
Dissimilar permittivity and permeability sensitivities in
nonlinear plasmons and spoof plasmons

Yen-Kai Chang1,2 and Chih-Wei Chang1,*
1Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan

2Department of Physics, National Taiwan University, Taipei 10617, Taiwan
*Corresponding author: cwchang137@ntu.edu.tw

Received March 14, 2014; revised May 7, 2014; accepted May 14, 2014;
posted May 15, 2014 (Doc. ID 208191); published June 11, 2014

We show that employing localized surface plasmon resonators to probe environmental media will always lead to
dissimilar optical sensitivities to permittivity and permeability. We find that while the permittivity sensitivities of
diverse plasmonic structures display a geometry-independent universal scaling relation, the permeability sensitiv-
ities are highly dependent on the metals’ geometries and resonant modes. Similar results are also found in mixed
real/spoof localized surface plasmon resonators, and the phenomena can be universally scaled to the normalized
effective plasmon frequencies. Importantly, the results put a fundamental constraint for all plasmonic-assisted non-
linear magneto-optical phenomena, including the Faraday effect, magneto-optical Kerr effect, and Cotton–Mouton
effect. © 2014 Optical Society of America
OCIS codes: (250.5403) Plasmonics; (310.6628) Subwavelength structures, nanostructures.
http://dx.doi.org/10.1364/OL.39.003607

Many electromagnetic systems display identical re-
sponses to the environmental permittivity (ε) and per-
meability (μ). For example, the propagation constant
(γ) of a rectangular waveguide of dimensions a and b
as follows:
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wherem and n are integers. Note that Eq. (1) yields iden-
tical results when exchanging ε and μ of the filled media.
Physically, it means that one cannot distinguish whether
the filled media is dielectric [�ε; μ� � �x; 1�] or magnetic
[�ε; μ� � �1; x�] bymeasuring resonant frequencies, reflec-
tance, or transmittance of the waveguide. The phenome-
non is known to applicable inmany other electromagnetic
systems, including microwave cavities and antennas.
Unlike microwave electromagnetic systems, plas-

monic resonances arise from collective oscillations of
electrons in metals; the presence of nonzero frequency
at a long wavelength limit in bulk plasmons had been his-
torically regarded as the first demonstration of acquiring
mass via spontaneous symmetry breaking (i.e., Ander-
son–Higgs mechanism) [1]. Therefore, although plas-
monic systems could yield a similar dispersion relation
as a microwave waveguide, their origins should be fun-
damentally different. Because plasmonic resonant
frequencies are sensitive to the environmental media,
plasmonic nanostructures have been widely utilized for
refractive index sensors. Recently, we have found that
the refractive index sensitivities (dλm∕dn, where λm is
the resonant wavelengths of the mth harmonics, and n
is the effective refractive index of the environment)
for all kinds of individual or coupled plasmonic struc-
tures always linearly increase with λm∕n and exhibit a
slope equal to 1 [2]. Moreover, the universal scaling rela-
tion is found to be independent of the geometries or har-
monic modes of the metal structures. However, due to
the absence of magnetic resonances at optical frequen-
cies, virtually all previous works have been limited to

investigating the plasmonic responses to dielectric media
only. Besides, although the plasmon-assisted nonlinear
magneto-optical effects have stimulated a lot of interest
recently [3–5], it is not known about its fundamental lim-
itations for enhancing the effects using surface plasmons.

In this Letter, we focus on studying the optical
responses when employing localized surface plasmons
as a probe for sensing dielectric and magnetic samples.
We employ numerical simulations to compare the reso-
nant wavelength redshifts (Δλm) of subwavelength plas-
monic structures immersed in dielectric or magnetic
media. As shown in Fig. 1, the resonant frequencies of
a split-ring resonator (SRR) suspended in vacuum or im-
mersed in dielectric [�ε; μ� � �2; 1�] or magnetic
[�ε; μ� � �1; 2�] media are investigated using finite differ-
ence time domain simulation methods via commercial
software (CST Microwave Studio). The resonant frequen-
cies are identified from the dips of the simulated trans-
mission spectra with fixed incident polarizations. To
elucidate that dissimilar responses, the simulated mate-
rials to environmental ε and μ are fundamental properties
of all plasmonic systems; the simulated materials are ad-
justed from PEC to Drude metals with arbitrary plasmon
frequencies (we usually compare them with the plasmon
frequency of gold, ωp;Au � 2.175 × 1015 Hz) and a
damping rate of 1.2 × 1014 Hz. The sensitivity of the
mth resonant mode of the SRR was obtained via
dλm∕dn � Δλm∕0.414, as shown in Fig. 1.

The refractive index sensitivities of subwavelength
structures (including SRRs, nanorods, and various kinds
of nanoparticles) are generally described by either a
standing wave model or Mie scattering theory. Recently,
we find that the standing wave model is consistent with
experimental and simulation results and yields a correct
slope (ndλm∕�λmdn� � 1) of the universal scaling rela-
tion rather than 2, as predicted by the Mie scattering
theory [2,6].

According to the standing wave model, the resonant
frequencies of a metal rod or an SRR can be character-
ized by the 1D standing wave model of surface plasmons
[7]; i.e., λm � 2n�L∕m� − λ0, where λm is the resonant
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wavelength of the mth harmonic mode, L is the total
length of the rod or the SRR, n is the effective refractive
index of the environment, and λ0 is a geometrically
dependent offset. Because of n � �με�1∕2, one might
naively anticipate that the plasmonic responses to dielec-
tric and magnetic media are identical, i.e., dλm∕dn �
dλm∕dε1∕2 � dλm∕dμ1∕2.
Remarkably, our simulation results display otherwise.

Figure 1 shows dλm∕dε1∕2 and dλm∕dμ1∕2 as a function of
λm for various metal structures, harmonic modes, and
plasmon frequencies. It can be seen from Fig. 1 that,
while the sensitivities to ε yields a universal scaling line
(which is independent of structural geometries, har-
monic modes, or plasmon frequencies), the sensitivities
to μ deviate from the universal scaling line, and they
gradually decrease to zero with decreasing λm. Particu-
larly, one can always find a critical size for a metal struc-
ture beyond which the permeability sensitivity is nearly
zero. Unlike microwave electromagnetic systems, the
observed disparity between ε and μ sensitivities is inher-
ent whenever employing plasmonic systems as probes
for detecting environmental media.
We now quantify the result in terms of the ratio of ε

sensitivities to μ sensitivities. As shown in Fig. 2(a),
we find that, although the effect of plasmon frequencies
to μ sensitivities can be rescaled to the respective plas-
mon frequencies, the deviation to the universal line is
highly mode-dependent. For an SRR, the ratio of ε sensi-
tivity to μ sensitivity at the first-harmonic resonance
deviates from unity at a much lower frequency than
do the second or third harmonic resonances. Similar

behaviors are also observed in nanorods or complemen-
tary metal structures.

One may surmise the effect originating from the
dispersion relation imposed in the simulation. The
dispersion relation of Drude metals is known to lead
to the saturation of resonant frequencies of SRRs at re-
duced sizes [8]. Similarly, when plotting the saturation of
resonant frequencies together with the ratio of ε sensitiv-
ity to μ sensitivity [Fig. 2(b)], we find a resemblance be-
tween the two curves. The results suggest the origin of
the effect arises from the dispersion relation of metals.

The saturation of resonant frequencies is known to be
due to the added inductance of kinetic electrons of
metals in an LC resonator, whose resonant frequency
is characterized by the lumped inductor and capacitor
[8]. Correspondingly, the ratio of ε sensitivity to μ sensi-
tivity can be obtained:

ε sensitivity
μ sensitivity

�
���
μ

ε

r �
L� Le

L

�
; (2)

where L is the geometrically determined inductance. Le is
the inductance of kinetic electrons of metals, and its con-
tribution is independent of geometries or environmental
media. From Eq. (2), one can anticipate dissimilar
responses between dλm∕dε1∕2 and dλm∕dμ1∕2 for any
plasmonic structures. We have calculated and found it
reproduces the results shown in Fig. 2(b), further justify-
ing the LC resonator model for explaining the dissimilar
sensitivities.

To investigate the validity of the LC resonator model,
we now extend our studies to spoof plasmons, in which
the dispersion relation is created by artificial geometrical

Fig. 1. (Top) Simulation procedures for determining the wave-
length redshifts (Δλm) of an SRR when immersed into dielectric
(ε � 1, μ � 2) or magnetic (ε � 1, μ � 2) media. Except for
exchanging the media, all other simulated configurations,
including the incident wave polarizations, remain unchanged.
(Bottom) Normalized frequency-dependent ε sensitivity or μ
sensitivity for various plasmonic metal structures and harmonic
modes (SRR, split-ring resonator; Rod, nanorod; CSRR, split-
ring resonator with complementary structures). Prediction of
the standing wave model is plotted as a dashed line.

Fig. 2. (a) The ratio of ε sensitivity to μ sensitivity as a function
of plasmon frequencies [1 (rectangle), 1/2 (up triangle), 1/5
(down triangle), and 1/10 (star) of ωp;Au], harmonic modes,
and resonant frequency (normalized to the respective plasmon
frequencies). (b) The saturation of resonant frequencies with
reducing sizes of an SRR is similar to the curve of the ratios
of ε sensitivity to μ sensitivity. (c) Normalized effective plasmon
frequency (ωp;eff∕ωp;Au) for different spoof SRRs shown in the
inset. (d) The ratio of ε sensitivity to μ sensitivity as a function
of resonant frequencies (normalized to ωp;Au) for SRRs and
spoof SRRs. Here the resonant frequencies of SRRs and spoof
SRRs are tuned by varying L and r, respectively.
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modifications of the metal structures. In spoof plasmons,
grooves or holes with feature sizes much smaller than the
wavelengths of incident waves are artificially made onto
the surface of metal structures, thereby allowing electro-
magnetic fields to penetrate into the metal surface. Thus
they can effectively create a dispersion relation similar to
that of a Drude metal and support surface waves even in
a PEC. Spoof plasmons were first studied in extended
interfaces and recently applied to localized surface plas-
mons [9,10]. Naively, since the dissimilar sensitivities
shown in Figs. 1 and 2(a) are due to the dispersion rela-
tion of metals, one might expect that spoof plasmons
would mimic every aspect of real plasmons and yield dis-
similar sensitivities as well. In the following, we will
show that spoof plasmons alone do not lead to dissimilar
sensitivities but they play an interesting role when mixed
with real plasmons of metals.
The inset of Fig. 2(c) shows a representative structure

of localized spoof plasmons, created by making many
small holes (with radius r) in an SRR. These holes allow
electromagnetic waves to further penetrate into the
metal surface and thereby support surface waves. They
also lead to redshifts of resonant frequencies compared
with those of the pristine SRRs. Thus these subwave-
length structures function as an effective plasmon fre-
quency ωp;eff . The ωp;eff can be obtained by simulating
the transmission spectrum of a pristine SRR (i.e., without
the holes) with adjustable ωp;eff until it yields identical
results as those of a spoof SRR. In Fig. 2(c), we show that
ωp;eff and r can be rescaled to a universal curve when
they are normalized to the plasmon frequency of the
metal and the length (L) of the SRR, respectively. Thus
varying L∕2r of the spoof SRR can effectively reduce
ωp;eff∕ωp;Au and change the dispersion relation.
Interestingly, although it is generally believed that

spoof plasmons in a PEC can exhibit a dispersion relation
with an ωp;eff , their ε and μ sensitivities remain identical.
As shown in the horizontal dashed line of Fig. 2(d), both ε
and μ sensitivities follow an identical universal line for
various spoof SRRs made of PEC. In contrast, Fig. 2(d)
shows dissimilar ε and μ sensitivities for SRRs with “real”
plasmons, whose dispersion relation and plasmon fre-
quency are intrinsic properties of the metal. Apparently,
the metal-like dispersion relation is not a sufficient
condition for yielding dissimilar sensitivities to environ-
mental ε and μ. At first sight, the result seems to suggest
that one can, in principle, distinguish whether a plasmon
is “real” or “spoof” by testing the optical responses to
environmental ε and μ. Furthermore, from the LC reso-
nator model, one might also anticipate that introducing
the subwavelength structures is simply a geometrical
modification, and it would affect the L in Eq. (2) only.
That is, one expects to see the ratio of ε sensitivity to
μ sensitivity decrease with increasing L (or equivalently,
decreasing resonant frequencies), similar to those
observed in “real” localized plasmons.
Remarkably, when creating spoof plasmons in a Drude

metal, the ε and μ sensitivities display distinct behaviors
from those of real plasmons. As shown in Fig. 2(d), we
find that the ratios of ε sensitivity to μ sensitivity increase
with reducing resonant frequencies for spoof SRRs,
whereas those of real SRRs show opposite trends. The

unexpected results indicate that the LC resonator model
fails to explain the behavior of spoof SRRs.

Our further investigations show that the ratio of ε
sensitivity to μ sensitivity obeys a universal curve once
the resonant frequencies are normalized to their respec-
tive ωp;eff . Here the effective plasmon frequency ωp;eff can
either originate from the “real” plasmon frequencies of
Drude metals (i.e., ωp;eff � ωp;Au) or from mixed effects
of spoof plasmons and real plasmons [whose ωp;eff is de-
termined from Fig. 2(c)]. As shown in Fig. 3, the effects of
“real” or spoof plasmons cannot be distinguished from
each other once they are mixed. Therefore, although
the spoof plasmons in a PEC always yields identical ε
and μ sensitivities, once they are mixed with real plas-
mons of metals, their effects cannot be distinguished
from those of real plasmons exhibiting ωp;eff .

Away from the (effective) plasmon frequencies, the dif-
ference between ε and μ sensitivities decreases rapidly.
For example, we estimate the ratio of ε sensitivities to μ
sensitivities deviates from unity by ∼10−6 at 100 GHz for
copper. On the other hand, although the absence of mag-
netic resonances at optical frequencies indicates difficul-
ties in observing the effect within the linear optics
domain, the effect can be important in nonlinear optics.

Employing localized surface plasmons to enhance/
probe nonlinear optical phenomena has two kinds of
effects. First, localized surface plasmonic resonances
can lead to electromagnetic hot spots and enhance the
nonlinear effects. Second, the induced nonlinear refrac-
tive index changes can be probed by the localized plas-
monic structures. Recent theoretical and experimental
progresses on enhancing the magneto-optical Kerr effect
or the Faraday effect via surface plasmons are based on
the two effects [3–5]. In the following, we will show how
the results discussed in the previous sections put funda-
mental constraints on both effects.

In general, the energy (U) of a nonlinear media can be
expressed as

Fig. 3. Universal relation for the ratio of ε sensitivity to μ
sensitivity as a function of resonant frequencies. The resonant
frequency is normalized to the plasmon frequency (1, 1/2, and
1/5 of ωp;Au, respectively) for SRRs and to ωp;eff [determined
from Fig. 2(c)] for spoof SRRs, respectively. When the spoof
SRR is made by PEC, identical ε and μ sensitivities are observed
(dashed line).
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where the terms of the second line represent the Pockels
effect, the Faraday effect (or magneto-optical Kerr ef-
fect), and the Cotton–Mouton effect, respectively. The
term of the third line represents the Kerr effect.
The results discussed in previous sections indicate the

capabilities of localized surface plasmons for probing the
environmental magnetic media decrease at high frequen-
cies. Physically, it indicates disparities of electric and
magnetic field enhancements at high frequencies. As
shown in Fig. 4, we use an SRR as an example and
numerically calculate the ratio of electric to magnetic
field-enhancements (E∕B) for different resonant frequen-
cies. As expected, an SRR made of PEC always displays
its E∕B being independent of resonant frequencies.
On the other hand, when the SRR is made of gold
(ωp;Au � 2.175 × 1015 Hz), the presence of localized sur-
face plasmons leads to stronger electric field enhance-
ments over those of a magnetic field, which manifests
at the increased E∕B at high resonant frequencies, as
shown in Fig. 4. Thus, for a given incident electromag-
netic wave, the Pockels effect or the Kerr effect will
be greatly amplified by the electric field enhancements
at the electromagnetic hot spots. On the other hand,
the Faraday effect, the magneto-optical Kerr effect,

and the Cotton–Mouton effect can be enhanced as well,
though are less pronounced.

From Eq. (3), the polarization (P) and the magnetiza-
tion (M) can be obtained via P � −∂U∕∂E and
M � −∂U∕∂H, respectively. Experimentally, although
the nonlinear coefficients of the Faraday effect and
the Cotton–Mouton effect are always experimentally de-
termined from the nonlinear refractive index, and their
contributions to magnetizations are not usually men-
tioned in nonlinear optics, we note that the two effects
can always contribute to nonlinear magnetizations.
The nonlinear magnetization, as well as the nonlinear
polarization, can be probed by the localized surface plas-
mons via scattered light or resonant frequency changes.
However, due to the reduced sensitivity to μ, the nonlin-
ear magnetizations induced by the Faraday effect or the
Cotton–Mouton effect become difficult to be probed by
localized surface plasmons at optical frequencies.
Particularly, because the μ sensitivities become much re-
duced at high frequencies, the nonlinear signals will be
much weaker for sum frequency generation than those
for difference frequency generation. Likewise, rough
surfaces of the plasmonic metal structures will play
equivalent roles similar to the mixed real/spoof plas-
mons, leading to redshifting the resonant frequencies
and reducing the nonlinear magnetic responses as shown
in Fig. 2(d). Therefore our results put a fundamental
constraint for all plasmon-assisted nonlinear magnetic
phenomena.
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3610 OPTICS LETTERS / Vol. 39, No. 12 / June 15, 2014


