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• Preliminary

• HAC (heteroskedasticity and autocorrelation consistent) covariance matrix

estimation

� Kernel HAC estimators

� Choices of the kernel function and bandwidth

• KVB Approach: Constructing asymptotically pivotal tests without consis-

tent estimation of asymptotic covariance matrix

� Tests of parameters

� M tests for general moment conditions

� Over-identifying restrictions tests
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• Consider the specification: yt = x′tβ + et.

[A1] For some βo, εt = yt − x′tβo such that IE(xtεt) = 0 and

1√
T

[Tr]∑
t=1

xtεt ⇒ SoW k(r), r ∈ [0, 1],

Σo = limT→∞ var
(
T−1/2

∑T
t=1 xtεt

)
with So its matrix square root

(i.e., Σo = SoS
′
o).

[A2] M [Tr] := [Tr]−1
∑[Tr]

t=1 xtx
′
t

IP−→ M o uniformly in r ∈ (0, 1].

• Asymptotic normality of the OLS estimator:

√
T
(
β̂T − βo

)
= M−1

T

1√
T

T∑
t=1

xtεt
D−→ M−1

o SoW k(1),

which has the distribution N (0, M−1
o ΣoM

−1
o ).
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• The null hypothesis is Rβo = r, where R (q × k) has full row rank.

�
√

T
(
Rβ̂T − r

) D−→ N (0, RM−1
o ΣoM

−1
o R′).

�
(
RM−1

T Σ̂TM−1
T R′)−1/2√

T
(
Rβ̂T − r

) D−→ N (0, Iq).

� The Wald test is

WT = T
(
Rβ̂T − r

)′(
RM−1

T Σ̂TM−1
T R′)−1(

Rβ̂T − r
)

D−→ χ2(q).

• Consistent estimation of Σo is crucial; WT would not have a limiting χ2

distribution if Σ̂T is not a consistent estimator.

• Othe large sample tests (e.g., the LM test) also depend on consistent

estimation of the asymptotic covariance matrix.

• When Σ̂T is consistent, the resulting tests are said to be robust to het-

eroskedasticity and serial correlations of unknown form.
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A general form:

Σo = lim
T→∞

1

T

T∑
t=1

T∑
s=1

IE(xtεtεsx
′
s) = lim

T→∞

T−1∑
j=−T+1

ΓT (j),

with autocovariances:

ΓT (j) =

{
1
T

∑T
t=j+1 IE(xtεtεt−jx

′
t−j), j = 0, 1, 2, . . . ,

1
T

∑T
t=−j+1 IE(xt+jεt+jεtx

′
t), j = −1,−2, . . . .

• When xtεt are covariance stationary, ΓT (j) = Γ(j), and the spectral

density of xtεt at frequency ω is

f (ω) =
1

2π

∞∑
j=−∞

Γ(j)e−ijω.

• Σo = 2π f (0) and hence is also known as the long-run variance of xtεt.
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• When xtεt are serially uncorrelated:

Σo = lim
T→∞

ΓT (0) = lim
T→∞

1

T

T∑
t=1

IE(ε2
txtx

′
t),

which can be consistently estimated by White’s heteroskedasticity-consistent

estimator: Σ̂T = T−1
∑T

t=1 ê2
txtx

′
t.

• When xtεt are serially uncorrelated and εt conditionally homoskedastic:

Σo = σ2
o

(
lim

T→∞

1

T

T∑
t=1

IE(xtx
′
t)

)
= σ2

oM o,

which can be consistently estimated by Σ̂T = σ̂2
TMT .

• Estimating Σo is much more difficult when heteroskedasticity and serial

correlations are present and of unknown form.
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• Recall Σo = limT→∞
∑T−1

j=−T+1 ΓT (j).

• A consistent estimator (White, 1984):

Σ̂
†
T =

`(T )∑
j=−`(T )

Γ̂T (j),

with sample autocovariances

Γ̂T (j) =

{
1
T

∑T
t=j+1 xtêtêt−jx

′
t−j, j = 0, 1, 2, . . . ,

1
T

∑T
t=−j+1 xt+jêt+jêtx

′
t, j = −1,−2, . . . .

where `(T ) grows with T but at a slower rate.

• Drawbacks:

� This estimator is not guaranteed to be a positive semi-definite matrix.

� Must determine `(T ) in a given sample.
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• Newey and West (1987) and Gallant (1987): A consistent estimator that

is also positive semi-definite is:

Σ̂
κ

T =

T−1∑
j=−T+1

κ
( j

`(T )

)
Γ̂T (j),

where κ is a kernel function and `(T ) is its bandwidth.

• κ and `(T ) jointly determine the weighting scheme on Γ̂T (j) and must be

selected by users.

� For a given j, κ(j/`(T )) ≈ 1 as T →∞, so as to ensure consistency.

� For a given T , κ(j/`(T )) should be small when j is large, so as to

ensure positive semi-definiteness. More formally (Andrews, 1991),∫ ∞

−∞
κ(x)e−ixω dx ≥ 0, ∀ω ∈ R.
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• Bartlett kernel (Newey and West, 1987):

κ(x) =

{
1− |x|, |x| ≤ 1,

0, otherwise;

• Parzen kernel (Gallant, 1987):

κ(x) =


1− 6x2 + 6|x|3, |x| ≤ 1/2,

2(1− |x|)3, 1/2 ≤ |x| ≤ 1,

0, otherwise;

• Quadratic spectral kernel (Andrews, 1991):

κ(x) =
25

12π2x2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)
;

• Daniel kernel (Ng and Perron, 1996):

κ(x) =
sin(πx)

πx
.
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Andrews (1991):

• By minimizing MSE, the optimal bandwidth growth rates are:

`∗(T ) = 1.1447(c1T )1/3, (Bartlett),

`∗(T ) = 2.6614(c2T )1/5, (Parzen),

`∗(T ) = 1.3221(c2T )1/5, (quadractic spectral),

c1 and c2 are unknown numbers depending on the spectral density, and√
T/`∗(T ) (Σ̂

κ

T −Σo) = OIP(1).

• As far as MSE is concerned, the quadratic spectral kernel is to be preferred.

� Σ̂
B

T = OIP(T−1/3); Σ̂
P

T nd Σ̂
QS

T are OIP(T−2/5).

� Σ̂
QS

T is more efficient than Σ̂
P

T ; Σ̂
B

T is the least efficient.
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• The performance of the kernel HAC estimator varies with the choices of

the kernel and its bandwidth.

� The kernel weighting scheme yields negative bias, and such bias could

be substantial in finite samples.

� The tests based on the HAC estimators usually over-reject the null.

• The choices of kernel and bandwidth are somewhat arbitrary in practice,

and hence the statistical inferences are vulnerable.

� The HAC estimator with the quadratic spectral kernel need not have

better performance in finite samples.

� Andrews (1991) suggested a “plug-in” method to estimate the optimal

growth rates `∗(T ), but this method requires estimation of a user-

selected model to determine c1 and c2.
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• Andrews and Monahan (1992): Pre-whitened estimator.

� Apply a VAR model to whiten xtêt and estimate the covariance matrix

based on its residuals.

� The choices of the model for pre-whitening and VAR lag order are,

again, arbitrary.

• Kuan and Hsieh (2006): Computing sample autocovariances based on

forecast errors (yt − x′tβ̃t−1), instead of the OLS residuals.

� It does not require another user-chosen parameter.

� It yields a smaller bias (but a larger MSE); the resulting tests have

more accurate test size without sacrificing test power.

� Bias reduction seems more important for improving HAC estimators.
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Kiefer, Vogelsang, and Bunzel (2000): A Wald-type test is

W†
T = T

(
Rβ̂T − r

)′(
RM−1

T ĈTM−1
T R′)−1(

Rβ̂T − r
)
,

where a normalizing matrix ĈT is used in place of Σ̂
κ

T .

• ĈT is inconsistent for Σo but is able to eliminate the nuisance parameters

in Σo.

• Advantages:

� Do not have to choose a kernel bandwidth.

� The resulting test remains pivotal asymptotically.

� The limiting distribution of the test approximates the finite-sample

distribution very well (i.e., little size distortion).
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• Let ϕ̂t = T−1/2
∑t

i=1 xiêi. The normalizing matrix ĈT is

ĈT =
1

T

T∑
t=1

ϕ̂tϕ̂
′
t =

1

T 2

T∑
t=1

(
t∑

i=1

xiêi

)(
t∑

i=1

êix
′
i

)
.

• The limit of ϕ̂[Tr]:

ϕ̂[Tr] =
1√
T

[Tr]∑
i=1

xiεi −
[Tr]

T

 1

[Tr]

[Tr]∑
i=1

xix
′
i

√T (β̂T − βo)

⇒ SoW k(r)− rM oM
−1
o SoW k(1)

= SoBk(r).

Hence,

ĈT ⇒ So

(∫ 1

0

Bk(r)Bk(r)′ dr

)
S′

o =: SoP kS
′
o.
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• Let Go denote the matrix square root of RM−1
o SoS

′
oM

−1
o R′. Then,

RM−1
T ĈTM−1

T R′ ⇒ RM−1
o SoP kS

′
oM

−1
o R′ d

= GoP qG
′
o.

and
√

TR
(
β̂T − βo

) D−→ RM−1
o SoWk(1)

d
= GoWq(1).

• W†
T is thus asymptotically pivotal:

W†
T ⇒ Wq(1)′G′

o

(
GoP qG

′
o

)−1
GoWq(1) = Wq(1)′P−1

q Wq(1).

Lobato (2001) reported some quantiles, cf. Kiefer et al. (2000).

• For the null of βi = r, a t-type test is

t† =

√
T
(
β̂i,T − r

)√
δ̂i

D−→ W (1)[∫ 1

0 B(r)2 dr
]1/2 .

This distribution is more disperse than the standard normal distribution.
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• Kiefer and Vogelsang (2002a): 2ĈT = Σ̂
B

T without truncation, i.e.,

`(T ) = T . The usual Wald test based on Σ̂
B

T without truncation is

thus the same as W†
T/2. In particular, the t test based on Σ̂

B

T without

truncation is also t†/
√

2.

• Kiefer and Vogelsang (2002b): Σ̂
κ

T ⇒ SoP
κ
kS

′
o, with

P κ
k = −

∫ 1

0

∫ 1

0

κ′′(r − s)Bk(r)Bk(s)′ dr ds;

The Wald test based on Σ̂
κ

T without truncation can also serve as a KVB’s

robust test.

• A test based on Σ̂
B

T without truncation compares favorably with that based

on Σ̂
QS

T in terms of test power. Hence, the Bartlett kernel is to be preferred

in constructing a KVB test, in contrast with HAC estimation.
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The null hypothesis: IE[f (ηt; θo)] = 0, where θo is the k × 1 true parameter

vector, and f is a q × 1 vector of functions.

θo Is Known

Define m[rT ](θ) = T−1
∑[rT ]

t=1 f (ηt; θ), for r ∈ (0, 1].

• An M test is based on mT (θo), the sample counterpart of the null.

• By a CLT, T 1/2mT (θo)
D−→ N (0, Σo), and the conventional M test is:

T mT (θo)
′Σ̂

−1

T mT (θo)
D−→ χ2(q),

when Σ̂T is a consistent estimator of Σo.

• The limiting χ2 distribution hinges on consistent estimation of Σo.
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[B1](a) Under the null,
√

Tm[rT ](θo) ⇒ SoWq(r) for 0 ≤ r ≤ 1, where So

is the nonsingular, matrix square root of Σo.

• CT (θo) = T−1
∑T

t=1 ϕt(θo)ϕt(θo)
′ with

ϕt(θo) =
1√
T

t∑
i=1

[
f (ηi; θo)−mT (θo)

]
.

• Analogous to KVB’s Wald-type test, an M test is

MT = T mT (θo)
′CT (θo)

−1mT (θo)
D−→ Wq(1)′P−1

q Wq(1).

� By [B1](a), T 1/2mT (θo) ⇒ SoWq(1).

� ϕ[rT ](θo) ⇒ So

[
Wq(r)− rWq(1)

]
= SoBq(r), 0 ≤ r ≤ 1.

� CT (θo) ⇒ SoP qS
′
o with P q =

∫ 1

0 Bq(r)Bq(r)′ dr.
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• Replacing θo in mT and ϕt with a root-T consistent estimator θ̂T that

satisfies

√
T (θ̂T − θo) = Qo

[
1√
T

T∑
t=1

q(ηt; θo)

]
+ oIP(1).

• Kuan and Lee (2006): The M test is

M̂T = T mT (θ̂T )′Ĉ
−1

T mT (θ̂T ),

where ĈT = CT (θ̂T ) = T−1
∑T

t=1 ϕt(θ̂T )ϕt(θ̂T )′ with

ϕt(θ̂T ) =
1√
T

t∑
i=1

[
f (ηi; θ̂T )−mT (θ̂T )

]
.

• The limit of M̂T depends on the estimation effect of replacing θo with

θ̂T .
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[B1](b) Under the null, 1√
T

∑T
t=1 f (ηt; θo)

1√
T

∑T
t=1 q(ηt; θo)

⇒ GoWq+k(1),

where Go is nonsingular.

[B2] F [rT ](θo) = [rT ]−1
∑[rT ]

t=1 ∇θf
(
ηt; θo

) IP−→ F o, uniformly in r ∈ (0, 1],

where F o is a q × k non-stochastic matrix; ∇θF [rT ](θo) = OIP(1).

• A Taylor expansion about θo gives

√
Tm[rT ](θ̂T ) =

√
Tm[rT ](θo)+

[rT ]

T
F [rT ](θo)

[√
T (θ̂T − θo)

]
+oIP(1);

the second term is the estimation effect and converges to rF oQoAoWk(1),

where Ao is the matrix square root of G22G
′
22 + G21G

′
21.
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• [B1](b) and [B2] imply

√
TmT (θ̂T ) ⇒ [Iq F oQo]GoWq+k(1)

d
= V oWq(1),

where V o is the matrix square root of [Iq F oQo]GoG
′
o[Iq F oQo]

′. Note

V o = So when F o = 0 (i.e., no estimation effect).

• Due to “centering”, the estimation effects in ϕ[rT ](θ̂T ) cancel out:

ϕ[rT ](θ̂T ) =
√

Tm[rT ](θo) +
[rT ]

T
F [rT ](θo)

[√
T (θ̂T − θo)

]
− [rT ]

T

√
TmT (θo)−

[rT ]

T
F T (θo)

[√
T (θ̂T − θo)

]
+ oIP(1)

=
√

Tm[rT (θo)−
[rT ]

T

√
TmT (θo) + oIP(1).

• ĈT = CT (θo) + oIP(1) ⇒ SoP qS
′
o, regardless of the estimation effect.
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• When estimation effect is present, ĈT is unable to eliminate V o, and

M̂T
D−→ Wq(1)′V ′

o

[
SoP qS

′
o

]−1
V oWq(1),

That is, M̂T depends on So and V o and is not asymptotically pivotal.

• When there is no estimation effect (F o = 0), V o = So, and

M̂T
D−→ Wq(1)′P−1

q Wq(1),

which is also the limit of MT .

• Remark: The nonsingularity of Go required in [B1](b) is crucial for the M

tests here. It excludes the cases that the moment functions (f ) and the

estimator (which depends on q) are asymptotically correlated, e.g., the

over-identifying restrictions in the context of GMM.
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• Kuan and Lee (2006): C̃T = T−1
∑T

t=k+1 ϕ̃tϕ̃
′
t with

ϕ̃t = ϕt(θ̃t, θ̃T ) =
1√
T

t∑
i=1

[
f (ηi, θ̃t)−mT (θ̃T )

]
,

where θ̃t are the recursive estimators based on first t observations.

• The M test is

M̃T = T mT (θ̂T )′C̃
−1

T mT (θ̂T )
D−→ Wq(1)′P−1

q Wq(1),

which has the same limit as MT .

� T 1/2mT (θ̂T ) ⇒ V oWq(1).

� ϕ̃[rT ] ⇒ V oBq(r), and hence C̃T ⇒ V oP qV
′
o.

• While HAC estimation of V o is practically difficult, M̃T avoids estimating

V o and hence is also robust to estimation effect.
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Specification: yt = h(xt; θ) + et(θ) with the NLS estimator θ̂T .

• IE(yt|xt) = h(xt; θo) and εt := et(θo) = yt − h(xt; θo).

• The null hypothesis is

IE[f t,q(θo)] = IE(εtεt−1,q) = 0,

where εt−1,q = [εt−1, . . . , εt−q]
′.

• Letting Tq = T − q, define

mTq
(θ) =

1

Tq

T∑
t=q+1

et(θ)et−1,q(θ).

We can base an M test on mTq
(θ̂T ) = T−1

q

∑T
t=q+1 et(θ̂T )et−1,q(θ̂T ).

• T
1/2
q mTq

(θ̂T ) and T
1/2
q mTq

(θo) are not asymptotically equivalent unless

F Tq
(θo) converges to F o = 0.
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• Here, F Tq
(θo) = −T−1

q

∑T
t=q+1

[
εt−1,q∇θht(θo) + εt∇θht−1,q(θo)

]
.

• F o would be zero if {xt} and {εt} are mutually independent. When

h(xt; θo) = x′tθo, F o = 0 when {xt} and {εt} are mutually uncorrelated.

� The M test based on model residuals is

M̂Tq
= Tq mTq

(θ̂T )′Ĉ
−1

Tq
mTq

(θ̂T )
D−→ Wq(1)′P−1

q Wq(1),

where the normalizing matrix is ĈTq
= T−1

q

∑T
t=q+1 ϕ̂tϕ̂

′
t with

ϕ̂t =
1√
Tq

t∑
i=q+1

[
ei(θ̂T )ei−1,q(θ̂T )

]
− t− q

Tq

1√
Tq

T∑
i=q+1

[
ei(θ̂T )ei−1,q(θ̂T )

]
.

� M̂Tq
includes the test of Lobato (2001) for raw time series as a special

case.
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• F o 6= 0 for the residuals of dynamic models, such as AR models and

models with lagged dependent variables.

� The M test based on the residuals of dynamic models is

M̃Tq
= T m′

Tq
(θ̂T )C̃

−1

Tq
mTq

(θ̂T )
D−→ Wq(1)′P−1

q Wq(1),

where the normalizing matrix is C̃Tq
= T−1

q

∑T
t=q+1 ϕ̃tϕ̃

′
t with

ϕ̃t =
1√
Tq

t∑
i=q+1

[
ei(θ̃t)ei−1,q(θ̃t)

]
− t− q

Tq

1√
Tq

T∑
i=q+1

[
ei(θ̃T )ei−1,q(θ̃T )

]
,

and ei(θ̃t) = yi−h(xi; θ̃t) is the i th residual evaluated at the recursive

NLS estimator θ̃t.

� M̃Tq
is a specification test without consistent estimation of the asymp-

totic covariance matrix.
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Figure 1: The Bartlett, Parzen, quadratic spectral and Daniel kernels.
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Figure 2: The asymptotic local powers of the standard M test (solid), M̃T (dashed) and M̈T (dotted)

at 5% level.


