
Chapter 6

Asymptotic Least Squares Theory:

Part I

We have shown that the OLS estimator and related tests have good finite-sample properties

under the classical conditions. These conditions are, however, quite restrictive in practice,

as discussed in Section 3.6. It is therefore natural to ask the following questions. First,

to what extent may we relax the classical conditions so that the OLS method has broader

applicability? Second, what are the properties of the OLS method under more general

conditions? The purpose of this chapter is to provide some answers to these questions.

In particular, we shall allow explanatory variable to be random variables, possibly weakly

dependent and heterogeneously distributed. This relaxation permits applications of the

OLS method to various data and models, but it also renders the analysis of finite-sample

properties difficult. Nonetheless, it is relatively easy to analyze the asymptotic performance

of the OLS estimator and construct large-sample tests. As the asymptotic results are valid

under more general conditions, the OLS method remains a useful tool for a wide variety of

applications.

6.1 When Regressors are Stochastic

Given the linear specification y = Xβ + e, suppose now that X is stochastic. In this

case, [A2](i) can never hold because Xβo is random and can not be IE(y). Even when a

condition on IE(y) is imposed, we are still unable to evaluate

IE(β̂T ) = IE
[
(X ′X)−1X ′y

]
,

because β̂T now is a complex function of the elements of y and X. Similarly, a condition

on var(y) is of little use for calculating var(β̂T ).
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144 CHAPTER 6. ASYMPTOTIC LEAST SQUARES THEORY: PART I

To ensure unbiasedness, it is typical to assume that IE(y | X) = Xβo for some βo,

instead of [A2](i). Under this condition,

IE(β̂T ) = IE
[
(X ′X)−1X ′ IE(y |X)

]
= βo,

by the law of iterated expectations (Lemma 5.9). Yet the condition IE(y |X) = Xβo may

not always be realistic. To see this, let xt denote the t th column of X ′ and write the t th

element of IE(y |X) = Xβo as

IE(yt | x1, . . . ,xT ) = x′tβo, t = 1, 2, . . . , T.

Consider the simple AR(1) specification for time series data such that xt contains only one

regressor yt−1:

yt = βyt−1 + et, t = 2, . . . , T.

While IE(yt | y1, . . . , yT−1) = yt for t = 2, . . . , T by Lemma 5.10, the aforementioned

condition for this specification reads:

IE(yt | y1, . . . , yT−1) = βoyt−1,

for some βo. This amounts to requiring yt = βoyt−1 with probability one so that yt must

be determined by its immediate past value without any random disturbance. If, however,

{yt} is indeed an AR(1) process: yt = βoyt−1 + εt and εt has a continuous distribution, the

event that yt = βoyt−1 (i.e., εt = 0) can occur only with probability zero, which violates

the imposed condition.

Suppose that IE(y |X) = Xβo and var(y |X) = σ2
oIT . It is easy to see that

var(β̂T ) = IE
[
(X ′X)−1X ′(y −Xβo)(y −Xβo)

′X(X ′X)−1
]

= IE
[
(X ′X)−1X ′ var(y |X)X(X ′X)−1

]
= σ2

o IE(X ′X)−1,

which is not exactly the same as the variance-covariance matrix when X is non-stochastic,

cf. Theorem 3.4(c). The condition on var(y |X), again, is not always a reasonable one. For

example, as in the previous example that xt = yt−1, we have yt = βoyt−1 with probability

one, so that the conditional variance must be zero, rather than a positive constant σ2
o .

The discussions above show that the conditions on IE(y | X) and var(y | X) may not

hold when xt are random vectors. Without such conditions, it is difficult, if not impossible,

to evaluate the mean and variance of the OLS estimator. Moreover, when X is stochastic,

(X ′X)−1X ′y need not be normally distributed even when y is. Consequently, the results

for hypothesis testing discussed in Section 3.3 become invalid.
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6.2. ASYMPTOTIC PROPERTIES OF THE OLS ESTIMATORS 145

6.2 Asymptotic Properties of the OLS Estimators

Suppose that we observe the data (yt w
′
t)′, where yt is the variable of interest (dependent

variable), and wt is an m× 1 vector of “exogenous” variables. By exogenous variables we

mean those variables whose random behaviors are not explicitly modeled. Let Wt denote

the collection of random vectors w1, . . . ,wt and Yt the collection of y1, . . . , yt. The set

{Yt−1,Wt} generates a σ-algebra that is understood as the information set up to time t.

What we would like to do is to account for the behavior of yt based on this information set.

We first determine a k× 1 vector of regressors xt from the information set {Yt−1,Wt}.
The chosen xt may include lagged dependent variables (taken from Yt−1) as well as current

and lagged exogenous variables (taken from Wt). The resulting linear specification is

yt = x′tβ + et, t = 1, 2, . . . , T, (6.1)

which is just the t th observation of the more familiar expression y = Xβ + e with xt the

t th column of X ′. The expression (6.1) is more intuitive because it explicitly relates the

t th observation of y to the t th observation of all explanatory variables. The OLS estimator

of the specification (6.1) now can be expressed as

β̂T = (X ′X)−1X ′y =

(
T∑

t=1

xtx
′
t

)−1( T∑
t=1

xtyt

)
. (6.2)

The right-hand side of the second equality is useful in subsequent asymptotic analysis.

6.2.1 Consistency

The OLS estimator β̂T is said to be strongly (weakly) consistent for the parameter vector

β∗ if β̂T
a.s.−→ β∗ (β̂T

IP−→ β∗) as T tends to infinity. Consistency in effect requires β̂T

to be eventually close to β∗ in a proper probabilistic sense when “enough” information

(a sufficiently large sample) becomes available. Note that consistency is in sharp contrast

with unbiasedness. While an unbiased estimator of β∗ is “correct” on average, there is no

guarantee that its values will be close to β∗, no matter how large the sample is.

To analyze the limiting behavior of β̂T , we impose the following conditions.

[B1] {(yt w
′
t)′} is a sequence of random vectors, and xt is a random vector containing some

elements of Yt−1 and Wt.

(i) {xtx
′
t} obeys a SLLN (WLLN) with the almost sure (probability) limit

Mxx := lim
T→∞

1
T

T∑
t=1

IE(xtx
′
t),

which is a nonsingular matrix.
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146 CHAPTER 6. ASYMPTOTIC LEAST SQUARES THEORY: PART I

(ii) {xtyt} obeys a SLLN (WLLN) with the almost sure (probability) limit

mxy := lim
T→∞

1
T

T∑
t=1

IE(xtyt).

[B2] There exists a βo such that yt = x′tβo + εt with IE(xtεt) = 0 for all t.

[B1] and [B2] are are quite different from the classical conditions. Compared with [A1],

the condition [B1] now explicitly allows xt to be a random vector which may contain some

lagged dependent variables (yt−j , j ≥ 1) as well as current and past exogenous variables

(wt−j , j ≥ 0). [B1] also admits non-stochastic regressors which can be viewed as degenerate

random variables. Compared with [A2](ii), [B1] allows the random data to exhibit certain

forms of dependence and heterogeneity. It does not rule out serially correlated yt and xt,

nor does it restrict yt to be unconditionally homoskedastic (var(yt) being a constant) or

conditionally homoskedastic (var(yt | Yt−1,Wt) being a constant). What really matters is

that the data must be well behaved in the sense that they are governed by some SLLN

(WLLN). Thus, the deterministic time trend t and random walks are excluded under [B1];

see Examples 5.29 and 5.31.

Similar to [A2](i), [B2] may be interpreted as a condition of correct specification. Here,

εt = et(βo) is known as the disturbance term, and x′tβo is the orthogonal projection of yt

onto the space of all linear functions of xt and also known as a linear projection of yt. A

sufficient condition for [B2] is that x′tβ is the correct specification of the conditional mean

function, i.e., there exists a βo such that

IE
(
yt | Yt−1,Wt

)
= x′tβo,

or IE
(
εt | Yt−1,Wt

)
= 0. This implies [B2] because, by the law of iterated expectations,

IE(xtεt) = IE
[
xt IE

(
εt | Yt−1,Wt

)]
= 0.

Recall that the conditional mean function of yt is the orthogonal projection of yt onto the

space of all measurable (not necessarily linear) functions of xt and hence is not a linear

function in general. Yet, when the conditional mean is indeed linear in xt (for example,

when yt and xt are jointly normally distributed), it must also be the linear projection. The

converse is not true in general, however.

To analyze the behavior of the OLS estimator, we proceed as follows. By [B1], {xtx
′
t}

obeys a SLLN (WLLN):

1
T

T∑
t=1

xtx
′
t →Mxx a.s. (in probability),
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where Mxx is nonsingular. Note that matrix inversion is a continuous function of invert-

ible matrices. By Lemma 5.13 (Lemma 5.17), almost sure convergence (convergence in

probability) carries over under continuous transformations, so that(
1
T

T∑
t=1

xtx
′
t

)−1

→M−1
xx a.s. (in probability).

This, together with [B1](ii), immediately implies that the OLS estimator (6.2) is

β̂T =

(
1
T

T∑
t=1

xtx
′
t

)−1(
1
T

T∑
t=1

xtyt

)
→M−1

xxmxy a.s. (in probability).

Consider the special case that IE(xtyt) and IE(xtx
′
t) are constants. Then, mxy = IE(xtyt)

and Mxx = IE(xtx
′
t). When [B2] holds,

IE(xtyt) = IE(xtx
′
t)βo,

so that βo = β∗. This shows that the parameter βo of the linear projection function is

indeed the almost sure (probability) limit of the OLS estimator. We have established the

following consistency result.

Theorem 6.1 Consider the linear specification (6.1).

(i) When [B1] holds, β̂T is strongly (weakly) consistent for β∗ = M−1
xxmxy.

(ii) When [B1] and [B2] hold, βo = M−1
xxmxy so that β̂T is strongly (weakly) consistent

for βo.

The first assertion states that the OLS estimator is strongly (weakly) consistent for

some parameter vector β∗, provided that the behaviors of xtx
′
t and xtyt are governed by

proper laws of large numbers. This conclusion holds without [B2], the condition of correct

specification. When [B2] is also satisfied, the second assertion indicates that the limit of

the i.e., the parameter vector of the linear projection. Thus, [B1] assures convergence of the

OLS estimator, whereas [B2] determines to which parameter the OLS estimator converges.

As an example, we show below that Theorem 6.1 holds under some specific conditions

on data. This result may be applied to models with cross section data that are independent

over t.

Corollary 6.2 Given the linear specification (6.1), suppose that (yt x
′
t)′ are independent

random vectors with bounded (2 + δ) th moment for any δ > 0. If Mxx and mxy defined

in [B1] exist, the OLS estimator β̂T is strongly consistent for β∗ = M−1
xxmxy. If [B2] also

holds, β̂T is strongly consistent for βo defined in [B2].
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148 CHAPTER 6. ASYMPTOTIC LEAST SQUARES THEORY: PART I

Proof: By the Cauchy-Schwartz inequality (Lemma 5.5), the i th element of xtyt is such

that

IE |xtiyt|1+δ ≤
[
IE |xti|2(1+δ)

]1/2[IE |yt|2(1+δ)
]1/2 ≤ ∆,

for some ∆ > 0. Similarly, each element of xtx
′
t also has bounded (1+δ) th moment. Then,

{xtx
′
t} and {xtyt} obey Markov’s SLLN by Lemma 5.26 with the respective almost sure

limits Mxx and mxy. The assertions now follow from Theorem 6.1. 2

For other types of data, we do not explicitly specify the sufficient conditions that ensure

OLS consistency; see White (2001) for such conditions and Section 5.5 for related discus-

sions. The example below is an illustration of OLS consistency when the data are weakly

stationary.

Example 6.3 Given the simple AR(1) specification

yt = αyt−1 + et,

suppose that {y2
t } and {ytyt−1} obey a SLLN (WLLN). Let y0 = 0. Then by Theorem 6.1(i),

the OLS estimator of α is such that

α̂T →
limT→∞

1
T

∑T
t=1 IE(ytyt−1)

limT→∞
1
T

∑T
t=1 IE(y2

t−1)
a.s. (in probability),

provided that the above limits exist.

When {yt} is a stationary AR(1) process: yt = αoyt−1 + ut with |αo| < 1, where ut

are i.i.d. with mean zero and variance σ2
u, we have IE(yt) = 0, var(yt) = σ2

u/(1 − α2
o) and

cov(yt, yt−1) = αo var(yt). In this case, it is typically true that {y2
t } and {ytyt−1} obey a

SLLN (WLLN). It follows that

α̂T →
cov(yt, yt−1)

var(yt)
= αo, a.s. (in probability).

Alternatively, this result may be verified by noting that IE(yt−1ut) = 0 so that αyt−1 is a

correct specification for the linear projection of yt. Theorem 6.1(ii) now ensures α̂T → αo

a.s. (in probability). 2

Remark: If for some βo such that x′tβo is not the linear projection of yt, IE(xtεt) 6= 0,

and

IE(xtyt) = IE(xtx
′
t)βo + IE(xtεt).

Letting mxε = limT→∞ T−1
∑T

t=1 IE(xtεt), the almost sure (probability) limit of the OLS

estimator becomes

β∗ = M−1
xxmxy = βo +M−1

xxmxε,

rather than βo. The following examples illustrate.
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Example 6.4 Consider the specification

yt = x′tβ + et,

where x′t is k1 × 1. Suppose that

IE(yt | Yt−1,Wt) = x′tβo + z′tγo,

where zt (k2 × 1) also contains the elements of Yt−1 and Wt that are distinct from the

elements of xt. This is an example that a specification omits relevant variables. When [B1]

holds, β̂T →M−1
xxmxy a.s. (in probability) by Theorem 6.1(i). Writing

yt = x′tβo + z′tγo + εt = x′tβo + ut,

where εt = yt− IE(yt | Yt−1,Wt) and ut = z′tγo + εt, we have IE(xtut) = IE(xtz
′
t)γo. When

IE(xtz
′
t)γo is non-zero, x′tβo is not the linear projection of yt. Thus, the OLS estimator of

β need not converge to βo. In fact, setting Mxz := limT→∞ T−1
∑T

t=1 IE(xtz
′
t), we have

the almost sure (probability) limit of β̂T :

M−1
xxmxy = βo +M−1

xxMxzγo,

which is not βo in general. Consistency for βo would hold when the elements of xt are

orthogonal to those of zt, i.e., IE(xtz
′
t) = 0. In this case, Mxz = 0 so that β̂T → βo almost

surely (in probability). That is, x′tβo is the linear projection of yt onto the space of all

linear functions of xt when zt are orthogonal to xt. 2

Example 6.5 Given the simple AR(1) specification

yt = αyt−1 + et,

suppose that yt = αoyt−1 + εt with |αo| < 1, where εt = ut + πout−1 with |πo| < 1,

and {ut} is a white noise with mean zero and variance σ2
u. A process so generated is a

weakly stationary ARMA(1,1) process (autoregressive and moving average process of order

(1,1)). As in Example 6.3, when {y2
t } and {ytyt−1} obey a SLLN (WLLN), α̂T converges to

cov(yt, yt−1)/ var(yt−1) almost surely (in probability). Note, however, that αoyt−1 in this

case is not the linear projection of yt because yt−1 depends on εt−1 = ut−1 + πout−2 and

IE(yt−1εt) = IE[yt−1(ut + πout−1)] = πoσ
2
u.

The limit of α̂T now reads

cov(yt, yt−1)
var(yt−1)

=
αo var(yt−1) + cov(εt, yt−1)

var(yt−1)
= αo +

πoσ
2
u

var(yt−1)
.
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The OLS estimator is therefore inconsistent for αo unless πo = 0 (i.e., εt = ut are serially

uncorrelated), in contrast with Example 6.3. Inconsistency here is, again, due to the fact

that αoyt−1 is not the linear projection of yt. This failure arises because εt are serially

correlated with εt−1 and hence are correlated with the lagged dependent variable yt−1.

The conclusion holds more generally. Consider the specification that includes a lagged

dependent variable as a regressor:

yt = αyt−1 + x′tβ + et.

Suppose that yt are generated as yt = αoyt−1 +x′tβo +εt such that εt are serially correlated.

The OLS consistency again breaks down because αoyt−1 +x′tβo is not the linear projection,

a consequence of the joint presence of a lagged dependent variable and serially correlated

disturbances. 2

6.2.2 Asymptotic Normality

We say that β̂T is asymptotically normally distributed (about βo) if
√
T (β̂T − βo)

D−→ N (0, Do),

where Do is a positive-definite matrix. That is, the sequence of properly normalized β̂T

converges in distribution to a multivariate normal random vector. The matrix Do is the

variance-covariance matrix of the limiting normal distribution and hence known as the

asymptotic variance-covariance matrix of
√
T (β̂T −βo). Equivalently, we may also express

asymptotic normality by

D−1/2
o

√
T (β̂T − βo)

D−→ N (0, Ik).

It should be emphasized that asymptotic normality here is referred to
√
T (β̂T −βo) rather

than β̂T ; the latter has only a degenerate distribution at βo in the limit by strong (weak)

consistency.

When
√
T (β̂T − βo) has a limiting distribution, it is OIP(1) by Lemma 5.24. There-

fore, β̂T − βo is necessarily OIP(T−1/2); that is, β̂T tend to βo at the rate T−1/2. Thus,

the asymptotic normality result tells us not only (weak) consistency but also the rate of

convergence to βo. An estimator that is consistent at the rate T−1/2 is referred to as a

“
√
T -consistent” estimator. For standard cases in econometrics, estimators are typically

√
T -consistent. There are consistent estimators that converge more quickly; we will discuss

such estimators in Chapter 7.

Given the specification yt = x′tβ + et and [B2], define

V T := var

(
1√
T

T∑
t=1

xtεt

)
,
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where εt is specified in [B2]. We now impose an additional condition.

[B3] For εt in [B2], {V −1/2
o xtεt} obeys a CLT, where V o = limT→∞ V T is positive-definite.

To establish asymptotic normality, we express the normalized OLS estimator as

√
T (β̂T − βo) =

(
1
T

T∑
t=1

xtx
′
t

)−1(
1√
T

T∑
t=1

xtεt

)

=

(
1
T

T∑
t=1

xtx
′
t

)−1

V 1/2
o

[
V −1/2

o

(
1√
T

T∑
t=1

xtεt

)]
.

(6.3)

By [B1](i), the first term on the right-hand side of (6.3) converges to M−1
xx almost surely

(in probability). Then by [B3],

V −1/2
o

(
1√
T

T∑
t=1

xtεt

)
D−→ N (0, Ik).

In view of (6.3), we have from Lemma 5.22 that

√
T (β̂T − βo)

D−→M−1
xxV

1/2
o N (0, Ik)

d= N (0, M−1
xxV oM

−1
xx ),

where d= stands for equality in distribution. This proves the following asymptotic normality

result.

Theorem 6.6 Given the linear specification (6.1), suppose that [B1](i), [B2] and [B3] hold.

Then,

√
T (β̂T − βo)

D−→ N (0, Do),

where Do = M−1
xxV oM

−1
xx .

Theorem 6.6 is also stated without specifying the conditions that ensure the effect of a CLT.

We note that it may hold for weakly dependent and heterogeneously distributed data, as

long as these data obey a proper CLT. This result differs from the normality property

described in Theorem 3.7(a), in that the latter gives an exact distribution but is valid only

when yt are independent, normal random variables and xt are non-stochastic.

The corollary below specializes on independent data and may be applied to models with

cross section data.
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Corollary 6.7 Given the linear specification (6.1), suppose that (yt x
′
t)′ are independent

random vectors with bounded (4 + δ) th moment for any δ > 0 and that [B2] holds. If Mxx

defined in [B1] and V o defined in [B3] exist,

√
T (β̂T − βo)

D−→ N (0, Do),

where Do = M−1
xxV oM

−1
xx .

Proof: Let zt = λ′xtεt, where λ is a column vector such that λ′λ = 1. If {zt} obeys a CLT,

then {xtεt} obeys a multivariate CLT by the Cramér-Wold device (Lemma 5.18). Clearly,

zt are independent random variables because xtεt = xt(yt − xtβo) are. We will show that

zt satisfy the conditions imposed in Lemma 5.36 and hence obey Liapunov’s CLT. First, zt
have mean zero under [B2] and var(zt) = λ′[var(xtεt)]λ. By data independence,

V T = var

(
1√
T

T∑
t=1

xtεt

)
=

1
T

T∑
t=1

var(xtεt).

The average of var(zt) is then

1
T

T∑
t=1

var(zt) = λ′V Tλ→ λV oλ.

By the Cauchy-Schwartz inequality (Lemma 5.5),

IE |xtiyt|2+δ ≤
[
IE |xti|2(2+δ)

]1/2[IE |yt|2(2+δ)
]1/2 ≤ ∆,

for some ∆ > 0. Similarly, xtixtj have bounded (2 + δ) th moment. It follows that xtiεt

(which is an element of xtyt − xtx
′
tβo) and zt (which is a weighted sum of xtiεt) also have

bounded (2 + δ) th moment by Minkowski’s inequality (Lemma 5.7). We may now invoke

Lemma 5.36 and conclude that

1√
T (λ′V oλ)

T∑
t=1

zt
D−→ N (0, 1).

Then by the Cramér-Wold device,

V −1/2
o

1√
T

T∑
t=1

xtεt
D−→ N (0, Ik),

as required by [B3]. The assertion follows from Theorem 6.6. 2

The example below illustrates that the OLS estimator may or may not have a asymptotic

normal distribution, depending on data characteristics.
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Example 6.8 Consider the the AR(1) specification:

yt = αyt−1 + et.

Case 1: {yt} is a stationary AR(1) process: yt = αoyt−1 + ut with |αo| < 1, where ut are

i.i.d. random variables with mean zero and variance σ2
u. From Example 6.3 we know that

IE(yt−1ut) = 0 and that αyt−1 is a correct specification. It can also be seen that

var(yt−1ut) = IE(y2
t−1) IE(u2

t ) = σ4
u/(1− α2

o),

and cov(yt−1ut, yt−1−jut−j) = 0 for all j > 0. It is typically true that {yt−1ut} obeys a

CLT so that√
1− α2

o

σ2
u

√
T

T∑
t=1

yt−1ut
D−→ N (0, 1).

As
∑T

t=1 y
2
t−1/T converges to σ2

u/(1− α2
o), we have from Theorem 6.6 that√

1− α2
o

σ2
u

σ2
u

1− α2
o

√
T (α̂T − αo) =

1√
1− α2

o

√
T (α̂T − αo)

D−→ N (0, 1),

or equivalently,
√
T (α̂T − αo)

D−→ N (0, 1− α2
o).

Case 2: {yt} is a random walk:

yt = yt−1 + ut.

We observe from Example 5.32 that var(T−1/2
∑T

t=1 yt−1ut) is O(T ) and hence diverges

with T . Moreover, Example 5.38 shows that {yt−1ut} does not obey a CLT. Theorem 6.6

is therefore not applicable, and there is no guarantee that normalized α̂T is asymptotically

normally distributed. 2

When V o is unknown, let V̂ T denote a symmetric and positive definite matrix that is

weakly consistent for V o. Then, a weakly consistent estimator of Do is

D̂T =

(
1
T

T∑
t=1

xtx
′
t

)−1

V̂ T

(
1
T

T∑
t=1

xtx
′
t

)−1

,

and D̂
−1/2

T
IP−→D

−1/2
o . It follows from Theorem 6.6 and Lemma 5.19 that

D̂
−1/2

T

√
T (β̂T − βo)

D−→D−1/2
o N (0,Do)

d= N (0, Ik).

The shows that Theorem 6.6 remains valid when the asymptotic variance-covariance matrix

Do is replaced by a weakly consistent estimator D̂T . This conclusion is stated below; note

that D̂T does not have to be a strongly consistent estimator here.
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Theorem 6.9 Given the linear specification (6.1), suppose that [B1](i), [B2] and [B3] hold.

Then,

D̂
−1/2

T

√
T (β̂T − βo)

D−→ N (0, Ik),

where D̂T = (
∑T

t=1 xtx
′
t/T )−1V̂ T (

∑T
t=1 xtx

′
t/T )−1 and V̂ T

IP−→ V o.

Remark: It is practically important to find a consistent estimator for V o and hence a

consistent estimator forDo. Normalizing the OLS estimator with an inconsistent estimator

of Do will, in general, destroy asymptotic normality.

6.3 Consistent Estimation of Covariance Matrix

We have seen in the preceding section that a consistent estimator of Do = M−1
xxV oM

−1
xx is

crucial for the asymptotic normality result. The matrix Mxx can be consistently estimated

by its sample counterpart T−1
∑T

t=1 xtx
′
t; it remains to find a consistent estimator of V o.

Recall that V o = limT→∞ V T , where

V o = lim
T→∞

V T = lim
T→∞

var

(
1√
T

T∑
t=1

xtεt

)
.

More specifically, we can write

V o = lim
T→∞

T−1∑
j=−T+1

ΓT (j), (6.4)

with

ΓT (j) =


1
T

∑T
t=j+1 IE(xtεtεt−jx

′
t−j), j = 0, 1, 2, . . . ,

1
T

∑T
t=−j+1 IE(xt+jεt+jεtx

′
t), j = −1,−2, . . . .

Note that IE(xtεtεt−jx
′
t−j) are not the same as IE(xt−jεt−jεtx

′
t) in general.

When {xtεt} is a weakly stationary process such that IE(xtεtεt−jx
′
t−j) depend only on

the time difference |j| but not on t,

ΓT (j) = ΓT (−j) = IE(xtεtεt−jx
′
t−j), j = 0, 1, 2, . . . ,

which are independent of T and may be written as Γ(j). It follows that V o simplifies to

V o = Γ(0) + lim
T→∞

2
T−1∑
j=1

Γ(j). (6.5)

The presence of ΓT (j), j 6= 0, in (6.4) (or Γ(j), j 6= 0, in (6.5)) renders the estimation of

V o practically difficult.
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6.3.1 When Serial Correlations Are Absent

When xtεt are serially uncorrelated (but not necessarily independent over t), ΓT (j) in (6.4)

are all zero for j 6= 0, so that

V o = lim
T→∞

ΓT (0) = lim
T→∞

1
T

T∑
t=1

IE(ε2txtx
′
t). (6.6)

Estimation of V o is then relatively simple.

Note that xtεt would be serially uncorrelated if {εt} is a martingale difference sequence

with respect to the σ-algebras generated by (Yt−1,Wt), i.e., IE
(
εt | Yt−1,Wt

)
= 0. In this

case, IE(xtεt) = 0 and, for any t 6= τ ,

IE(xtεtετx
′
τ ) = IE

[
xt IE

(
εt | Yt−1,Wt

)
ετx

′
τ

]
= 0.

That is, {xtεt} is a sequence of uncorrelated, zero-mean random vectors.

A consistent estimator of V o in (6.6) is its sample counterpart:

V̂ T =
1
T

T∑
t=1

ê2txtx
′
t. (6.7)

To see this, we write êt = εt − x′t(β̂T − βo) and obtain

1
T

T∑
t=1

[ê2txtx
′
t − IE(ε2txtx

′
t)]

=
1
T

T∑
t=1

(
ε2txtx

′
t − IE(ε2txtx

′
t)
)
− 2
T

T∑
t=1

(
εtx

′
t(β̂T − βo)xtx

′
t

)
+

1
T

T∑
t=1

(
(β̂T − βo)

′xtx
′
t(β̂T − βo)xtx

′
t

)
.

The first term on the right-hand side would converge to zero in probability if {ε2txtx
′
t} obeys

a WLLN. The second term on the right-hand side also vanishes because β̂T
IP−→ βo and

T−1
∑T

t=1 εtx
′
txtx

′
t converges in probability by a suitable WLLN. Similarly, the third term

also vanishes in the limit provided that the average of xtx
′
txtx

′
t converges in probability.

It follows that

1
T

T∑
t=1

[ê2txtx
′
t − IE(ε2txtx

′
t)]

IP−→ 0,

proving weak consistency of the estimator (6.7).
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The estimator (6.7) is practically useful because it permits conditional heteroskedasticity

of an unknown form, i.e., IE(ε2t | Yt−1,Wt) changes with t but does not have an explicit func-

tional form. This estimator is therefore known as a heteroskedasticity-consistent covariance

matrix estimator. A consistent estimator of Do is then

D̂T =

(
1
T

T∑
t=1

xtx
′
t

)−1(
1
T

T∑
t=1

ê2txtx
′
t

)(
1
T

T∑
t=1

xtx
′
t

)−1

. (6.8)

The estimator (6.8) was proposed by Eicker (1967) and White (1980) and also known as

the Eicker-White covariance matrix estimator.

If, in addition, εt are also conditionally homoskedastic:

IE
(
ε2t | Yt−1,Wt

)
= σ2

o ,

(6.6) can be further simplified as

V o = lim
T→∞

1
T

T∑
t=1

IE
[
IE
(
ε2t | Yt−1,Wt

)
xtx

′
t

]
= σ2

o

(
lim

T→∞

1
T

T∑
t=1

IE(xtx
′
t)

)

= σ2
o Mxx.

(6.9)

The asymptotic variance-covariance matrix of
√
T (β̂T − βo) is then

Do = M−1
xxV oM

−1
xx = σ2

o M
−1
xx .

As Mxx can be consistently estimated by its sample counterpart, it remains to estimate

σ2
o . Exercise 6.8 shows that σ̂2

T =
∑T

t=1 ê
2
t /(T − k) is consistent for σ2

o , where êt are the

OLS residuals. A consistent estimator of this Do is

D̂T = σ̂2
T

(
1
T

T∑
t=1

xtx
′
t

)−1

. (6.10)

Note that, apart from the factor T , D̂T in this case is also the covariance matrix estimator

for β̂T in the classical least squares theory.

While the estimator (6.10) is inconsistent under conditional heteroskedasticity, the

Eicker-White estimator is “robust” and preserves consistency when heteroskedasticity is

present and of an unknown form. It should be noted that, under conditional homoskedas-

ticity, the Eicker-White estimator remains consistent but may suffer from some efficiency

loss.
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6.3.2 When Serial Correlations Are Present

When xtεt exhibit serial correlations, it is still possible to estimate (6.4) and (6.5) consis-

tently. Let `(T ) denote a function of T that diverges with T such that

V †
T =

`(T )∑
j=−`(T )

ΓT (j) → V o,

as T tends to infinity. It is then natural to estimate V †
T by its sample counterpart:

V̂
†
T =

`(T )∑
j=−`(T )

Γ̂T (j),

with the sample autocovariances:

Γ̂T (j) =


1
T

∑T
t=j+1 xtêtêt−jx

′
t−j , j = 0, 1, 2, . . . ,

1
T

∑T
t=−j+1 xt+j êt+j êtx

′
t, j = −1,−2, . . . .

The estimator V̂
†
T approximates V †

T and would be consistent for V o provided that `(T )

does not grow too fast with T .

A problem with V̂
†
T is that it need not be a positive semi-definite matrix and hence

may not be a proper variance-covariance matrix. A consistent estimator that is also positive

semi-definite is the following non-parametric kernel estimator:

V̂
κ

T =
T−1∑

j=−T+1

κ
( j

`(T )

)
Γ̂T (j), (6.11)

where κ is a kernel function and `(T ) is its bandwidth. The kernel function and its band-

width jointly determine the weights assigned to Γ̂T (j). This estimator is known as a

heteroskedasticity and autocorrelation-consistent (HAC) covariance matrix estimator.

The HAC estimator was originated from spectral estimation in the time series litera-

ture and was brought to the econometrics literature by Newey and West (1987) and Gal-

lant (1987). The resulting consistent estimator of Do is

D̂
κ

T =

(
1
T

T∑
t=1

xtx
′
t

)−1

V̂
κ

T

(
1
T

T∑
t=1

xtx
′
t

)−1

, (6.12)

with V̂
κ

T given by (6.11), cf. the Eicker-White estimator (6.8). The estimator (6.12) is

usually referred to as the Newey-West covariance matrix estimator in the literature.
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The kernel function κ is typically required to satisfy: |κ(x)| ≤ 1, κ(0) = 1, κ(x) = κ(−x)
for all x ∈ R,

∫
|κ(x)| dx <∞, κ is continuous at 0 and at all but a finite number of other

points in R, and∫ ∞

−∞
κ(x)e−ixω dx ≥ 0, ∀ω ∈ R.

Below are some commonly used kernel functions:

(i) Bartlett kernel (Newey and West, 1987):

κ(x) =

{
1− |x|, |x| ≤ 1,

0, otherwise;

(ii) Parzen kernel (Gallant, 1987):

κ(x) =


1− 6x2 + 6|x|3, |x| ≤ 1/2,

2(1− |x|)3, 1/2 ≤ |x| ≤ 1,

0, otherwise;

(iii) Quadratic spectral kernel (Andrews, 1991):

κ(x) =
25

12π2x2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)
;

(iv) Daniel kernel (Ng and Perron, 1996):

κ(x) =
sin(πx)
πx

.

These kernels are all symmetric about the vertical axis, where the first two kernels have a

bounded support [−1, 1], but the other two have unbounded support. These kernel functions

with non-negative x are depicted in Figure 6.1.

It can be seen from Figure 6.1 that the magnitudes of all kernel weights are all less

than one. For the Bartlett and Parzen kernels, the weight assigned to Γ̂T (j) decreases

with |j| and becomes zero for |j| ≥ `(T ). Hence, `(T ) in these functions is also known

as a truncation lag parameter. For the quadratic spectral and Daniel kernels, there is no

truncation, but the weights first decline and then exhibit damped sine waves for large |j|.
The kernel weighting scheme brings bias to the estimated autocovariances. Yet, the kernel

function entails little asymptotic bias because, for a given j, the kernel weights tends to

unity asymptotically when `(T ) diverges with T . This is why the consistency of V̂
κ

T is not

affected. Such bias, however, may not be negligible in finite samples, especially when `(T )

is small.

Both the Eicker-White estimator (6.8) and the Newey-West estimator (6.12) are non-

parametric in the sense that they do not rely on any parametric model of conditional
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Figure 6.1: The Bartlett, Parzen, quandratic spectral, and Daniel kernels.

heteroskedasticity and serial correlations. Comparing to the Eicker-White estimator, the

Newey-West estimator is robust to both conditional heteroskedasticity of εt and serial corre-

lations of xtεt. Yet, the latter would be less efficient than the former if xtεt are not serially

correlated.

Remark: Andrews (1991) analyzed the estimator (6.12) with the Bartlett, Parzen and

quadratic spectral kernels. It was shown that the estimator with the Bartlett kernel has

the rate of convergence O(T−1/3), whereas the other two kernels yield a faster rate of

convergence, O(T−2/5). Moreover, it is found that the quadratic spectral kernel is 8.6%

more efficient asymptotically than the Parzen kernel, while the Bartlett kernel is the least

efficient. These two results together suggest that the quadratic spectral kernel is to be

preferred in HAC estimation, at least asymptotically. Andrews (1991) also proposed an

“automatic” method to determine the desired bandwidth `(T ); we omit the details.

6.4 Large-Sample Tests

After learning the asymptotic properties of the OLS estimator under more general condi-

tions [B1]–[B3], we are now able to construct tests for the parameters of interest and derive

their limiting distributions. In this section, we will concentrate on three large-sample tests

for the linear hypothesis

H0 : Rβo = r,

where R is a q × k (q < k) nonstochastic matrix and r is a pre-specified real vector, as in

Section 3.3. We, again, require R to have rank q so as to exclude “redundant” hypotheses,

the hypotheses that are linearly dependent on the other hypotheses.
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6.4.1 Wald Test

Given that the OLS estimator β̂T is consistent for some parameter vector βo, one would

expect that Rβ̂T is “close” to Rβo when T becomes large. As Rβo = r under the null

hypothesis, whether Rβ̂T is sufficiently “close” to r constitutes an evidence for or against

the null hypothesis. The Wald test is based on this intuition, and its key ingredient is the

difference between Rβ̂T and the hypothetical value r.

When [B1](i), [B2] and [B3] hold, we have learned from Theorem 6.6 that
√
TR(β̂T − βo)

D−→ N (0,RDoR
′),

where Do = RM−1
xxV oM

−1
xxR

′, or equivalently,

(RDoR
′)−1/2

√
TR(β̂T − βo)

D−→ N (0, Iq).

Letting V̂ T be a consistent estimator of V o,

D̂T =

(
1
T

T∑
t=1

xtx
′
t

)−1

V̂ T

(
1
T

T∑
t=1

xtx
′
t

)−1

is a consistent estimator for Do. We have the following asymptotic normality result based

on D̂T :

(RD̂TR
′)−1/2

√
TR(β̂T − βo)

D−→ N (0, Iq). (6.13)

As Rβo = r under the null hypothesis, the Wald test statistic is the inner product of (6.13):

WT = T (Rβ̂T − r)′(RD̂TR
′)−1(Rβ̂T − r). (6.14)

The result below follows directly from the continuous mapping theorem (Lemma 5.20).

Theorem 6.10 Given the linear specification (6.1), suppose that [B1](i), [B2] and [B3]

hold. Then under the null hypothesis,

WT
D−→ χ2(q),

where WT is given by (6.14) and q is the number of hypotheses.

The Wald test has much wider applicability because it is valid for a wide variety of

data which may be non-Gaussian, heteroskedastic, and/or serially correlated. What really

matter here are two things: (1) asymptotic normality of the OLS estimator, and (2) a

consistent estimator of V o. When an inconsistent estimator of V o is used in the test

statistic, D̂T is inconsistent so that the resulting Wald statistic does not have a limiting χ2

distribution.
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Example 6.11 Given the linear specification

yt = x′1,tb1 + x′2,tb2 + et,

where x1,t is (k − s) × 1 and x2,t is s × 1, suppose that x′1,tb1 + x′2,tb2 is the correct

specification for the linear projection with βo = [b′1,o b
′
2,o]′. An interesting hypothesis is

whether the correct specification is of a simpler form: x′1,tb1. This amounts to testing the

hypothesis Rβo = 0, where R = [0s×(k−s) Is]. The Wald test statistic for this hypothesis

reads

WT = T β̂
′
TR

′(RD̂TR
′)−1

Rβ̂T
D−→ χ2(s),

where D̂T = (X ′X/T )−1V̂ T (X ′X/T )−1. The exact form of WT depends on D̂T .

In particular, when V̂ T = σ̂2
T (X ′X/T ) is a consistent estimator for V o, D̂T = σ̂2

T (X ′X/T )−1

is consistent for Do, and the Wald statistic becomes

WT = T β̂
′
TR

′[R(X ′X/T )−1R′]−1
Rβ̂T /σ̂

2
T ,

which is s times the standard F statistic discussed in Section 3.3.1. Further, if the null

hypothesis is the i th coefficient being zero, R is the i th Cartesian unit vector ci, and the

Wald statistic is

WT = T β̂
2

i,T /d̂ii
D−→ χ2(1),

where d̂ii is the i th diagonal element of σ̂2
T (X ′X/T )−1. Thus,

√
T β̂i,T /

√
d̂ii

D−→ N (0, 1), (6.15)

where (d̂ii/T )1/2 is the OLS standard error for β̂i,T . One can easily identify that the left-

hand side of (6.15) is the standard t ratio discussed in Example 3.10 in Section 3.3. The

difference is that the critical values of the t ratio should be taken from N (0, 1), rather than

a t distribution. When D̂T = σ̂2
T (X ′X/T )−1 is inconsistent for Do, the t ratio can be

robustified by choosing the i th diagonal element of the Eicker-White or the Newey-West

estimator D̂T as d̂ii in (6.15). The resulting (d̂ii/T )1/2 is also known as the Eicker-White

or the Newey-West standard error for β̂i,T . In other words, the significance of the i th

coefficient should be tested using the t ratio with a consistent standard error. 2

Remark: The F -version of the Wald test is valid only when V̂ T = σ̂2
T (X ′X/T ) is con-

sistent for V o. As we have seen, this is the case when, e.g., {εt} is a martingale difference

sequence and conditionally homoskedastic. Otherwise, this estimator need not be consis-

tent for V o and hence renders the F -version of the Wald test invalid. Nevertheless, the

Wald test that involves a consistent D̂T is still valid with a limiting χ2 distribution.
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6.4.2 Lagrange Multiplier Test

From Section 3.3.3 we have seen that, given the constraint Rβ = r, the constrained OLS

estimator can be obtained by finding the saddle point of the Lagrangian:

1
T

(y −Xβ)′(y −Xβ) + (Rβ − r)′λ,

where λ is the q × 1 vector of Lagrange multipliers. The underlying idea of the Lagrange

Multiplier (LM) test of this constraint is to check whether λ is sufficiently “close” to zero.

Intuitively, λ can be interpreted as the “shadow price” of this constraint and hence should

be “small” when the constraint is valid (i.e., the null hypothesis is true); otherwise, λ

ought to be “large.” Again, the closeness between λ and zero must be determined by the

distribution of the estimator of λ.

The solutions to the Lagrangian above can be expressed as

λ̈T = 2
[
R(X ′X/T )−1R′]−1(Rβ̂T − r),

β̈T = β̂T − (X ′X/T )−1R′λ̈T /2.

Here, β̈T denotes the constrained OLS estimator of β, and λ̈T is the basic ingredient of

the LM test. Under the null hypothesis, the asymptotic normality of
√
T (Rβ̂T − r) now

implies

√
T λ̈T

D−→ 2
(
RM−1

xxR
′)−1N (0,RDoR

′),

where Do = M−1
xxV oM

−1
xx , or equivalently,

√
T λ̈T

D−→ N (0,Λo),

where Λo = 4(RM−1
xxR

′)−1(RDoR
′)(RM−1

xxR
′)−1. Equivalently, we have

Λ−1/2
o

√
T λ̈T

D−→ N (0, Iq),

which remains valid when Λo is replaced by a consistent estimator.

Let V̈ T be a consistent estimator of V o based on the constrained estimation result. A

consistent estimator of Λo is

Λ̈T = 4
[
R(X ′X/T )−1R′]−1[

R(X ′X/T )−1V̈ T (X ′X/T )−1R′][
R(X ′X/T )−1R′]−1

.

It follows that

Λ̈
−1/2
T

√
T λ̈T

D−→ N (0, Iq). (6.16)
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The inner product of the left-hand side of (6.16) yields the LM statistic:

LMT = T λ̈
′
T Λ̈

−1
T λ̈T . (6.17)

The result below is a direct consequence of (6.16) and the continuous mapping theorem.

Theorem 6.12 Given the linear specification (6.1), suppose that [B1](i), [B2] and [B3]

hold. Then under the null hypothesis,

LMT
D−→ χ2(q),

where LMT is given by (6.17) and q is the number of hypotheses.

Similar to the Wald test, the LM test is also valid for a wide variety of data which may

be non-Gaussian, heteroskedastic, and serially correlated. The asymptotic normality of the

OLS estimator and consistent estimation of V o remain crucial for the validity of the LM

test. If an inconsistent estimator of V o is used to construct Λ̈T , the resulting LM test will

not have a limiting χ2 distribution.

To implement the LM test, we write the vector of constrained OLS residuals as ë =

y −Xβ̈T and observe that

Rβ̂T − r = R(X ′X/T )−1X ′(y −Xβ̈T )/T

= R(X ′X/T )−1X ′ë/T.

Thus, λ̈T is

λ̈T = 2
[
R(X ′X/T )−1R′]−1

R(X ′X/T )−1X ′ë/T,

so that the LM test statistic can be computed as

LMT = T ë′X(X ′X)−1R′[R(X ′X/T )−1V̈ T (X ′X/T )−1R′]−1

R(X ′X)−1X ′ë.
(6.18)

This expression shows that, aside from matrix multiplication and matrix inversion, only

constrained estimation is needed to compute the LM statistic. This is in sharp contrast

with the Wald test which requires unconstrained estimation.

Remark: From (6.14) and (6.18) it is easy to see that the Wald and LM tests have distinct

numerical values because they employ different consistent estimators of V o. Therefore,

these two tests are asymptotically equivalent under the null hypothesis, i.e.,

WT − LMT
IP−→ 0.

If V o is known and does not have to be estimated, the Wald and LM tests would be

algebraically equivalent. As these two tests have different statistics in general, they may

result in conflicting inferences in finite samples.
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Example 6.13 Analogous to Example 6.11, we are interested in testing whether additional

s regressors should be added to the (constrained) specification:

yt = x′1,tb1 + et.

The unconstrained specification is

yt = x′1,tb1 + x′2,tb2 + et,

and the null hypothesis is Rβo = 0 with R = [0s×(k−s) Is]. The constrained OLS estimator

is β̈T = (b̈
′
1,T 0′)′, with

b̈1,T =

(
T∑

t=1

x1,tx
′
1,t

)−1 T∑
t=1

x1,tyt = (X ′
1X1)

−1X ′
1y.

The LM statistic now can be computed as (6.18) with X = [X1 X2] and ë = y −X1b̈1,T .

Consider now the special case that V̈ T = σ̈2
T (X ′X/T ) is consistent for V o under the

null hypothesis, where σ̈2
T =

∑T
t=1 ë

2
t /(T − k + s). Then, the LM test in (6.18) reads

LMT = T ë′X(X ′X)−1R′[R(X ′X/T )−1R′]−1
R(X ′X)−1X ′ë/σ̈2

T .

Applying the formula for the inverse of a partitioned matrix (Section 1.4), it is not too

difficult to show that

R(X ′X)−1R′ = [X ′
2(I − P 1)X2]

−1,

R(X ′X)−1X ′ = [X ′
2(I − P 1)X2]

−1X ′
2(I − P 1),

where P 1 = X1(X
′
1X1)−1X ′

1. As X ′
1ë = 0 and (I −P 1)ë = ë, the LM statistic becomes

LMT = ë′(I − P 1)X2[X
′
2(I − P 1)X2]

−1X ′
2(I − P 1)ë/σ̈

2
T

= ë′X2[X
′
2(I − P 1)X2]

−1X ′
2ë/σ̈

2
T

= ë′X2R(X ′X)−1R′X ′
2ë/σ̈

2
T .

The fact ë′X2R = [01×(k−s) ë
′X2] = ë′X then leads to a simple form of the LM test:

LMT =
ë′X(X ′X)−1X ′ë

ë′ë/(T − k + s)
= (T − k + s)R2,

where R2 is the (non-centered) coefficient of determination of the auxiliary regression of ë

on X. If σ̈2
T =

∑T
t=1 ë

2
t /T is used in the statistic, the LM test is simply TR2. Thus, the

LM test in this case can be easily obtained by running an auxiliary regression.

It must be emphasized that the simple TR2 version of the LM statistic is valid only when

σ̈2
T (X ′X/T ) is a consistent estimator of V o; otherwise, TR2 need not have a limiting χ2
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distribution. For example, if the LM statistic is based on the heteroskedasticity-consistent

covariance matrix estimator:

V̈ T =
1
T

T∑
t=1

ë2txtx
′
t,

it cannot be simplified to TR2. 2

Comparing Example 6.13 and Example 6.11, we can see that, while the LM test checks

whether additional s regressors should be incorporated into a simpler (constrained) speci-

fication, the Wald test checks whether s regressors are redundant and should be excluded

from a more complete (unconstrained) specification. The LM test thus permits testing a

specification “from specific to general” (bottom up), and the Wald test evaluates a specifi-

cation “from general to specific” (top down).

6.4.3 Likelihood Ratio Test

Another approach to hypothesis testing is to construct tests under the likelihood framework.

In this section, we will not discuss the general, likelihood-based tests but focus only on a

special case, the likelihood ratio (LR) test under the conditional normality assumption. We

note that both the Wald and LM tests can also be derived under the same framework.

Recall from Section 3.2.3 that the OLS estimator β̂T is also the MLE β̃T that maximizes

LT (β, σ2) = −1
2

log(2π)− 1
2

log(σ2)− 1
T

T∑
t=1

(yt − x′tβ)2

2σ2
.

When xt are stochastic, this log-likelihood function is understood as the average of

log f(yt | xt;β, σ
2) = −1

2
log(2π)− 1

2
log(σ2)− (yt − x′tβ)2

2σ2
,

where f is the conditional normal density function of with the conditional mean x′tβ and

the conditional variance σ2.

When there is no constraint, β̃T = β̂T is the unconstrained MLE of β. The uncon-

strained MLE of σ2 is

σ̃2
T =

1
T

T∑
t=1

ê2t ,

where êt = yt − x′tβ̃T are the unconstrained residuals which are also the OLS residuals.

Given the constraintRβ = r, let β̈T denote the constrained MLE of β. Then ët = yt−x′tβ̈T

are the constrained residuals, and the constrained MLE of σ2 is

σ̈2
T =

1
T

T∑
t=1

ë2t .
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The LR test is based on the difference between the constrained and unconstrained LT :

LRT = −2T
(
LT (β̈T , σ̈

2
T )− LT (β̃T , σ̃

2
T )
)

= T log
(
σ̈2

T

σ̃2
T

)
. (6.19)

If the null hypothesis is true, two log-likelihood values should not be much different so that

the likelihood ratio is close to one and LRT is close to zero; otherwise, LRT is positive. In

contrast with the Wald and LM tests, the LR test has a disadvantage in practice because

it requires estimating both constrained and unconstrained likelihood functions.

Writing the vector of ët as ë = X(β̃T − β̈T ) + ê and noting that X ′ê = 0, we have

σ̈2
T = σ̃2

T + (β̃T − β̈T )′(X ′X/T )(β̃T − β̈T ).

In Section 6.4.2 we also find that

β̈T − β̃T = −(X ′X/T )−1R′[R(X ′X/T )−1R′]−1(Rβ̂T − r).

It follows that

σ̈2
T = σ̃2

T + (Rβ̃T − r)′[R(X ′X/T )−1R′]−1(Rβ̃T − r),

and that

LRT = T log
(
1 + (Rβ̃T − r)′[R(X ′X/T )−1R′]−1(Rβ̃T − r)/σ̃2

T︸ ︷︷ ︸
=: aT

)
.

Owing to the consistency of the OLS estimator, aT → 0 almost surely (in probability). The

mean value expansion of log(1 + aT ) about aT = 0 is (1 + a†T )−1aT , where a†T lies between

aT and 0 and hence also converges to zero almost surely (in probability). Note that TaT is

exactly the Wald statistic with V̂ T = σ̃2
T (X ′X/T ) and converges in distribution. The LR

test statistic now can be written as

LRT = T (1 + a†T )−1aT = TaT + oIP(1).

This shows that LRT is asymptotically equivalent to TaT . Then, provided that V̂ T =

σ̃2
T (X ′X/T ) is consistent for V o, LRT also has a χ2(q) distribution in the limit by

Lemma 5.21.

Theorem 6.14 Given the linear specification (6.1), suppose that [B1](i), [B2] and [B3] hold

and that σ̃2
T (X ′X/T ) is consistent for V o. Then under the null hypothesis,

LRT
D−→ χ2(q),

where LRT is given by (6.19) and q is the number of hypotheses.
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Remarks:

1. When σ̃2
T (X ′X/T ) is consistent for V o, three large-sample tests (the LR, Wald and

LM tests) are asymptotically equivalent under the null hypothesis. Otherwise, the

LR test (6.19) may not even have a limiting χ2 distribution. T

2. The LR test (6.19) can not be made robust to conditional heteroskedasticity and serial

correlation. This should not be too surprising because the log-likelihood function

postulated here is unable to accommodate heterogeneity and/or correlations over

time.

3. When the Wald test involves V̂ T = σ̃2
T (X ′X/T ) and the LM test uses V̈ T =

σ̈2
T (X ′X/T ), it can be shown that

WT ≥ LRT ≥ LMT ;

see Exercises 6.13 and 6.14. This is not an asymptotic result; conflicting inferences in

finite samples therefore may arise when the critical values are between two statistics.

See Godfrey (1988) for more details.

6.4.4 Power of the Tests

In this section we analyze the power property of the aforementioned tests under the alter-

native hypothesis that Rβo = r + δ, where δ 6= 0.

We first consider the case thatDo, the asymptotic variance-covariance matrix of T 1/2(β̂T−
βo), is known. Recall that when Do is known, the Wald statistic is

WT = T (Rβ̂T − r)′(RDoR
′)−1(Rβ̂T − r),

which is algebraically equivalent to the LM statistic. Under the alternative that Rβo =

r + δ,

√
T (Rβ̂T − r) =

√
TR(β̂T − βo) +

√
Tδ,

where the first term on the right-hand side converges in distribution and hence is OIP(1).

This implies that WT must diverge at the rate T under the alternative hypothesis; in fact,

1
T
WT

IP−→ δ′(RDoR
′)−1δ.

Consequently, for any critical value c, IP(WT > c) → 1 when T tends to infinity; that is,

the Wald test can reject the null hypothesis with probability approaching one. The Wald

and LM tests in this case are therefore consistent tests.

c© Chung-Ming Kuan, 2007, 2009



168 CHAPTER 6. ASYMPTOTIC LEAST SQUARES THEORY: PART I

When Do is unknown, the estimator D̂T in the Wald test is computed from the uncon-

strained specification and is still consistent for Do under the alternative. Analogous to the

previous conclusion, we have

1
T
WT

IP−→ δ′(RDoR
′)−1δ,

showing that the Wald test is still consistent. On the other hand, the estimator D̈T =

(X ′X/T )−1V̈ T (X ′X/T )−1 is computed from the constrained specification and need not

be consistent for Do under the alternative. It is not too difficult to see that, as long as D̈T

is bounded in probability, the LM test is also consistent because

1
T
LMT = OIP(1).

These consistency results ensure that the Wald and LM tests can detect any deviation,

however small, from the null hypothesis when there is a sufficiently large sample.

6.5 Digression: Instrumental Variable Estimator

We have seen that the OLS estimator may lose consistency when the postulated specification

is not a linear projection. This may happen when a model (i) omits relevant regressors

(Example 6.4, (ii) includes lagged dependent variables as regressors together with serially

correlated errors (Example 6.5), or (iii) involve regressors that are measured with errors

(Exercise 6.10). Indeed, inconsistency is not uncommon in practice. For example, when

the dependent variable and regressors are jointly determined at the same time, the OLS

estimator is inconsistent because the regressors are necessarily correlated with errors. This

is known as a problem of simultaneity. There are other cases in which the OLS estimator

loses consistency; we omit the details.

To obtain consistency for βo in yt = x′tβo + εt, let zt be a k-dimensional vector of

variables taken from the information set (Yt−1,Wt) such that IE(ztεt) = 0 and zt are

correlated with xt in the sense that IE(ztx
′
t) is not singular. The sample counterpart of

IE(ztεt) = IE[zt(yt − x′tβo)] = 0 is

1
T

T∑
t=1

[zt(yt − x′tβ)] = 0,

which is a system of k equations with k unknowns. Solving this system for β we obtain

β̂T,IV =

(
T∑

t=1

ztx
′
t

)−1( T∑
t=1

ztyt

)
.
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When ztx
′
t and ztyt obey a suitable LLN with the corresponding limits M zx and mzy, we

immediately have

β̂T,IV →M−1
zxmzy,

almost surely (or in probability).

By construction,

1
T

T∑
t=1

IE(ztyt) =
1
T

T∑
t=1

(ztx
′
t)βo.

Passing to the limit we have βo = M−1
zxmzy. Hence, β̂T,IV is consistent for βo, where the

variables zt employed in estimation are mainly instrumental for “recovering” consistency.

As such, the estimator β̂T,IV is known as the instrumental variable (IV) estimator, with the

instruments zt. Note that this estimator is also a method of moment estimator, because it is

obtained by solving the sample counterpart of the moment conditions: IE[zt(yt−x′tβo)] = 0.

This method breaks down when more than k instruments are available, however.

It is not too difficult to see that, when T−1/2
∑T

t=1 ztεt obeys a suitable CLT and

converges to N (0, V o) with

V o = lim
T→∞

var

(
1√
T

T∑
t=1

ztεt

)
,

the normalized IV estimator is also asymptotically normally distributed:

√
T (β̂T,IV − βo) =

(
1
T

T∑
t=1

ztx
′
t

)−1(
1√
T

T∑
t=1

ztεt

)
D−→ N (0, Do),

where Do = M−1
zx V oM

−1
zx . Similar to OLS estimation, we can compute a consistent

estimator V̂ T for V o, so that

V̂
−1/2

T

√
T (β̂T,IV − βo)

D−→ N (0, Ik).

A χ2 test is then readily computed from this asymptotic normality property.

6.6 Asymptotic Properties of the GLS and FGLS Estimators

In this section we will digress from the OLS estimator and investigates the asymptotic

properties of the GLS estimator β̂GLS and the FGLS estimator β̂FGLS. We consider the

case that X is stochastic and does not include lagged dependent variables. Assuming that

IE(y |X) = Xβo and var(y |X) = Σo, we have IE(β̂T ) = βo and

var(β̂T ) = IE
[
(X ′X)−1X ′ΣoX(X ′X)−1

]
.
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The GLS estimator β̂GLS is also unbiased and

var(β̂GLS) = IE
(
X ′Σ−1

o X
)−1

.

As in Section 4.1, (X ′X)−1X ′ΣoX(X ′X)−1− (X ′Σ−1
o X)−1 is positive semi-definite with

probability one, so that var(β̂T ) − var(β̂GLS) is a positive semi-definite matrix. The GLS

estimator thus remains a more efficient estimator.

Analyzing the asymptotic properties of the GLS estimator is not straightforward. Re-

call that the GLS estimator can be computed as the OLS estimator of the transformed

specification:

ỹ = X̃β + ẽ,

where ỹ = Σ−1/2
o y, X̃ = Σ−1/2

o X, and ẽ = Σ−1/2
o e. Note that each element of ỹ, ỹt, is a

linear combination of all yt with weights taken from Σ−1/2
o . Similarly, the t th column of

X̃
′
, x̃t, is a linear combination of all xt. As such, even when yt (xt) are independent across

t, ỹt (x̃t) are highly correlated and may not obey a LLN and a CLT. It is therefore difficult

to analyze the behavior of the GLS estimator, let alone the FGLS estimator.

Typically, Σo depends on a p-dimensional parameter vector αo and can be written

as Σ(αo). For simplicity, we shall consider only the case that Σo is a diagonal matrix

with the t th diagonal element σ2
t (αo). The transformed data are: ỹt = yt/σt(αo) and

x̃t = xt/σt(αo); the GLS estimator is

β̂GLS =

(
T∑

t=1

xtx
′
t

σ2
t (αo)

)−1( T∑
t=1

xty
′
t

σ2
t (αo)

)
.

Under suitable conditions on yt/σt and xt/σt, we are still able to show that β̂GLS is strongly

(weakly) consistent for βo, and

√
T
(
β̂GLS − βo

) D−→ N
(
0, M̃

−1
xx

)
.

where M̃xx = limT→∞ T−1
∑T

t=1 IE[(xtx
′
t)/σ2

t (αo)]. Note that when σ2
t = σ2

o for all t, this

asymptotic normality result is the same as that of the OLS estimator.

To compute the FGLS estimator, Σo is estimated by substituting an estimator α̂T for

αo, where α̂T is typically computed from the OLS results; see Section 4.2 and Section 4.3

for examples. The resulting estimator of Σo is Σ̂T = Σ(α̂T ) with the t th diagonal element

σ2
t (α̂T ). The FGLS estimator is then

β̂FGLS =

(
T∑

t=1

xtx
′
t

σ2
t (α̂T )

)−1( T∑
t=1

xty
′
t

σ2
t (α̂T )

)
.
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Provided that α̂T is consistent for αo and σ2
t (·) is continuous at αo, the FGLS estimator

is asymptotically equivalent to the GLS estimator. Consequently,

√
T
(
β̂FGLS − βo

) D−→ N
(
0, M̃

−1
xx

)
.

Example 6.15 Consider the case that y exhibits groupwise heteroskedasticity:

Σo =

[
σ2

1IT1
0

0 σ2
2IT2

]
,

as discussed in Section 4.2. In the light of Exercise 6.8, we expect that the OLS variance

estimator σ̂2
1 obtained from the first T1 = [Tm] observations is consistent for σ1 and that

σ̂2
2 obtained from the last T − [Tm] observations is consistent for σ2, where 0 < m < 1.

Under suitable conditions on yt and xt,

β̂FGLS =
(
X ′

1X1

σ̂2
1

+
X ′

2X2

σ̂2
2

)−1(
X ′

1y1

σ̂2
1

+
X ′

2y2

σ̂2
2

)
a.s.−→ βo,

and

√
T
(
β̂FGLS − βo

) D−→ N
(
0,
(m
σ2

1

+
1−m

σ2
2

)−1
M−1

)
,

where M = limT→∞X
′
1X1/[Tm] = limT→∞X

′
2X2/(T − [Tm]). 2
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Exercises

6.1 Suppose that yt = x′tβo + εt such that xt are bounded and εt have mean zero.

(a) If {xt} and {εt} are two mutually independent sequences, i.e., xt and ετ are

independent for any t and τ , is β̂T unbiased?

(b) If {xt} and {εt} are two mutually uncorrelated sequences, i.e., IE(xtετ ) = 0 for

any t and τ , is β̂T unbiased?

6.2 Consider a linear specification with xt = (1 dt)′, where dt is a one-time dummy:

dt = 1 if t = t∗, a pre-specified time, and dt = 0 otherwise. What is

lim
T→∞

1
T

T∑
t=1

IE(xtx
′
t)?

Does the OLS estimator have a finite limit?

6.3 Consider the specification yt = x′tβ + et, where xt is k × 1. Suppose that

IE
(
yt | Yt−1,Wt

)
= z′tγo,

where zt is an m× 1 vector with some elements different from xt. Assuming suitable

strong laws for xt and zt, what is the almost sure limit of the OLS estimator of β?

6.4 Consider the specification yt = x′tβ + z′tγ + et, where xt is k1 × 1 and zt is k2 × 1.

Suppose that

IE(yt | Yt−1,Wt) = x′tβo.

Assuming suitable strong laws for xt and zt, what are the almost sure limits of the

OLS estimators of β and γ?

6.5 Given the binary dependent variable yt = 1 or 0 and random explanatory variables

xt, suppose that a linear specification is

yt = x′tβ + et.

This is the linear probability model of Section 4.4 in the context that xt are random.

Let F (x′tθo) = IP(yt = 1 | xt) for some θo and assume that {xtx
′
t} and {xtF (x′tθo)}

obey a suitable SLLN (WLLN). What is the almost sure (probability) limit of β̂T ?
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6.6 Assume that the classical conditions [A1] and [A2] as well as the additional conditions

imposed in Example ?? hold. Show that the OLS variance estimator σ̂2
T is strongly

consistent for σ2
o , where

σ̂2
T =

1
T − k

T∑
t=1

ê2t ,

and êt are OLS residuals.

6.7 Given yt = x′tβo + εt, suppose that {εt} is a martingale difference sequence with

respect to {Yt−1,Wt}. Show that IE(εt) = 0 and IE(εtετ ) = 0 for all t 6= τ . Is {εt} a

white noise? Why or why not?

6.8 Given yt = x′tβo + εt, suppose that {εt} is a martingale difference sequence with

respect to {Yt−1,Wt}. State the conditions under which the OLS variance estimator

σ̂2
T is strongly consistent for σ2

o .

6.9 State the conditions under which the OLS estimators of seemingly unrelated regres-

sions are consistent and asymptotically normally distributed.

6.10 Suppose that x′tβo is the linear projection of yt, where yt are observable variables,

but xt can only be observed with random errors ut:

wt = xt + ut,

with IE(ut) = 0, var(ut) = Σu, and IE(xtu
′
t) = 0, and IE(ytut) = 0. The linear

specification yt = w′
tβ + et, together with these conditions, is known as a model

with measurement errors. When this specification is evaluated at β = βo, we write

yt = w′
tβo + vt.

(a) Is w′
tβo also a linear projection of yt?

(b) Assume that all the variables are well behaved in the sense that they obey some

SLLN. Is β̂T strongly consistent for βo? If yes, explain why; if no, find the

almost sure limit of β̂T .

6.11 Given the specification: yt = αyt−1 + et, let α̂T denote the OLS estimator of α.

Suppose that yt are weakly stationary and generated according to yt = ψ1yt−1 +

ψ2yt−2 + ut, where ut are i.i.d. with mean zero and variance σ2
u.

(a) What is the almost sure (probability) limit α∗ of α̂T ?

(b) What is the limiting distribution of
√
T (α̂T − α∗)?

c© Chung-Ming Kuan, 2007, 2009



174 CHAPTER 6. ASYMPTOTIC LEAST SQUARES THEORY: PART I

6.12 Given the specification

yt = α1yt−1 + α2yt−2 + et,

let α̂1T and α̂2T denote the OLS estimators of α1 and α2. Suppose that yt are

generated according to yt = ψ1yt−1 + ut with |ψ1| < 1, where ut are i.i.d. with mean

zero and variance σ2
u.

(a) What are the almost sure (probability) limits of α̂1T and α̂2T ? Let α∗1 and α∗2

denote these limits.

(b) State the asymptotic normality results of the normalized OLS estimators.

6.13 Consider the log-likelihood function:

LT (β, σ2) = −1
2

log(2π)− 1
2

log(σ2)− 1
T

T∑
t=1

(yt − x′tβ)2

2σ2
.

(a) What is the LR test of Rβo = r when σ2 = σ2
o is known? Let LRT (σ2

o) denote

this LR test. Given an intuitive explanation of LRT (σ2
o).

(b) When σ2 is unknown, show that WT = LRT (σ̃2
T ), where WT is the Wald test

(6.14) with V̂ T = σ̃2
T (X ′X/T ), and σ̃2

T is the unconstrained MLE of σ2.

(c) Show that

LRT (σ̃2
T ) = −2T

[
LT (β̃r

T , σ̃
2
T )− LT (β̃T , σ̃

2
T )
]
,

where β̃r
T maximizes LT (β, σ̃2

T ) subject to the constraint Rβ = r. Use this fact

to prove that WT − LRT ≥ 0.

6.14 Consider the same framework as Exercise 6.13.

(a) When σ2 is unknown, show that LMT = LRT (σ̈2
T ), where LMT is the LM test

(6.18) with V̈ T = σ̈2
T (X ′X/T ), and σ̈2

T is the constrained MLE of σ2.

(b) Show that

LRT (σ̈2
T ) = −2T

[
LT (β̈T , σ̈

2
T )− LT (β̈u

T , σ̈
2
T )
]
,

where β̈u
T maximizes LT (β, σ̈2

T ). Use this fact to prove that LRT − LMT ≥ 0.
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