
Chapter 7

Asymptotic Least Squares Theory:

Part II

In the preceding chapter the asymptotic properties of the OLS estimator were derived

under “standard” regularity conditions that require data to obey suitable LLN and CLT.

Some important consequences of these conditions include root-T consistency and asymptotic

normality of the OLS estimator. There are, however, various data that do not obey an LLN

nor a CLT. For instance, the simple average of the random variables that follow a random

walk diverges, as shown in Example 5.31. Moreover, the data that behave similarly to

random walks are also not governed by LLN or CLT. Such data are said to be integrated of

order one, denoted as I(1); a precise definition of I(1) series will be given in Section 7.1. I(1)

data are practically relevant because, since the seminal work of Nelson and Plosser (1982),

it has been well documented in the literature that many economic and financial time series

are better characterized as I(1) variables.

This chapter is mainly concerned with estimation and hypothesis testing in linear re-

gressions that involve I(1) variables. When data are I(1), the results of Section 6.2 are

not applicable, and the asymptotic properties of the OLS estimator must be analyzed dif-

ferently. As will be shown in subsequent sections, the OLS estimator remains consistent

but with a faster convergence rate. Moreover, the normalized OLS estimator has a non-

standard distribution in the limit which may be quite different from the normal distribution.

This suggests that one should be careful in drawing statistical inferences from regressions

with I(1) variables. As far as economic interpretation is concerned, regressions with I(1)

variables are closely related economic equilibrium relations and hence play an important

role in empirical studies. A more detailed analysis of I(1) variables can be found in, e.g.,

Hamilton (1994).
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176 CHAPTER 7. ASYMPTOTIC LEAST SQUARES THEORY: PART II

7.1 I(1) Variables

A time series {yt} is said to be I(1) if it can be expressed as yt = yt−1 + εt with εt satisfying

the following condition.

[C1] {εt} is a weakly stationary process with mean zero and variance σ2
ε and obeys an

FCLT:

1
σ∗
√
T

[Tr]∑
t=1

εt =
1

σ∗
√
T
y[Tr] ⇒ w(r), 0 ≤ r ≤ 1,

where w is the standard Wiener process, and

σ2
∗ = lim

T→∞
var

(
1√
T

T∑
t=1

εt

)
,

which is known as the long-run variance of εt.

This definition is not the most general but is convenient for subsequent analysis. In

view of (6.5), we can write

var

(
1√
T

T∑
t=1

εt

)
= var(εt) + 2

T−1∑
j=1

cov(εt, εt−j).

The existence of σ2
∗ implies that the variance of

∑T
t=1 εt is O(T ). Moreover, cov(εt, εt−j)

must be summable so that cov(εt, εt−j) vanishes when j tends to infinity. For simplicity, a

weakly stationary process will also be referred to as an I(0) series. Under our definition,

partial sums of an I(0) series (e.g.,
∑t

i=1 εi) form an I(1) series, while taking first difference

of an I(1) series (e.g., yt−yt−1) yields an I(0) series. Note that A random walk is I(1) with

i.i.d. εt and σ2
∗ = σ2

ε . When {εt} is a stationary ARMA(p, q) process, {yt} is also known

as an ARIMA(p, 1, q) process. For example, many empirical evidences showing that stock

prices and GDP are I(1), and so are their log transformations. Yet, stock returns and GDP

growth rates are found to be I(0).

Analogous to a random walk, an I(1) series yt has mean zero and variance increasing

linearly with t, and its autocovariances cov(yt, ys) do not decrease when |t − s| increases,

cf. Example 5.31. In contrast, an I(0) series εt has a bounded variance, and cov(εt, εs) decays

to zero when |t − s| becomes large. Thus, an I(1) series has increasingly large variations

and smooth sample paths, yet an I(0) series is not as smooth as I(1) series and has smaller

variations. To illustrate, we plot in Figure 7.1 two sample paths of an ARIMA process:

yt = yt−1 + εt, where εt = 0.3εt−1 + ut − 0.4ut−1 with ut i.i.d. N (0, 1). For comparison, we

also include the sample paths of εt in the figure. It can be seen that ARIMA paths (thick
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Figure 7.1: Sample paths of ARIMA and ARMA series.

lines) wander away from the mean level and exhibit large swings over time, whereas the

ARMA paths (thin lines) are jagged and fluctuate around the mean level.

During a given time period, an I(1) series may look like a series that follows a deter-

ministic time trend: yt = ao + bot + εt, where εt are I(0). Such a series, also known as a

trend stationary series, has finite variance and becomes stationary when the trend function

is removed. It should be noted that an I(1) series is fundamentally different from a trend

stationary series, in that the former has unbounded variance and its behavior can not be

captured by a deterministic trend function. Figure 7.2 illustrates the difference between the

sample paths of a random walk yt = yt−1 +εt and a trend stationary series yt = 1+0.1t+εt,

where εt are i.i.d. N (0, 1). It is clear that the variation of random walk paths is much larger

than that of trend stationary paths.

7.2 Autoregression of an I(1) Variable

Given the specification yt = x′tβ+et such that [B2] holds: yt = x′tβo +εt with IE(xtεt) = 0,

the OLS estimator of β can be expressed as

β̂T = βo +

(
T∑

t=1

xtx
′
t

)−1( T∑
t=1

xtεt

)
.

A generic approach to establishing OLS consistency is to show that, under suitable con-

ditions, the second term on the right-hand side converges to zero in some probabilistic

sense. Theorem 6.1 ensures this by imposing [B1] on data. With [B1] and [B2], we have∑T
t=1 xtx

′
t = OIP(T ) and

∑T
t=1 xtεt = oIP(T ), so that

β̂T = βo + oIP(1),
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Figure 7.2: Sample paths of random walk and trend stationary series.

showing weak consistency of β̂T . When [B3] also holds, the CLT effect yields a more precise

order of
∑T

t=1 xtεt, namely, OIP(T 1/2). It follows that

β̂T = βo +OIP(T−1/2),

which establishes root-T consistency of β̂T . On the other hand, the asymptotic properties

of the OLS estimator must be derived without resorting to LLN and CLT when yt and xt

are I(1).

7.2.1 Asymptotic Properties of the OLS Estimator

To illustrate, we first consider the simplest AR(1) specification:

yt = αyt−1 + et. (7.1)

Suppose that {yt} is a random walk such that yt = αoyt−1 + εt with αo = 1 and εt

i.i.d. random variables with mean zero and variance σ2
ε . From Examples 5.31 we know

that {yt} does not obey a LLN. Moreover,
∑T

t=2 yt−1εt = OIP(T ) by Example 5.32, and∑T
t=2 y

2
t−1 = OIP(T 2) by Example 5.43. The OLS estimator of α is thus

α̂T = 1 +
∑T

t=2 yt−1εt∑T
t=2 y

2
t−1

= 1 +OIP(T−1). (7.2)

This shows that α̂T converges to αo = 1 at the rate T−1, which is in sharp contrast with

the convergence rate of the OLS estimator discussed in Chapter 6. Thus, the estimator α̂T

is a T -consistent estimator and also known as a super consistent estimator.

When yt is an I(1) series, it is straightforward to derive the following asymptotic results;

all proofs are deferred to the Appendix.
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Lemma 7.1 Let yt = yt−1 + εt be an I(1) series with εt satisfying [C1]. Then,

(i) T−3/2
∑T

t=1 yt−1 ⇒ σ∗

∫ 1

0
w(r) dr;

(ii) T−2
∑T

t=1 y
2
t−1 ⇒ σ2

∗

∫ 1

0
w(r)2 dr;

(iii) T−1
∑T

t=1 yt−1εt ⇒
1
2
[σ2
∗w(1)2 − σ2

ε ] = σ2
∗

∫ 1

0
w(r) dw(r) +

1
2
(σ2
∗ − σ2

ε ).

As Lemma 7.1 holds for general I(1) processes, the assertions (i) and (ii) are generaliza-

tions of the results in Example 5.43. The assertion (iii) is also a more general result than

Example 5.32 and gives a precise limit of
∑T

t=2 yt−1εt/T . The weak limit of the normalized

OLS estimator of α,

T (α̂T − 1) =
∑T

t=2 yt−1εt/T∑T
t=2 y

2
t−1/T

2
,

now can be derived from Lemma 7.1.

Theorem 7.2 Let yt = yt−1 + εt be an I(1) series with εt satisfying [C1]. Given the

specification yt = αyt−1 + et, the normalized OLS estimator of α is such that

T (α̂T − 1) ⇒
1
2

[
w(1)2 − σ2

ε /σ
2
∗
]∫ 1

0 w(r)2 dr
.

where w is the standard Wiener process. In particular, when yt is a random walk,

T (α̂T − 1) ⇒
1
2

[
w(1)2 − 1

]∫ 1
0 w(r)2 dr

,

which does not depend on σ2
ε and σ2

∗.

Theorem 7.2 shows that for an autoregression of I(1) variables, the OLS estimator is T -

consistent and has a non-standard distribution in the limit. It is worth mentioning that

T (α̂T − 1) has a weak limit depending on the (nuisance) parameters σ2
ε and σ2

∗ in general

and hence is not asymptotically pivotal, unless εt are i.i.d. It is also interesting to observe

from Theorem 7.2 that OLS consistency is not affected even when yt−1 and correlated εt

are both present, in contrast with Example 6.5. This is the case because
∑T

t=2 y
2
t−1 grows

much too fast (at the rate T 2) and hence is able to wipe out the effect of
∑T

t=2 yt−1εt (which

grows at the rate T ) when T becomes large.

Consider now the specification with a constant term:

yt = c+ αyt−1 + et, (7.3)
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and the OLS estimators ĉT and α̂T . Define ȳ−1 =
∑T−1

t=1 yt/(T − 1). The lemma below is

analogous to Lemma 7.1.

Lemma 7.3 Let yt = yt−1 + εt be an I(1) series with εt satisfying [C1]. Then,

(i) T−2
∑T

t=1(yt−1 − ȳ−1)2 ⇒ σ2
∗

∫ 1

0
w∗(r)2 dr;

(ii) T−1
∑T

t=1(yt−1 − ȳ−1)εt ⇒ σ2
∗

∫ 1

0
w∗(r) dw(r) +

1
2
(σ2
∗ − σ2

ε ),

where w is the standard Wiener process and w∗(t) = w(t)−
∫ 1
0 w(r) dr.

Lemma 7.3 is concerned with “de-meaned” yt, i.e., yt − ȳ. In analogy with this term, the

process w∗ is also known as the “de-meaned” Wiener process. It can be seen that the sum

of squares of de-meaned yt also grows at the rate T 2 and that the sum of the products of

de-meaned yt and εt grows at the rate T . These rates are the same as those based on yt, as

shown in Lemma 7.1. The consistency of the OLS estimator now can be easily established,

as in Theorem 7.2.

Theorem 7.4 Let yt = yt−1 + εt be an I(1) series with εt satisfying [C1]. Given the

specification yt = c+ αyt−1 + et, the normalized OLS estimators of α and c are such that

T (α̂T − 1) ⇒
∫ 1
0 w

∗(r) dw(r) + 1
2(1− σ2

ε /σ
2
∗)∫ 1

0 w
∗(r)2 dr

=: A,

√
T ĉT ⇒ A

(
σ∗

∫ 1

0
w(r) dr

)
+ σ∗w(1).

where w is the standard Wiener process and w∗(t) = w(t)−
∫ 1
0 w(r) dr. In particular, when

yt is a random walk,

T (α̂T − 1) ⇒
∫ 1
0 w

∗(r) dw(r)∫ 1
0 w

∗(r)2 dr
.

Theorem 7.4 shows again that, for the autoregression of an I(1) variable that contains

a constant term, the normalized OLS estimators are not asymptotically pivotal unless εt
are i.i.d. It should be emphasized that the OLS estimators of the intercept and slope

coefficients have different rates of convergence. The estimator of the latter is T -consistent,

whereas the estimator of the former remains root-T consistent but does not have a limiting

normal distribution.

Remarks:

c© Chung-Ming Kuan, 2007, 2009



7.2. AUTOREGRESSION OF AN I(1) VARIABLE 181

1. While the asymptotic normality of the OLS estimator obtained under standard condi-

tions is invariant with respect to model specifications, Theorems 7.4 and 7.2 indicate

that the limiting results for autoregressions with an I(1) variable are not. This is a

great disadvantage because the asymptotic analysis need to be carried out for different

specifications when the data are I(1) series.

2. All the results in this sub-section are based on the data yt = yt−1 + εt which does not

involve an intercept. These results would break down if yt = co + yt−1 + εt with a

non-zero co; such series are said to be I(1) with drift. It is easily seen that, when a

drift is present,

yt = co t+
t∑

i=1

εi,

which contains a deterministic trend and an I(1) series without drift. Such series

exhibits large swings around the trend function and has much larger variation than

I(1) series without drift. See Exercise 7.2 for some properties of this series.

7.2.2 Tests of Unit Root

What we have learnt from the preceding subsections are: (1) The behavior of an I(1) series

is quite different from that of an I(0) series, and (2) the presence of an I(1) variable in a

regression renders standard asymptotic results invalid. It is thus practically important to

determine whether the data are in fact I(1). Given the specifications (7.1) and (7.3), the

hypothesis of interest is αo = 1; tests of this hypothesis are usually referred to as tests of

unit root.

A leading unit-root test is the t statistic of αo = 1 in the specification (7.1) or (7.3).

For the former, the t statistic is

τ0 =

(∑T
t=2 y

2
t−1

)1/2(α̂T − 1)
σ̂T

,

where σ̂2
T =

∑T
t=2(yt − α̂T yt−1)2/(T − 2) is the standard OLS variance estimator; for the

latter, the t statistic is

τc =

[∑T
t=2(yt−1 − ȳ−1)2

]1/2(α̂T − 1)
σ̂T

,

where σ̂2
T =

∑T
t=2(yt − ĉT − α̂T yt−1)2/(T − 3). In view of Theorem 7.2 and Theorem 7.4,

it is easy to derive the weak limits of these statistics under the null hypothesis of αo = 1.
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Figure 7.3: The distributions of the Dickey-Fuller tests (τ0 and τc) vs. N (0, 1).

Theorem 7.5 Let yt be a random walk. Given the specifications (7.1) and (7.3), we have,

respectively,

τ0 ⇒
1
2 [w(1)2 − 1][∫ 1
0 w(r)2 dr

]1/2
,

τc ⇒
∫ 1
0 w

∗(r) dw(r)[∫ 1
0 w

∗(r)2 dr
]1/2

,

(7.4)

where w is the standard Wiener process and w∗(t) = w(t)−
∫ 1
0 w(r) dr.

These statistics were first analyzed by Dickey and Fuller (1979), and their weak limits

were derived in Phillips (1987). In addition to the specifications (7.1) and (7.3), Dickey

and Fuller (1979) also considered the specification with the intercept and a time trend:

yt = c+ αyt−1 + β
(
t− T

2

)
+ et; (7.5)

the t-statistic of αo = 1 is denoted as τt. The weak limit of τt is different from those in

Theorem 7.5 but can be derived similarly; we omit the detail. The t-statistics τ0, τc, and τt
and the F tests considered in Dickey and Fuller (1981) are now known as the Dickey-Fuller

tests.

The limiting distributions of the Dickey-Fuller tests are all non-standard but can be

easily simulated; see e.g., Fuller (1996, p. 642) and Davidson and MacKinnon (1993, p. 708).

These distributions will be referred to as the Dickey-Fuller distributions. We plot τ0 and

τc in Figure ??;1 some percentiles of the Dickey-Fuller tests reported in Fuller (1996) are
1In our simulations, each sample path of the standard Wiener process was approximated by a Gaussian

random walk with 5000 i.i.d. N (0, 1) innovations; the number of replications was 20,000. Each simulated

distribution was smoothed by.
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Table 7.1: Some percentiles of the Dickey-Fuller distributions.

Test 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

τ0 −2.58 −2.23 −1.95 −1.62 −0.51 0.89 1.28 1.62 2.01

τc −3.42 −3.12 −2.86 −2.57 −1.57 −0.44 −0.08 0.23 0.60

τt −3.96 −3.67 −3.41 −3.13 −2.18 −1.25 −0.94 −0.66 −0.32

summarized in Table 7.1. We can see that these distributions are not symmetric about zero

and assume more negative values. In particular, τc assumes negatives values about 95% of

times, and τt is virtually a non-positive random variable.

To implement the Dickey-Fuller tests, we may, corresponding to the specifications (7.1),

(7.3) and (7.5), estimate one of the following specifications:

∆yt = θyt−1 + et,

∆yt = c+ θyt−1 + et,

∆yt = c+ θyt−1 + β
(
t− T

2

)
+ et,

(7.6)

where ∆yt = yt − yt−1. Clearly, the hypothesis θo = 0 for these specifications is equivalent

to αo = 0 for (7.1), (7.3) and (7.5). It is also easy to verify that the weak limits of the

normalized estimators in (7.6), T θ̂T , are the same as the respective limits of T (α̂T − 1)

under the null hypothesis. Consequently, the t-ratios of θo = 0 also have the Dickey-Fuller

distributions with the critical values given in Table 7.1. Using the t-ratios of (7.6) as unit-

root tests is convenient in practice because they are routinely reported by econometrics

packages.

A major drawback of the Dickey-Fuller tests is that they can only check if the data

series is a random walk. When {yt} is a general I(1) process, the dependence of εt renders

the limits of Theorem 7.5 invalid, as shown in the result below.

Theorem 7.6 Let yt = yt−1 + εt be an I(1) series with εt satisfying [C1]. Then,

τ0 ⇒
σ∗
σε

(
1
2 [w(1)2 − σ2

ε /σ
2
∗][∫ 1

0 w(r)2 dr
]1/2

)
,

τc ⇒
σ∗
σε

(∫ 1
0 w

∗(r) dw(r) + 1
2(1− σ2

ε /σ
2
∗)[∫ 1

0 w
∗(r)2 dr

]1/2

)
,

(7.7)

where w is the standard Wiener process and w∗(t) = w(t)−
∫ 1
0 w(r) dr.
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Theorem 7.6 includes Theorem 7.5 as a special case because the limits in (7.7) would reduce

to those in (7.4) when εt are i.i.d. (so that σ2
∗ = σ2

ε ). These results also suggest that the

nuisance parameters σ2
ε and σ2

∗ may be eliminated by proper corrections of the statistics τ0
and τc.

Let êt denote the OLS residuals of the specification (7.1) or (7.3) and s2Tn denote a

Newey-West type estimator of σ2
∗ based on êt:

s2Tn =
1

T − 1

T∑
t=2

ê2t +
2

T − 1

T−2∑
s=1

κ
( s
n

) T∑
t=s+2

êtêt−s,

with κ a kernel function and n = n(T ) its bandwidth; see Section 6.3.2. Phillips (1987)

proposed the following modified τ0 and τc statistics:

Z(τ0) =
σ̂T

sTn

τ0 −
1
2(s2Tn − σ̂2

T )

sTn

(∑T
t=2 y

2
t−1/T

2
)1/2

,

Z(τc) =
σ̂T

sTn

τc −
1
2(s2T − σ̂2

T )

sTn

[∑T
t=2(yt−1 − ȳ−1)2

]1/2
;

see also Phillips and Perron (1988) for the modifications of other unit-root tests. The Z-

type tests are now known as the Phillips-Perron tests. It is quite easy to verify that the

limits of Z(τ0) and Z(τc) are those in (7.4) and do not depend on the nuisance parameters.

Thus, the Phillips-Perron tests are asymptotically pivotal and capable of testing whether

{yt} is a general I(1) series.

Corollary 7.7 Let yt = yt−1 + εt be an I(1) series with εt satisfying [C1]. Then,

Z(τ0) ⇒
1
2

[
w(1)2 − 1

][∫ 1
0 w(r)2 dr

]1/2
,

Z(τc) ⇒
∫ 1
0 w

∗(r) dw(r)[∫ 1
0 w

∗(r)2 dr
]1/2

.

where w is the standard Wiener process and w∗(t) = w(t)−
∫ 1
0 w(r) dr.

Said and Dickey (1984) introduced a different approach to circumventing the nuisance

parameters in the limit. Note that the correlations in a weakly stationary process may be

“filtered out” by a linear AR model with a proper order, say, k. For example, when {εt} is

a weakly stationary ARMA process,

εt − γ1εt−1 − · · · − γkεt−k = ut
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are serially uncorrelated for some k and some parameters γ1, . . . , γk. Basing on this idea

Said and Dickey (1984) suggested the following “augmented” specifications:

∆yt = θyt−1 +
k∑

j=1

γj∆yt−j + et,

∆yt = c+ θyt−1 +
k∑

j=1

γj∆yt−j + et,

∆yt = c+ θyt−1 + β
(
t− T

2

)
+

k∑
j=1

γj∆yt−j + et,

(7.8)

where γj are unknown parameters. Compared with the specifications in (7.6), the aug-

mented regressions in (7.8) contain k lagged differences ∆yt−j , j = 1, . . . , k, which are εt−j

under the null hypothesis. These differences are included to capture possible correlations

among εt. After controlling these correlations, the resulting t-ratios of θo = 0 turn out

to have the Dickey-Fuller distributions, as the t-ratios for (7.6), and are known as the

augmented Dickey-Fuller tests. Compared with the Phillips-Perron tests, these tests are

capable of testing whether {yt} is a general I(1) series without non-parametric kernel esti-

mation for σ2
∗. Yet, one must choose a proper lag order k for the augmented specifications

in (7.8).

7.3 Tests of Stationarity against I(1)

Instead of testing I(1) series directly, Kwiatkowski, Phillips, Schmidt, and Shin (1992)

proposed testing the property of stationarity against I(1) seires. Their tests, obtained

along the line in Nabeya and Tanaka (1988), are now known as the KPSS test.

Recall that the process {yt} is said to be trend stationary if

yt = ao + bo t+ εt,

where εt satisfy [C1]. That is, yt fluctuates around a deterministic trend function. When

bo = 0, the resulting process is a level stationary process, in the sense that it moves around

the mean level ao. A trend stationary process achieves stationarity by removing the de-

terministic trend, whereas a level stationary process is itself stationary and hence an I(0)

series. The KPSS test is of the following form:

ηT =
1

T 2 s2Tn

T∑
t=1

(
t∑

i=1

êi

)2

,

where s2Tn is, again, a Newey-West estimator of σ2
∗, computed using the model residuals êt.

To test the null of trend stationarity, êt = yt − âT − b̂T t are the residuals of regressing yt
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Figure 7.4: The distributions of the KPSS tests.

on the constant one and the time trend t. For the null of level stationarity, êt = yt − ȳ are

the residuals of regressing yt on the constant one.

To see the null limit of ηT , consider first the level stationary process yt = ao + εt. The

partial sums of êt = yt − ȳ are such that

[Tr]∑
t=1

êt =
[Tr]∑
t=1

(εt − ε̄) =
[Tr]∑
t=1

εt −
[Tr]
T

T∑
t=1

εt, r ∈ (0, 1].

Then by a suitable FCLT,

1
σ∗
√
T

[Tr]∑
t=1

êt =
1

σ∗
√
T

[Tr]∑
t=1

εt −
[Tr]
T

(
1

σ∗
√
T

T∑
t=1

εt

)

⇒ w(r)− rw(1), r ∈ (0, 1].

That is, properly normalized partial sums of the residuals behave like a Brownian bridge

with w0(r) = w(r)− rw(1). Similarly, given the trend stationary process yt = a0 + b0 t+ εt,

let êt = yt − âT − b̂T t denote the OLS residuals. Then, it can be shown that

1
σ∗
√
T

[Tr]∑
t=1

êt ⇒ w(r) + (2r − 3r2)w(1)− (6r − 6r2)
∫ 1

0
w(s) ds, r ∈ (0, 1];

see Exercise 7.4. Note that the limit on the right is a functional of the standard Wiener

process which, similar to a Brownian bridge, is a “tide-down” process in the sense that it

is zero with probability one at r = 1.

The limits of ηT under the null hypothesis are summarized in the following theorem.

We plot their limiting distributions in Figure ??;2 some percentiles of these distributions
2In our simulations, each sample path of the standard Wiener process was approximated by a Gaussian

random walk with 5000 i.i.d. N (0, 1) innovations; the number of replications was 20,000. Each simulated

distribution was smoothed by.
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Table 7.2: Some percentiles of the distributions of the KPSS test.

Test 1% 2.5% 5% 10%

level stationarity 0.739 0.574 0.463 0.347

trend stationarity 0.216 0.176 0.146 0.119

are collected in Table 7.2.

Theorem 7.8 let yt = ao + εt be a level stationary process with εt satisfying [C1]. Then,

ηT computed from êt = yt − ȳ is such that

ηT ⇒
∫ 1

0
w0(r)2 dr,

where w0 is the Brownian bridge. let yt = ao + bo t + εt be a trend stationary process with

εt satisfying [C1]. Then, ηT computed from from the OLS residuals êt = yt − âT − b̂T t is

such that

ηT ⇒
∫ 1

0
f(r)2 dr,

where f(r) = w(r) + (2r − 3r2)w(1)− (6r − 6r2)
∫ 1
0 w(s) ds and w is the standard Wiener

process.

These tests have power against I(1) series because ηT would diverge under I(1) alterna-

tives. This is the case because T 2 in ηT is not be a proper normalizing factor when the data

are I(1). It is worth mentioning that the KPSS tests also have power against other alter-

natives, such as stationarity with mean changes and trend stationarity with trend breaks.

Thus, rejecting the null of stationarity does not imply that the series being tested must be

I(1).

7.4 Regressions of I(1) Variables

From the preceding section we have seen that the asymptotic behavior of the OLS estimator

in an auotregression changes dramatically when {yt} is an I(1) series. It is then reasonable

to expect that the OLS asymptotics would also be quite different from that in Chapter 6 if

the dependent variable and regressors of a regression model are both I(1) series.
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7.4.1 Spurious Regressions

In a classical simulation study, Granger and Newbold (1974) found that, while two inde-

pendent random walks should have no relationship whatsoever, regressing one random walk

on the other typically yields a significant t-ratio. Thus, one would falsely reject the null

hypothesis of no relationship between two independent random walks. This is known as

the problem of spurious regression. Phillips (1986) provided analytic results showing why

such a spurious inference may arise.

To illustrate, we consider a simple linear specification:

yt = α+ βxt + et.

Let α̂T and β̂T denote the OLS estimators for α and β, respectively. Also denote their

t-ratios as tα = α̂T /sα and tβ = β̂T /sβ , where sα and sβ are the OLS standard errors for

α̂T and β̂T . We are interested in the case that {yt} and {xt} are I(1) series: yt = yt−1 + ut

and xt = xt−1 + vt, where {ut} and {vt} are mutually independent processes satisfying the

following condition.

[C2] {ut} and {vt} are two weakly stationary processes have mean zero and respective

variances σ2
u and σ2

v and both obey an FCLT with respective long-run variances:

σ2
y = lim

T→∞

1
T

IE

(
T∑

t=1

ut

)2

, σ2
x = lim

T→∞

1
T

IE

(
T∑

t=1

vt

)2

.

In the light of Lemma 7.1, the limits below are immediate:

1
T 3/2

T∑
t=1

yt ⇒ σy

∫ 1

0
wy(r) dr,

1
T 2

T∑
t=1

y2
t ⇒ σ2

y

∫ 1

0
wy(r)

2 dr,

where wy is a standard Wiener processes. Similarly,

1
T 3/2

T∑
t=1

xt ⇒ σx

∫ 1

0
wx(r) dr,

1
T 2

T∑
t=1

x2
t ⇒ σ2

x

∫ 1

0
wx(r)2 dr,

where wx is also a standard Wiener process which, due to mutual independence between
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{ut} and {vt}, is independent of wy. As in Lemma 7.3, we also have

1
T 2

T∑
t=1

(yt − ȳ)2 ⇒ σ2
y

∫ 1

0
wy(r)

2 dr − σ2
y

(∫ 1

0
wy(r) dr

)2

=: σ2
ymy,

1
T 2

T∑
t=1

(xt − x̄)2 ⇒ σ2
x

∫ 1

0
wx(r)2 dr − σ2

x

(∫ 1

0
wx(r) dr

)2

=: σ2
xmx,

where w∗y(t) = wy(t) −
∫ 1
0 wy(r) dr and w∗x(t) = wx(t) −

∫ 1
0 wx(r) dr are two mutually

independent, “de-meaned” Wiener processes. Analogous to the limits above, it is also easy

to show that

1
T 2

T∑
t=1

(yt − ȳ)(xt − x̄t)

⇒ σyσx

(∫ 1

0
wy(r)wx(r) dr −

∫ 1

0
wy(r) dr

∫ 1

0
wx(r) dr

)
=: σyσxmyx.

The following results on α̂T , β̂T and their t-ratios now can be easily derived from the

limits above.

Theorem 7.9 Let yt = yt−1 +ut and xt = xt−1 +vt, where {ut} and {vt} are two mutually

independent processes satisfying [C2]. Then for the specification yt = α+βxt +et, we have:

(i) β̂T ⇒
σy myx

σxmx

,

(ii) T−1/2α̂T ⇒ σy

(∫ 1

0
wy(r) dr −

myx

mx

∫ 1

0
wx(r) dr

)
,

(iii) T−1/2 tβ ⇒
myx

(mymx −m2
yx)1/2

,

(iv) T−1/2 tα ⇒
mx

∫ 1
0 wy(r) dr −myx

∫ 1
0 wx(r) dr[

(mymx −m2
yx)
∫ 1
0 wx(r)2 dr

]1/2
,

where wx and wy are two mutually independent, standard Wiener processes.

When yt and xt are mutually independent, the true parameters of this regression should

be αo = βo = 0. The first two assertions of Theorem 7.9 show, however, that the OLS

estimators do not converge in probability to zero. Instead, β̂T has a non-degenerate limiting

distribution, whereas α̂T diverges at the rate T 1/2. Theorem 7.9(iii) and (iv) further indicate

that tα and tβ both diverge at the rate T 1/2. Thus, one would easily infer that these
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coefficients are significantly different from zero if the critical values of the t-ratio were

taken from the standard normal distribution. These results together suggest that, when

the variables are I(1) series, one should be extremely careful in drawing statistical inferences

from the t tests, for the t tests do not have the standard normal distribution in the limit.

Similarly, it can be shown that when {yt} and {xt} are mutually independent I(1)

processes, their sample correlation coefficient does not converge in probability to zero but

converges weakly to a random variable; see Exercise 7.5. This is a problem of spurious

correlation. Nelson and Kang (1984) also showed that, given the time trend specification:

yt = a+ b t+ et,

it is likely to draw a false inference that the time trend is significant in explaining the

behavior of yt when {yt} is in fact a random walk. This is known as a problem of spurious

trend. Phillips and Durlauf (1986) analyzed this problem as in Theorem 7.9 and demon-

strated that the F test of bo = 0 diverges at the rate T . The divergence of the F test (and

hence the t-ratio) explains why an incorrect inference would result.

7.4.2 Cointegration

The results in the preceding sub-section indicate that the relation between I(1) variables

found using standard asymptotics may be a spurious one. They do not mean that there can

be no relation between I(1) variables. In this section, we formally characterize the relations

between I(1) variables.

Consider two variables y and x that obey an equilibrium relationship ay−bx = 0. With

real data (yt, xt), zt := ayt − bxt are understood as equilibrium errors because they need

not be zero all the time. When yt and xt are both I(1), a linear combination of them is,

in general, also an I(1) series. Thus, {zt} would be an I(1) series that wanders away from

zero and has growing variances over time. If that is the case, {zt} rarely crosses zero (the

horizontal axis), so that the equilibrium condition entails little empirical restriction on zt.

On the other hand, when yt and xt are both I(1) but involve the same random walk qt
such that yt = qt + ut and xt = cqt + vt, where {ut} and {vt} are two I(0) series. It is then

easily seen that

zt = cyt − xt = cut − vt,

which is a linear combination of I(0) series and hence is also I(0). This example shows that

when two I(1) series share the same trending (random walk) component, it is possible to

find a linear combination of these series that annihilates the common trend and becomes
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an I(0) series. In this case, the equilibrium condition is empirically relevant because zt is

I(0) and hence must cross zero often.

Formally, two I(1) series are said to be cointegrated if a linear combination of them is

I(0). The concept of cointegration was originally proposed by Granger (1981) and Granger

and Weiss (1983) and subsequently formalized in Engle and Granger (1987). This concept

is readily generalized to characterize the relationships among d I(1) time series. Let yt be

a d-dimensional vector I(1) series such that each element is an I(1) series. These elements

are said to be cointegrated if there exists a d× 1 vector, α, such that zt = α′yt is I(0). We

say that the elements of yt are CI(1,1) for simplicity, indicating that a linear combination

of the elements of yt is capable of reducing the integrated order by one. The vector α is

referred to as a cointegrating vector.

When d > 2, there may be more than one cointegrating vector. Clearly, if α1 and α2

are two cointegrating vectors, so are their linear combinations. Hence, we are primarily in-

terested in the cointegrating vectors that are not linearly dependent. The space spanned by

linearly independent cointegating vectors is the cointegrating space; the number of linearly

independent cointegrating vectors is known as the cointegrating rank which is the dimen-

sion of the cointegrating space. If the cointegrating rank is r, we can put these r linearly

independent cointegrating vectors together and form the d×r matrix A such that zt = A′y

is a vector I(0) series. Note that for a d-dimensional vector I(1) series yt, the cointegrating

rank is at most d − 1. For if the cointegrating rank is d, A would be a d × d nonsingular

matrix, so that A−1zt = yt must be a vector I(0) series as well. This contradicts the

assumption that yt is a vector of I(1) series.

A simple way to find a cointegration relationship among the elements of yt is to regress

one element, say, y1,t on all other elements, y2,t, as suggested by Engle and Granger (1987).

A cointegrating regression is

y1,t = α′y2,t + zt,

where the vector (1 α′)′ is the cointegrating vector with the first element normalized to one,

and zt are the regression errors and also the equilibrium errors. The estimated cointegrating

regression is

y1,t = α̂′
T y2,t + ẑt,

where α̂T is the OLS estimate, and ẑt are the OLS residuals which approximate the equi-

librium errors. It should not be surprising to find that the estimator α̂T is T -consistent, as

in the case of autoregression with a unit root.
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When the elements of yt are cointegrated, they must be determined jointly. The equi-

librium errors zt are thus also correlated with y2,t. As far as the consistency of the OLS

estimator is concerned, the correlations between zt and y2,t do not matter asymptotically,

but they would result in finite-sample bias and efficiency loss. To correct these correla-

tions and obtain more efficient estimates, Saikkonen (1991) proposed estimating a modified

co-integrating regression that includes additional k leads and lags of ∆y2,t = y2,t − y2,t−1:

y1,t = α′y2,t +
k∑

j=−k

∆y′2,t−jbj + et.

It has been shown that the OLS estimator of α is asymptotically efficient in the sense of

Saikkonen (1991, Definition 2.2); we omit the details. Phillips and Hansen (1990) proposed

a different way to compute efficient estimates.

When cointegration exists, the true equilibrium errors zt should be an I(0) series; oth-

erwise, they should be I(1). One can then verify the cointegration relationship by applying

unit-root tests, such as the augmented Dickey-Fuller test and the Phillips-Perron test, to

ẑt. The null hypothesis that a unit root is present is equivalent to the hypothesis of no

cointegration. Failing to reject the null hypothesis of no cointegration suggests that the

regression is in fact a spurious one, in the sense of Granger and Newbold (1974).

To implement a unit-root test on cointegration residuals ẑT , a difficulty is that ẑT is not

a raw series but a result of OLS fitting. Thus, even when zt may be I(1), the residuals ẑt may

not have much variation and hence behave like a stationary series. Consequently, the null

hypothesis would be rejected too often if the original Dickey-Fuller critical values were used.

Engle and Granger (1987), Engle and Yoo (1987), and Davidson and MacKinnon (1993)

simulated proper critical values for the unit-root tests on cointegrating residuals. Similar

to the unit-root tests discussed earlier, these critical values are all “model dependent.” In

particular, the critical values vary with d, the number of variables (dependent variables

and regressors) in the cointegrating regression. Let τc denote the t-ratio of an auxiliary

autoregression on ẑt with a constant term. Table 7.3 summarizes some critical values of the

τc test of no cointegration based on Davidson and MacKinnon (1993).

The cointegrating regression approach has some drawbacks in practice. First, the es-

timation result is somewhat arbitrary because it is determined by the dependent variable

in the regression. As far as cointegration is conerned, any variable in the vector series

could serve as a dependent variable. Although the choice of the dependent variable does

not matter asymptotically, it does affect the estimated cointegration relationships in finite

samples. Second, this approach is more suitable for finding only one cointegrating relation-

ship, despite that Engle and Granger (1987) proposed estimating multiple cointegration
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Table 7.3: Some percentiles of the distributions of the cointegration τc test.

d 1% 2.5% 5% 10%

2 −3.90 −3.59 −3.34 −3.04

3 −4.29 −4.00 −3.74 −3.45

4 −4.64 −4.35 −4.10 −3.81

relationships by a vector regression. It is now typical to adopt the maximum likelihood

approach of Johansen (1988) to estimate the cointegrating space directly.

Cointegration has an important implication. When the elements of yt are cointegrated

such that A′yt = zt, then there must exist an error correction model (ECM) in the sense

that

∆yt = Bzt−1 + C1∆yt−1 + · · ·+ Ck∆yt−k + νt,

where B is d× r matrix of coefficients associated with the vector of equilibrium errors and

Cj , j = 1, . . . , k, are the coefficient matrices associated with lagged differences. It must be

emphasized that cointegration characterizes the long-run equilibrium relationship among

the variables because it deals with the levels of I(1) variables. On the other hand, the

corresponding ECM describes short-run dynamics of these variables, in the sense that it is

a dynamic vector regression on the differences of these variables. Thus, the long-run equi-

librium relationships are useful in explaining the short-run adjustment when cointegration

exists.

The result here also indicates that, when cointegration exists, a vector AR model of ∆yt

is misspecified because it omits the important variable zt−1, the lagged equilibrium errors.

Omitting this variable would render the estimates in the AR model of ∆yt inconsistent.

Therefore, it is important to identify the cointegrating relationship before estimating an

ECM. On the other hand, the Johansen approach mentioned above permits joint estimation

of the cointegrating space and ECM. In practice, an ECM can be estimated by replacing

zt−1 with the residuals of a cointegrating regression ẑt−1 and then regressing ∆yt on ẑt−1

and lagged ∆yt. Note that standard asymptotic theory applies here because ECM involves

only stationary variables when cointegration exists.
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Appendix

Proof of Lemma 7.1: By invoking a suitable FCLT, the proofs of the assertions (i)

and (ii) are the same as those in Example 5.43. To prove (iii), we apply the formula of

summation by parts. For two sequences {at} and {bt}, put An =
∑n

t=1 at for n ≥ 0 and

A−1 = 0. Summation by parts is such that, for 0 ≤ p ≤ q,

q∑
t=p

atbt =
q−1∑
t=p

At(bt − bt+1) +Aqbq −Ap−1bp.

Now, setting at = εt and bt = yt−1 we get At = yt and

T∑
t=1

yt−1εt = yT yT−1 −
T−1∑
t=1

ytεt = y2
T −

T∑
t=1

ε2t −
T∑

t=1

yt−1εt.

Hence,

1
T

T∑
t=1

yt−1εt =
1
2

(
1
T
y2

T −
1
T

T∑
t=1

ε2t

)
⇒ 1

2
[σ2
∗w(1)2 − σ2

ε ].

Note that the stochastic integral
∫ 1
0 w(r) dw(r) = [w(1)2 − 1]/2; see e.g., Davidson (1994,

p. 507). An alternative expression of the weak limit of
∑T

t=1 yt−1εt/T is thus

σ2
∗

∫ 1

0
w(r) dw(r) +

1
2
(σ2
∗ − σ2

ε ). 2

Proof of Theorem 7.2: The first assertion follows directly from Lemma 7.1 and the

continuous mapping theorem. The second assertion follows from the first by noting that

σ2
∗ = σ2

ε when εt are i.i.d. 2

Proof of Lemma 7.3: By Lemma 7.1(i) and (ii), we have

1
T 2

T∑
t=1

(yt−1 − ȳ−1)
2

=
1
T 2

T∑
t=1

y2
t−1 −

(
1

T 3/2

T∑
t=1

yt−1

)2

⇒ σ2
∗

∫ 1

0
w(r)2 dr − σ2

∗

(∫ 1

0
w(r) dr

)2

.

It is easy to show that the limit on the right-hand side is just σ2
∗
∫ 1
0 w

∗(r)2 dr, as asserted

in (i). To prove (ii), note that

1
T
ȳ−1

T∑
t=1

εt =

(
1

T 3/2

T∑
t=1

yt−1

)(
1√
T
yT

)
⇒ σ2

∗

(∫ 1

0
w(r) dr

)
w(1).
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It follows from Lemma 7.1(iii) that

1
T

T∑
t=1

(yt−1 − ȳ−1)εt

⇒ σ2
∗

∫ 1

0
w(r) dw(r) +

1
2
(σ2
∗ − σ2

ε )− σ2
∗

(∫ 1

0
w(r) dr

)
w(1)

= σ2
∗

∫ 1

0
w∗(r) dw(r) +

1
2
(σ2
∗ − σ2

ε ),

where the last equality is due to the fact that
∫ 1
0 dw(r) = w(1). 2

Proof of Theorem 7.4: The assertions on T (α̂T − 1) follow directly from Lemma 7.3.

For ĉT , we have

√
T ĉT = T (1− α̂T )

1√
T
ȳ−1 +

√
T

T − 1

T∑
t=2

εt

⇒ A

(
σ∗

∫ 1

0
w(r) dr

)
+ σ∗w(1). 2

Proof of Theorem 7.5: First note that

σ̂2
T =

1
T − 2

T∑
t=2

ε2t −
α̂T − 1
T − 2

T∑
t=2

yt−1εt
a.s.−→ σ2

ε ,

by Kolmogorov’s SLLN. When εt are i.i.d., σ2
ε is also the long-run variance σ2

∗. The t

statistic τ0 is thus

τ0 =
(
∑T

t=2 y
2
t−1)/T

2)1/2 T (α̂T − 1)
σ̂T

⇒
1
2

[
w(1)2 − 1

][∫ 1
0 w(r)2 dr

]1/2
,

by Lemma 7.1(ii) and the second assertion of Theorem 7.2. Similarly, the weak limit of τc
follows from Lemma 7.3(i) and the second assertion of Theorem 7.4. 2

Proof of Theorem 7.6: When {yt} is a general I(1) process, it follows from Lemma 7.1(ii)

and the first assertion of Theorem 7.2 that

τ0 =
(
∑T

t=2 y
2
t−1)/T

2)1/2 T (α̂T − 1)
σ̂T

⇒ σ∗
σε

(
1
2

[
w(1)2 − σ2

ε /σ
2
∗
]

(
∫ 1
0 w(r)2 dr)1/2

)
.

The second assertion can be derived similarly. 2

Proof of Corollary 7.7: The limits follow straightforwardly from Theorem 7.6. 2

Proof of Theorem 7.8: For êt = yt − ȳ, T−1/2
∑[Tr]

i=1 êi ⇒ σ∗w
0(r), as shown in the text.
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As sTn is consistent for σ∗, the first assertion follows from the continuous mapping theorem.

The proof for the second assertion is left to Exercise 7.4. 2

Proof of Theorem 7.9: The assertion (i) follows easily from the expression

β̂T =
∑T

t=1(xt − x̄)(yt − ȳ)/T 2∑T
t=1(xt − x̄)2/T 2

.

To prove (ii), we note that

T−1/2α̂T =
1

T 3/2

T∑
t=1

yt −
1

T 3/2
β̂T

T∑
t=1

xt

⇒ σy

∫ 1

0
wy(r) dr −

(
σymyx

σxmx

)(
σx

∫ 1

0
wx(r) dr

)
.

In Exercise 7.6, it is shown that the OLS variance estimator σ̂2
T diverges such that

σ̂2
T /T ⇒ σ2

y

(
my −

m2
yx

mx

)
.

It follows that

1√
T
tβ =

β̂T

[∑T
t=1(xt − x̄)2/T 2

]1/2

σ̂T /
√
T

⇒
myx/m

1/2
x

(my −m2
yx/mx)1/2

.

This proves (iii). For the assertion (iv), we have

1√
T
tα =

α̂T

σ̂T

√
T

[
T
∑T

t=1(xt − x̄)2∑T
t=1 x

2
t

]1/2

⇒
m

1/2
x

[∫ 1
0 wy(r) dr − (myx/mx)

∫ 1
0 wx(r) dr

][
(my −m2

yx/mx)
∫ 1
0 wx(r)2 dr

]1/2
. 2
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Exercises

7.1 For the specification (7.3), derive the weak limit of the t-ratio for c = 0.

7.2 Suppose that yt = co + yt−1 + εt with co 6= 0. Find the orders of
∑T

t=1 yt and
∑T

t=1 y
2
t

and compare these ordier with those in Lemma 7.1.

7.3 Given the specification yt = c + αyt−1 + et, suppose that yt = co + yt−1 + εt with

co 6= 0 and εt i.i.d. Find the weak limit of T (α̂T − 1) and compare with the result in

Theorem 7.4.

7.4 Given yt = a0 + b0 t+ εt, let êt = yt − âT − b̂T t denote the OLS residuals. Show that

1
σ∗
√
T

[Tr]∑
t=1

êt ⇒ w(r) + (2r − 3r2)w(1)− (6r − 6r2)
∫ 1

0
w(s) ds, r ∈ (0, 1].

7.5 Let {xt} and {yt} be two mutually independent random walks. Find the weak limit

of their sample correlation coefficient:

ρ̂ =
∑T

t=1(xt − x̄)(yt − ȳ)[∑T
t=1(xt − x̄)2

]1/2[∑T
t=1(yt − ȳ)2

]1/2
.

Does the limit of ρ̂ change when {xt} and {yt} are two mutually independent I(1)

processes (but not necessary random walks)? Why or why not?

7.6 As in Section 7.4.1, consider the specification yt = α+ βxt + et, where yt and xt are

two independent random walks. Let σ̂2
T =

∑T
t=1(yt− α̂T − β̂Txt)2/(T − 2) denote the

standard OLS variance estimator. Show that

σ̂2
T /T ⇒ σ2

y

(
my −

m2
yx

mx

)
.

7.7 As in Section 7.4.1, consider the specification yt = α+ βxt + et, where yt and xt are

two independent random walks. Let d denote the Durbin-Watson statistic. Granger

and Newbold (1974) also observed that it is typical to have a small value of d. Prove

that

T d⇒
(σ2

u/σ
2
y) + (myx/mx)2(σ2

v/σ
2
x)

my −m2
yx/mx

,

and explain how this result is related to Granger and Newbold’s observation.
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