, isotopic disorders, impurities,
and surface absorbates. Thus, we demonstrate that the anomalous thermal conduction in real materials can
persist over much longer distances than previously thought. The finding would open new regimes for wave
engineering of heat as well as manipulating phonons at macroscopic scales.
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The law of heat transfer in a solid was discovered by
Fourier in 1811. Under the steady state, Fourier’s law of
heat conduction is expressed as

J ¼ −κ∇T; ð1Þ
which explicitly states that the heat flux density (J) is
proportional to the temperature gradient, and the propor-
tional constant is the thermal conductivity (κ). Empirically,
κ is often found to be a constant of a bulk material and is
independent of sample geometries. Thus, Fourier’s law,
together with Ohm’s law for electrical conduction and
Fick’s law for gas diffusion, are traditionally categorized as
examples of normal diffusion phenomena.
On the other hand, continuous efforts in seeking solid

theoretical grounds for the empirical results have pointed
out that anomalous thermal conduction (κ ∼ Lα, α > 0,
where L is the sample length) could occur in low-dimen-
sional systems [1]. These works, though sometimes
referred to as non-Fourier thermal conduction (which,
strictly speaking, only applies when the speed of heat
conduction cannot be neglected), may be more appropri-
ately described as violations of normal diffusion processes
(α ¼ 0) in heat conduction. Theoretically, the divergence of
κ in one-dimensional systems has been shown to be very
robust against disorder or anharmonicity [2–5]. In many
models, heat transfer phenomena would depend on the
dimensionalities of the system, showing sublinear power-
law (α < 1) divergence in 1D [1], logarithmic divergence in
2D [6], and normal (α ¼ 0) thermal conduction in 3D [7,8].
Apart from the idealized models, it has been suggested that
the anomalous thermal conduction could be observed in
real systems like single-wall carbon nanotubes (CNTs)
[9–17] or graphene ribbons [18]. For example, in a perfect

(i.e., isotopically pure and defect-free) CNT, its κ is
predicted to increase sublinearly (α ¼ 0.33 − 0.5) with
lengths up to millimeters [9,10], characteristically differing
from conventional ballistic thermal conduction (i.e., α¼1).
However, theoretical disputes on many anomalous

effects have not been completely settled yet. For example,
while the anomalous thermal conduction is commonplace
in many 1D models [19,20], it remains controversial
whether a quasi-1D system like a CNT would eventually
restore back to normal thermal conduction at finite lengths
[9–17]. Experimentally, the formidable challenges in fab-
ricating nanomaterials with very high aspect ratios and the
difficulties in measuring their κ’s, combined with unwanted
finite-size effects such as fluctuations of defect or disorder
densities or conventional ballistic thermal conduction
pertinent to micron-sized samples, have plagued many
previous experimental observations [21–25].
To rigorously study the fundamental heat transfer phe-

nomena, experimental investigations should be conducted
on sufficiently long CNTs. We thus synthesized ultralong
single-wall CNTs with lengths exceeding 2 cm using
chemical vapor deposition methods [26]. Individual
CNTs were picked up by a tailored manipulator and placed
on a thermal conductivity test fixture consisting of parallel
suspended SiNx beams, as shown in Fig. 1(a). The sus-
pended SiNx beams with deposited Pt films were utilized as
independent resistive thermometers (RTs) for generating
heat or sensing temperature variations. For example, if a
Joule heating power (P) is injected at RT1 [Fig. 1(b)], most
of the power will dissipate along RT1 to the heat bath,
following P1 ¼ 8ΔT1=Rb1 (where Rb1 is the total thermal
resistance of the RT1 and ΔT1 is the temperature rise above
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the heat bath,measured at themiddle of RT1, where aCNTis
anchored). On the other hand, the power flowing through the
CNT is the sum of the power measured by individual
sensors; i.e., Pj ¼ 4ΔTj=Rbj. Because P ¼ P1 þ P2þ
P3 þ � � �, the thermal conductance of the CNT (K12)
anchored between RT1 and RT2 follows

K12¼
4ðΔT2

Rb2
þΔT3

Rb3
þ���Þ

ΔT1−ΔT2

¼ Pðf12ΔT2þf13ΔT3þ���Þ
ð2ΔT1þf12ΔT2þf13ΔT3þ���ÞðΔT1−ΔT2Þ

; ð2Þ

where fij ≡ Rbi=Rbj. The fij’s can be determined from the
asymmetry of background measurement before anchoring a
CNT.As shown in Fig. 1(c), we have found that although the
measured background thermal conductances varied from
3.18 × 10−9 W=K to 4.51 × 10−12 W=K (for heater-to-
sensor distance 4 μm − 1.039 mm), they display symmetric
results; i.e., fij ¼ 1� 0.04. In addition, the temperature rise
of the heater (sensor) is a parabolic (linear) function of the
location; thus, we have Δ1T ¼ 2ΔT1=3 and ΔTj ¼ ΔTj=2

(where j ¼ 2; 3; 4;… and ΔTi is the average temperature
rise of RTi) [26]. Experimentally, we have found that
ΔT1 ∼ 20 K ≫ ΔT2 ≫ ΔT3 ≫ ΔT4. Thus, the thermal
conductance (K12) of a CNT anchored between RT1 and
RT2 can be expressed by

K12 ¼
2PðΔT2 þ ΔT3 þ � � �Þ
3ΔT1

�
3
2
ΔT1 − ΔT2

� : ð3Þ

The above result can be generalized to thermal conduct-
ance of a CNT anchored between any neighboring RTi and
RTj. During the experiment, an alternating current with
frequency f (<7 Hz) was supplied to the heater (RTi) and
the corresponding changes of the temperature on the sensor
(RTj) were detected at frequency 2f using a lock-in
amplifier. The background contribution due to radiation
heat transfer from the heater to the sensor had been carefully
measured and subtracted so as to obtain the thermal
conductance of theCNTs on the samedevice and of identical
heater-sensor configurations. As shown in Fig. 1(d), the test
fixture is capable of measuring temperature variations

FIG. 1. (a) SEM image of a CNT anchored on a test fixture consisting of parallel resistive thermometers (RTi’s) made by Pt films on
SiNx beams. (b) The corresponding thermal circuits when RT1 is used as a heater. (c) Measured background thermal conductance due to
radiation heat transfer (from heater to sensor) for various heater-to-sensor distances. The measured values for forward and reversed
biases (i.e., exchanging the role of the heater and the sensor) are shown, demonstrating fij ¼ 1� 0.04. We have noticed that the
background thermal conductance is sensitive to the environment (such as whether the Si substrate is fully etched through or partially
etched), so that the measured values are different even if the heater-to-sensor distances are similar. (d) Measure ΔTs vs P for driving
frequency at 2 Hz, which gives a noise equivalent thermal conductance of 4.7 × 10−12 WK−1 Hz−1=2 at room temperature.
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∼0.28 mK at room temperature (time constant ¼ 10 sec),
which is equivalent to a thermal conductance resolution
4.7 × 10−12 WK−1Hz−1=2. After themeasurement, sections
of sample 6 and sample 9 were successfully transferred to a
TEM for further characterizations [26]. Unfortunately, due
to the vibrations of the long CNTs under TEM imaging, the
diameter (d) cannot be precisely measured. We thus assume
d ¼ 2 nm and thickness δ ¼ 0.34 nm for determining
the measured κm ¼ KL=πdδ of the investigated CNTs.
Importantly, the investigatedL’s span from fewmicrometers
[Fig. 1(a)] to millimeters (Fig. 2; see also Ref. [26] for SEM
images of the investigated CNTs).
Figure 3 shows κm vs L relations for nine different CNTs.

The L’s of the investigated CNTs span 3 orders of magni-
tude, varying from 2 μm to 1.039mm. Because the diameter
and the chirality are less likely to change in an ultralongCNT
[27], the uncertainties can be minimized by analyzing the
length dependence of κ of the same sample. Remarkably, the
measured κm’s (open symbols) of sample 2 to sample 9
display unambiguous divergent behavior with increasing L.
No divergence of κm is observed in sample 1, possibly due to

its relatively short L (<30 μm). For the longest CNT
(L ¼ 1.039 mm), κm ¼ 8638� 734 W=mK is measured
(assuming d ¼ 2 nm). Note that the effects of radiation heat
loss from the CNT and contact thermal resistance have not
been taken into account yet. Thus, κm ¼ 8638 W=mK is a
lower bound for the millimeter-long CNT.
Because of the radiation heat loss from the surface of the

ultralong CNTs, the power received by the sensor is always
smaller than that transmitted from the heater. Thus, the
measured κm’s simply set the lower bound of the actual
values. Moreover, because corrections from the radiation
heat loss become more significant for longer L, they further
enhance the divergent behavior of κ for ultralongCNTs [26].
We have analyzed the contribution of radiation heat loss
and plotted the corrected values of κ’s. The divergent
behavior is quantified using κ ∼ Lα. The α’s seem to vary
from 0.1 to 0.5. However, for sample 6 (L > 400 μm),
sample 7 (L>400μm), sample 8 (L>670μm), and sample
9 (L > 1 mm) they are investigated over much larger length
scales and may be closer to an ideal, disordered, quasi-1D
system. Interestingly, their α’s are found to be 0.2–0.5,
falling within theoretical predictions [9,13,14]. Notably,
these α’s are smaller than previous results determined
by micron-long, multiwall CNTs (α ¼ 0.6–0.8) [23],
indicating that the previous observation was mixed with
conventional ballistic thermal conduction (α ¼ 1) of
microscopic lengths. Note that after corrections from the
radiation heat loss, the highest κ (assuming d ¼ 2 nm)
now respectively reaches 6900 W=mK for sample 5
(L>300μm), 10 050 W=mK for sample 8 (L>670μm),
and 13 300 W=mK for sample 9 (L > 1 mm).
We now analyze the effect of contact thermal resistance.

Because the contact areas (∼dw, where d is the diameter of
the CNT and w ¼ 2 μm is the width of a SiNx beam)
between the CNTand each RTi are nearly identical for each
sample, the contact thermal resistance (1=Kc) should be
approximately a constant for individual CNTs and its effect
can be analyzed in terms of a dimensionless quantity
Ks=Kc, where Ks is the intrinsic thermal conductance of
a 1 μm-long CNT. So the measured thermal resistance
(1=Km) follows 1=K ¼ ðL=L0Þ1−α=Ks þ 1=Kc, and the
measured κm is expressed as

κm ¼ KsL
πds

�
1

ðL=L0Þ1−α þ Ks=Kc

�
: ð4Þ

Here, L0 ¼ 1 μm. To investigate the effect of the contact
thermal resistance, we first assume that the CNT is an
ordinary diffusive thermal conductor (i.e., α ¼ 0) and plot
the result for different Ks=Kc’s in Fig. 4. From Fig. 4,
it can be seen that although contact thermal resistance may
yield spurious divergent behavior at short lengths, the
curves always become flat for large L. Thus, the contact
thermal resistance cannot explain the experimental data.
Because the experimentally investigated L’s span 3 orders
of magnitude yet the contact area remains the same, we

FIG. 2. SEM panorama of sample 9 (divided into three parts),
where a CNT is suspended across a heater and a sensor (the
horizontal beams in the top right and the bottom left images).
The total suspended length of sample 9 is 1.039 mm. The arrows in
the figures denote the CNT.
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have L1−α ≫ Ks=Kc in Eq. (4) and the effect of contact
thermal resistance vanishes when L ≫ 1 μm. Additionally,
the effect of contact thermal resistance should be limited;
for example, Ks=Kc > 5 would indicate that the intrinsic κ
of a 1 μm-long CNT is larger than 18 000 W=mK, violat-
ing quantum mechanical constraints for a CNT [28,29].
Further analyses using Eq. (4) suggest that 0.17<α<0.43
and Ks=Kc < 0.3 yield good fits to the experimental data
[26]. Figure 4 also shows a controlled experiment on a SiNx
beam displaying the expected diffusive thermal conduction,
demonstrating the validities of our measurements and
analyses. Therefore, we conclude that the experimentally
observed divergent behavior of κ originates from the
intrinsic properties of the ultralong CNTs, but not from
artifacts of contact thermal resistance.
Because naturally abundant ethanol vapor was used as

the synthetic source, isotopic impurities (98.9% 12C and
1.1% 13C) are expected in the investigated CNTs. In
addition, impurities and defects are unavoidable for the
ultralong CNTs. Furthermore, TEM images reveal a thin
layer (∼2 nm) of amorphous carbon covering some parts of
the CNTs [26]. Surprisingly, the pronounced power-law
divergence of κ emerges regardless of these structural
imperfections and external perturbations. The result is
consistent with 1D disordered models that show robust
anomalous thermal conduction phenomena against defects
or disorders [5]. But it disagrees with the prediction that the
divergent behavior of κ would disappear when defects are
introduced in CNTs [9,16]. We thus demonstrate that the
divergence of κ persists for much longer distances than
theoretically anticipated [9,10,16]. Our results also resolve
the decade-long debate of whether the κ of a CNT would

continue to diverge or saturate for L > 1 μm [11–17]. The
finding indicates that the wave properties of heat can be
transmitted for much longer distances than previously
thought, and it highlights the important contributions of
long-wavelength phonons in low-dimensional systems.
Unlike electrical conductivity of materials that can vary by

more than 27 orders of magnitude from insulators to metals,

FIG. 3. κ vs L relations
for nine different CNTs.
Both measured κm’s (open
symbols) and corrected κ’s
(solid symbols, after incor-
porating radiation heat loss
from the surface of CNTs)
are shown for each sample.
The measured κm’s and
corrected κ’s are almost
identical for L < 100 μm.
For the longest CNT inves-
tigated (L ¼ 1.039 mm),
the measured κm and the
corrected κ reach 8640 and
13300W=mK, respectively.
The fits (by parametrizing
κ ∼ Lα) to the corrected
κ’s and measured κm’s are
shown by solid curves and
dashed curves, respectively.

FIG. 4. Normalized κ vs L for the investigated samples. Here
the corrected κ’s (solid symbols) and measured κm’s (open
symbols) are normalized, respectively, by those of each sample’s
shortest L. The effects of contact thermal resistance from small
(Ks=Kc ¼ 0.2) to large (Ks=Kc ¼ 5) are calculated using Eq. (4)
(with α ¼ 0), demonstrating that the observed divergent of κ or
κm cannot be attributed to contact thermal resistances adding to a
diffusive thermal conductor. A controlled experiment on a SiNx
beam shows the expected normal thermal conduction.
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κ’s were known to vary less than 105 from the best thermal
conductors to the best thermal insulators in the past. The
fundamental limitation has hampered most technological
progress in directing heat or transmitting phonons. The
divergent and ultrahigh κ observed inCNTs over 1-mm length
scale could open a new domain for wave engineering of heat.
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S1. Nanotube synthesis and device fabrication. High quality CNTs were grown 

using chemical vapor deposition (CVD) methods [1-4]. Solutions of 0.001 M FeCl3 in 

water were used as catalysts. The CNTs were synthesized in a quartz tube within a 

furnace. First, the furnace was heated to 925˚C under a flow of 1000 cm3/min Ar and 

400 cm3/min H2. Then Ar gas was directed through ethanol as the carbon source. The 

mixed Ar/ethanol and H2 gases were flowed at 925˚C for 20 minutes at the rates of 

150 and 400 cm3/min, respectively. Finally, the furnace was cooled under a flow of 

1000 cm3/min Ar and 400 cm3/min H2. The resulting CNTs are found to exhibit 

lengths more than 2cm. 

Figure S1 displays the schematic procedures of fabricating the thermal 

conductivity test fixtures. The device consists of several Pt/Cr (25 nm and 2 nm thick, 

respectively) resistive thermometer (RT) lines deposited on 2 μm wide, 500 nm thick, 

and 860 μm long SiNX beams. First, Cr/Pt/Cr (50 nm, 25 nm, and 5 nm thick, 

respectively) metal lines and bonding pads were patterned using photolithography and 

electron-gun evaporation on a SiNx/Si wafer (Fig. S1A and B). Then another 

photolithography was done to open a window in resist for dry etching. The 

unprotected region of SiNx film was etched by inductively coupled plasma (ICP). The 

outermost Cr layers in metal lines were used to protect the underlying layers from ICP. 

The SiNx beams together with metal lines were thus defined (Fig. S1C). The 

outermost Cr layers in metal lines were then removed by Cr-7t chromium etchant. 

Finally, the Si substrate in the window was etched through by aqueous KOH for 

transmission electron microscopy (TEM) characterizations (Fig. S1D). As shown in 

Fig. S2, the distances between neighboring beams vary from 2 μm to 1.039 mm, 

which allow thermal conductivity measurements on CNTs over very large length 

scales. 
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Fig. S1. Schematics of the fabrication procedures of the thermal conductivity test fixtures. (A and B) 

Cr/Pt/Cr metal lines were patterned using photolithography followed by electron-beam evaporation on 

a SiNx/Si wafer. (C) Opening SiNx windows by photolithography and ICP. (D) Etching away the 

topmost Cr layer and the bottom Si substrate. 

 

 
Fig. S2. (A) An SEM image of the fabricated thermal conductivity test fixture with the distances 

between neighboring heater/sensor varying from 2 μm to 1.039 mm. (B) An SEM image of an 

individual CNT suspending across several heaters/sensors. 

 

S2. Thermal conductivity measurements. Figure S3A shows the schematic diagram 

of the thermal conductivity test fixture with an individual ultralong CNT suspended 

across several RT heater/sensor lines. The corresponding thermal circuit diagram is 

shown in Fig. S3B and C. When the leftmost RT line (RT1) is heated (Fig. S3B), the 

temperature rise (ΔTh) in RT1 is a parabolic function of the location (x) on the RT1 
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line[5], i.e. 

      2
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1

( ) ( )
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P
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                      (S1) 

where P = Vs
2/Rh, is the Joule heating power, κb1 is the effective thermal conductivity, 

L and A is respectively the half length and the cross section area of RT1. The constants 

C1 and C2 can be determined by the boundary condition 

  (0) (2 ) 0h hT T L                        (S2) 

where ΔTi = Ti-T0, and Ti is the temperature at the midpoint of RTi (i = 1, 2, 3, 4…), 

which are the RT lines shown in Fig. S3A. ΔTh is then given by 

 
2
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which gives 

  1 1
1
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b
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where Rbi = 2L/κbiA is the total thermal resistance of the RTi between Ti and the 

ambient heat sink. Based on energy conservation and the thermal resistance circuit 

shown in Fig. S3B, one can obtain 
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 
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where R12 is the thermal resistance of the suspended segment of the CNT between RT1 

and RT2. One can thus get 
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where K12 ≡ 1/R12 is the sample thermal conductance and fij ≡ Rbi/Rbj, i, j = 1, 2, 3, 4… 

Because P=P1+P2+P3... and from equations (S4) and (S6), one get  
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where 1T  (i = 1, 2, 3, 4 …) is the average temperature rise of each RT line. Due to 

the linear temperature profile in RT2, RT3, RT4…, 2 iiT T    for i = 2, 3, 4…. 

According to formula (S3), 1 1 10

1 2
( )

3

L
T T x dx T

L
     . iT  can be obtained by 

measuring the increase in the electrical resistance of each RT line with the 
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temperature coefficient. The fij’s can be determined from the background 

measurement prior to that of the CNT. The background thermal conductance is due to 

radiation transfer and is symmetric when switching the role of heater and sensor (RT1 

and RT2 here). We found that although the measured background thermal 

conductances (see Fig. S8) varied from 3.18×10-9 (heater to sensor distance = 4μm) to 

4.51×10-12 W/K (heater to sensor distance = 1.039mm), they display symmetric 

results when exchanging the heater and the sensor. Thus we have fij ~ 1 and Eq. (S7) 

can be approximated to: 
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3
3
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                   (S8) 

We have also found that 1T ~ 20K >> 2T >> 3T >> 4T . Thus measuring 1T  

and 2T  is sufficient to determine K12. Due to the much smaller surface area of the 

CNT than that of the heater, the thermal radiation from the CNT itself is much smaller 

than the background contribution and can be ignored. In addition, we can also 

measure K21 by using RT2 as the heater and RT1 as the sensor (Fig. S3C). The 

corresponding formula can be obtained by similar methods. Likewise, the thermal 

resistance of other suspended CNT segment (R23, R34, R45…) can be obtained by 

heating RT2, RT3, RT4… and measuring the temperature rise of the neighboring RTs. 

 

 
Fig. S3. (A) Schematic of the thermal conductivity test fixture consisting of parallel resistive 

thermometers. (B and C) The corresponding thermal circuits when (B) RT1 or (C) RT2 is used as a 

heater. 

 

From Eq. (S8), we learn that the sample thermal conductance can be determined 

after measuring the Joule heating power (P) and temperature variations (ΔTh for 

heaters and ΔTs for sensors) of the RTs. Due to the linear relation of the resistance 

change (ΔR) with respect to the temperature change (ΔT) of the Pt resistors (Fig. S4): 
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                            R c T                            (S9) 

 

 

Fig. S4. Measured electrical resistances of the RT lines vs. the temperature rise. 

 

 

Fig. S5. Experimental schematic for applying an AC voltage (with angular frequency ω) to the heater 

resistance Rh and measuring the corresponding sensor resistance (Rs) variations at angular frequency 

2ω.  

 

(where c is the temperature coefficient), ΔTh and ΔTs can be directly obtained from the 

measuring the resistance variations of the heater (ΔRh) and the sensor (ΔRs). To 

achieve high sensitivity, we have developed a 2ω method for measuring the small 

variations of ΔRs. As shown in Fig. S5, when an alternate voltage source Vs with 

angular frequency ω is applied to the heater, the temperature of the sensor follows: 

2
0 sins sT T T t                       (S10) 

where T0 is the environmental temperature and ω is the frequency of the driven AC 

voltage. The voltage of the sensor is then given by 

 2. sin . cos 2
2

V
V const V t const t 
               (S11) 

So when a small dc current Idc = 1A is supplied to the sensor and the 

second-harmonic amplitude (Vg(2ω)) is measured by a lock-in amplifier (Stanford 

Research 830), we have   
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V
V


                          (S12) 

The typical frequency dependence of Vg is shown at Fig. S6. Due to the thermal RC 

relaxation time, the signal of the sensor attenuates at high frequency. On the other 

hand, the signal saturates at the DC value at low frequencies. We have measured the 

frequency dependent read-out signals of the samples and assign the saturated value to 

determine the thermal conductance of CNTs. 

 

 

Fig. S6. Measurements of Vg as a function of driving frequency at the heater. 

 

Once Vg is measured, ΔTs can be obtained using 

21 1 1 g
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dc dc

VV
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where c is the temperature coefficient of Rs.  

The noise equivalent thermal conductance (NEKs) can be evaluated using 

                        s
s b

h s

NET
NEK K

T T

 

                      (S14) 

where is NETs the noise equivalent of ΔTs, and Kb is the thermal conductance of the 

beam. From Fig. 1(c) of the main text, we have NETs = 0.28mK. From Eq. (S4), Kb = 

P/2ΔTh = 100 nW/K. We obtain NEKs = 1.5 pW/K at room temperature, much better 

than our previous works [6,7]. 

    Before measurements on CNTs, we need to subtract the background thermal 

conductance due to radiation transfer. As shown in Fig 1(d) of the main text, the 

measured background thermal conductance varies from 3.18×10-9 to 4.51×10-12 W/K 

as the distance of heater to sensor increases from 4μm to 1.039mm. In addition, they 

display symmetric results when exchanging the heater and the sensor. We have found 
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that the background thermal conductance is sensitive to the environment. For example, 

devices with fully-etched Si substrates will give smaller background thermal 

conductance than that of partially-etched Si substrates. Thus the measured 

background thermal conductance would not be the same even if the heater-to-sensor 

distances are similar. We have taken special cares to ensure identical experimental 

environments for each CNT and background measurements.  

After subtracting the background thermal conductance, the thermal conductivity 

of the CNT is calculated using κ = KL/A, where K, L, and A are respectively the 

thermal conductance, the length of the suspended segment of the CNT between two 

RT lines, and the cross-sectional area. A is estimated by A = πdδ, where d = 2nm is 

assumed to be the diameter of the CNT and δ is the conventional thickness (0.34nm) 

of CNT.  

 

S3. TEM images of the investigated CNTs. After the measurement, sections of 

Sample 6 and Sample 9 were successfully transferred to a transmission electron 

microscope (TEM) for further characterizations. Unfortunately, due to mechanical 

vibrations of the suspended CNTs, their diameters could not be precisely determined. 

Thus we assume the investigated CNTs exhibit uniform diameter d = 2nm throughout 

the paper. Interestingly, the divergent of κ remains even if the TEM images reveal that 

thin layers of amorphous carbon cover some parts of the investigated CNTs. 
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S4. SEM images of the investigated CNTs. The representative SEM images of the 

measured CNTs are shown below (the arrows denote the location of the CNT). 
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S5. Corrections of thermal radiation from CNT surfaces. Because of thermal 

radiation from the surface of a CNT, the heat received at the sensor will be always 

lower than that transmitted from the heater. Thus the measured P underestimates the 

actual P delivered in the CNT and, correspondingly, the measured Km simply sets the 

lower bound of the actual thermal conductance Ks.  

The thermal radiation from the CNT surface gives an equivalent thermal 

resistance (Rr) that can be expressed by: 



17 
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where ε = 0.98 is the emissivity of CNT[8], σ = 5.67×10-8 Wm-2K-4 is 

Stefan-Boltzmann constant, A=πdl is surface area of each segment, T is the 

temperature of the CNT segment, and T¶ ~ 300K is the temperature of the 

environment. 

In our experiment, T-T¶ < 20K, applying the first-order approximation we then 

have: 

3

1

4rR
AT 

                       (S16) 

The higher-order terms contribute less than 10% of Eq. (S16). Note that although a 

Fourier thermal conductor exhibits a linear temperature profile along the temperature 

gradient, the temperature profile for a non-Fourier thermal conductor is unknown. Yet 

applying the approximation in Eq. (S16) has ignored the uncertainty of the 

temperature profile along the CNT, which is estimated to contribute less than 10% of 

the final result. Now we estimate the radio Rr/R (where R is the thermal resistance of 

the CNT). Assuming the thermal conductivity of a 1μm-long CNT is ~3000 W/m-K 

and ε = 0.98, we have 

52.45 10rR

R
                        (S17) 

The result suggests that thermal radiation is negligibly small for short CNTs. In fact, 

we estimate that it would give about 1% correction to the measured thermal 

conductivity for a 30μm-long CNT.  

However, corrections from thermal radiation will become more significant for 

ultralong CNTs. To estimate Ks for ultralong CNTs, a thermal circuit model shown in 

Fig. S7 is employed to correct Km. Because the maximum thermal conductance of a 

finite-length CNT is limited by quantum mechanics [9], the CNT of total length L is 

divided into segments of mean free path (l) in series. Notably, the measured thermal 

conductivity κm will be always lower than the corrected thermal conductivity 

κ=L/ΣR= L/[(L/l)R]=l/R for any finite Rr.   

Because the temperature profile across a mean free path is uniform, we can 

determine Rr due to thermal radiation of heat into environment. The thermal resistance 

of each segment of a CNT is R, as shown in Fig. S7. 
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Fig. S7. The thermal circuit model for evaluating the contribution of thermal radiation to the corrected 

thermal resistance of CNT. Here R is the corrected thermal resistance of each segment of a CNT, and Rr 

is the equivalent thermal resistance due to thermal radiation for each segment. 

 

We firstly demonstrate that the discrete model correctly converges to continuum 

results. Assuming the sample is a diffusive thermal conductor (i.e. l  0), then the 

number of segment in the circuit model can be arbitrarily increased. As shown in Fig. 

S8, for a sample with κ = 1500 W/m-K and L = 400μm, the model quickly converges 

to κ/κm = 150% when the number of segments increases beyond 10. The result 

justifies the discreteness of the circuit model since the numbers of segments in the 

following discussions are always much larger than 10.   

 

 

Fig. S8. The ratio of corrected thermal conductivity to measured thermal conductivity (κ/κm) as a 

function of segment in the circuit model. Here the sample is assumed to be a diffusive thermal 

conductor with κm = 1500 W/m-K and L = 400μm. The correction quickly converge to κ/κm =150% 

when the number of segment is larger than 10. The result justifies the discrete thermal circuit model. 

 

    We then apply the analyses to samples of different κm’s and L’s (because both Rr 

and R inversely depend on the diameter d, the correction is independent of d). The 

result is shown in Fig. S9. As expected, the correction of thermal radiation to κm 

becomes more significant for large L’s.  
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Fig. S9. Corrected thermal conductivity (κ) as a function of length (L) for different measured thermal 

conductivity (κm). Because of the larger heat loss via thermal radiation from CNT surfaces, the 

correction becomes more pronounced for longer L’s.  

 

The above results are based on the practical assumption that the thermal 

resistance of a 1μm-long CNT is R1μm = 1.56×108 K/W (which corresponds to thermal 

conductivity 3000 W/-m-K). Although the assumption is close to the theoretical limit, 

the R may vary as the CNTs’ quality changes. Indeed, the R1μm could increase due to 

the presence of impurities or defects. To estimate the effect on our analyses on 

thermal radiation, we plotted the κ/κm when R1μm changes (here we set L = 400μm as 

an example). As shown in Fig. S10, for a given κm, changing R1μm can hardly change 

κ/κm. It is because for a sufficiently long CNT, the ratio of L/l is much larger than 10, 

and thus changing the number of segments in the thermal circuit model cannot affect 

the correction on κ. 
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Fig. S10. The ratio of corrected thermal conductivity to measured thermal conductivity (κ/κm) for 

different input R1μm. It can be seen that for a sufficiently long CNT (here L = 400μm), changing R1μm 

can barely affect the κ/κm.  

 

S6. Thermal conductivity data of the investigated CNTs. The experimental data of 

the investigated CNTs are summarized in Table S1 (assuming d = 2nm and δ = 

0.34nm). 

 

Table S1.  Measured Km, κm, corrected κ (after radiation correction), and the corresponding 

background thermal conductance (Kbg) for the investigated CNTs. 

 L(μm) Km (pW/K) κm (W/m-K) κ (W/m-K) Kbg (pW/K)

Sample 1 

2 2932±50 2747±47 2747±47 

2587±42 

2867±87 

16500±19 

15.7 352±5.7 2587±42 456±2.9 

31.5 190±6.9 2806±102 185±1.6 

Sample 2 

3.9 1140±13 2082±24 2082±24 

2757±28 

2879±44 

3800±417 

4447±910 

3181±5.9 

7.7 764±7.8 2757±28 835±5.0 

15.5 

96.2 

126 

397±6.1 

83±8.6 

73±14.8 

2879±44 

3738±387 

4332±873 

298±3.2 

47.7±3.5 

40.5±5.8 

Sample 3 

4 1442±18 2701±34 2701±34 

2665±37 

2454±58 

4021±551 

4737±1170 

3181±8.9 

7.8 729±10 2665±37 835±6.0 

15.4 340±8.0 2454±58 298±3.2 

96.8 86.3±11.8 3915±537 47.7±3.5 

125.6 79±19.8 4648±1165 40.5±5.8 

Sample 4 
15 391±6.4 2745±45 2745±45 

3960±84 

442±4.7 

31 266±9.9 3867±144 198±5.2 
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190.9 66.2±13.2 5915±1179 6165±1182 20.2±2.8 

Sample 5 
2 

300 

2731±62 

45.7±1.3 

2559±58 

6424±186 

2559±58 

6929±213 

5586±7.7 

22.9±0.4 

Sample 6 

7 153±7.6 502±25 502±25 

2151±791 

2837±194 

1542±5.6 

200 

400 

14.5±5.9 

9.3±2.2 

1363±549 

1737±403 

54.9±2.2 

15.9±1.1 

Sample 7 

50 51.8±2.5 1212±59 1212±59 

2026±475 

3627±955 

436±1.8 

200 19.2±4.9 1803±465 53.2±3.8 

400 15.1±4.9 2823±911 17.1±3.6 

Sample 8 
62.8 108±1.9 3169±55 3194±55 

10138±706 

240.8±0.7 

676 24.7±2.2 7821±681 7.59±0.4 

Sample 9 

31.2 

62.8 

1039 

254±1.2 

141±2.0 

17.7±1.5 

3717±18 

4148±60 

8638±734 

3798±77 

4248±48 

13471±841 

437±0.8 

237±1.2 

4.56±0.7 

 

S7. Effects of contact thermal resistance. As discussed in the main text, the effect of 

contact thermal resistance can be analyzed by parametrizing Ks/Kc, where Ks is the 

thermal conductance of a 1μm-long CNT and 1/Kc is the contact thermal resistance 

between the CNT and each RTi beam. So the measured thermal resistance (1/Km) 

follows: 1/Km = (L/L0)
 1-α/Ks+1/Kc, and the measured κm is expressed as: 

                     
 10
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m

s c

K L

d L L K K
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  

 
 
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                 (S18) 

here L0 = 1μm. We have exclude the possibility that contact thermal resistance could 

give spurious divergent behavior for a diffusive thermal conductor (i.e. α = 0) in Fig. 

4 of the main text. Now we further analyze the data for α > 0. 

From Fig. S11, we see that only when 0.17 < α < 0.43 and Ks/Kc < 0.3 can the 

calculated curves fit the experimental data well (excluding Sample 1). The results give 

additional supports that the observed phenomena are due to the anomalous thermal 

conduction in CNTs but not experimental artifacts. 
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Fig. S11. Data fitting for the corrected thermal conductivity (κ) using α and Ks/Kc (open symbols are 

measured thermal conductivity (κm)). Except for Sample 1, it can be seen that only when 0.17 < α < 

0.43 and Ks/Kc < 0.3 can the calculated curves fit well to the experimental data.  
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