LECTURE ON

HAC COVARIANCE MATRIX ESTIMATION AND
THE KVB APPROACH

CHUNG-MING KUAN

Institute of Economics

Academia Sinica

October 20, 2006

ckuan@econ.sinica.edu.tw www.sinica.edu.tw/~ckuan

(1)



Outline C.-M. Kuan, HAC.1

e Preliminary

e HAC (heteroskedasticity and autocorrelation consistent) covariance matrix
estimation
o Kernel HAC estimators
& Choices of the kernel function and bandwidth

e KVB Approach: Constructing asymptotically pivotal tests without consis-

tent estimation of asymptotic covariance matrix

¢ Tests of parameters
o M tests for general moment conditions

¢ Over-identifying restrictions tests
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e Consider the specification: y; = x;3 + e;.

[A1] For some 3,, ¢; = y — x}3, such that [E(x;e;) = 0 and

[T'r]
1

Nk > @ = S,Wi(r), rel01],
t=1

>, = limyr o var(T_m Zle x,€;) with S, its matrix square root

(i.e., X, = S,9)).
[A2] M p,) == [Tr]” Zt | Ty L, M, uniformly in 7 € (0, 1].

e Asymptotic normality of the OLS estimator:
VT (Br — B,) = MTl\FthEt — M;'S,W (1),

which has the distribution N'(0, M, 'X,M").
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e The null hypothesis is R3, = r, where R (q X k) has full row rank.

o VT(RBy —r) = N(0, RM,'S,M,'R)).
o (RM;'SyM'R) *VT(RB, —7) = N(0, 1),
¢ The Wald test is
Wr =T(RBr —r) (RM;'S:M7'R) ™ (RBy — )

2 ().

e Consistent estimation of 3, is crucial; YWr would not have a limiting x?

distribution if 227 is not a consistent estimator.

e Othe large sample tests (e.g., the LM test) also depend on consistent

estimation of the asymptotic covariance matrix.

e When X7 is consistent, the resulting tests are said to be robust to het-

eroskedasticity and serial correlations of unknown form.
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A general form:

>, TIEI;O — Z ZIE zyere ) = lim Z T'r(j

t=1 s=1 j=—T+1

with autocovariances:

T .
T (j) { %Zt:j+1 IE(mtetet—jmé_]’), 7=0,1,2,...,
T(J) = . |
%Zt:—jﬂ ]E(wtﬂftﬂ'@wé), g=—1,-2,....
e When ax;c; are covariance stationary, I'r(j) = I'(j), and the spectral

density of x;€; at frequency w is
1 ©. ]
= — L(j)e .
5 2 Tl
j=—00

e 3, =27 f(0) and hence is also known as the long-run variance of x;¢;.
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e When x;¢; are serially uncorrelated:

3, = lim I'p(0) = lim —Z]E €, Ty},

T—0o0 T—oo T’

which can be consistently estimated by White's heteroskedasticity-consistent

. = T
estimator: X7 =T"1>""  éxx).

e When x;¢; are serially uncorrelated and ¢; conditionally homoskedastic:

which can be consistently estimated by 37 = 6% M.

e Estimating X, is much more difficult when heteroskedasticity and serial

correlations are present and of unknown form.
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e Recall 3, = hmT_mz L Tr().
e A consistent estimator (White, 1984):

ZFT

j=—UT

with sample autocovariances
1 T AA .
f‘ ( .) { T Zt:]+1 wtetet_jw;—j7 ] - 07 17 27 DR
T™\J) =
1 T .. :
T e 1 Terjeryje®y, J=—1,-2,....
where ((T") grows with T" but at a slower rate.

e Drawbacks:

¢ This estimator is not guaranteed to be a positive semi-definite matrix.

o Must determine ¢(T') in a given sample.
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e Newey and West (1987) and Gallant (1987): A consistent estimator that

is also positive semi-definite is:
T-1 i\
S — (—)r .
Jj==T+1

where & is a kernel function and ¢(7T') is its bandwidth.

e x and /(T) jointly determine the weighting scheme on f‘T(j) and must be
selected by users.
o For a given j, k(j/¢(T)) = 1 as T — o0, so as to ensure consistency.

o For a given T', k(j/¢(T)) should be small when j is large, so as to

ensure positive semi-definiteness. More formally (Andrews, 1991),

/ k(x)e ™ dr >0, VYweR.

©. 9]



Kernel Functions

e Bartlett kernel (Newey and West, 1987):
1 — <1
(o) = { 2], Jal < 1,

0, otherwise;

e Parzen kernel (Gallant, 1987):
(

1 —62% + 6|z|, |z| < 1/2,
wle)=q 20 =), 1/2< 2] <1,

0, otherwise;

\

e Quadratic spectral kernel (Andrews, 1991):

25 sin(67x /5) _
k(x) = 52,2 ( 6raf5 cos(67m;/5)) ;
e Daniel kernel (Ng and Perron, 1996):
() = Siﬂ(’ﬂ'il?).

™
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Andrews (1991):

e By minimizing MSE, the optimal bandwidth growth rates are:
0*(T) = 1.1447(e,T)Y3,  (Bartlett),
0*(T) = 2.6614(coT)"°, (Parzen),
0*(T) = 1.3221(¢,T)Y®,  (quadractic spectral),

c1 and ¢y are unknown numbers depending on the spectral density, and
VT/E(T) (87 = S,) = Op(1).

e As far as MSE is concerned, the quadratic spectral kernel is to be preferred.

o 2? = Op(T1/3); i; nd 2?8 are Op(T72/7).

S@5 . - SPGB -
o X5 is more efficient than X,; 3, is the least efficient.
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e The performance of the kernel HAC estimator varies with the choices of

the kernel and its bandwidth.

¢ The kernel weighting scheme yields negative bias, and such bias could

be substantial in finite samples.

¢ The tests based on the HAC estimators usually over-reject the null.

e The choices of kernel and bandwidth are somewhat arbitrary in practice,

and hence the statistical inferences are vulnerable.

¢ The HAC estimator with the quadratic spectral kernel need not have

better performance in finite samples.

o Andrews (1991) suggested a “plug-in" method to estimate the optimal
growth rates ¢*(T"), but this method requires estimation of a user-

selected model to determine ¢; and ¢s.
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e Andrews and Monahan (1992): Pre-whitened estimator.

¢ Apply a VAR model to whiten x;¢; and estimate the covariance matrix

based on its residuals.
¢ The choices of the model for pre-whitening and VAR lag order are,

again, arbitrary.

e Kuan and Hsieh (2006): Computing sample autocovariances based on

forecast errors (y; — /3, _,), instead of the OLS residuals.

¢ It does not require another user-chosen parameter.

o It yields a smaller bias (but a larger MSE); the resulting tests have

more accurate test size without sacrificing test power.

¢ Bias reduction seems more important for improving HAC estimators.
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Kiefer, Vogelsang, and Bunzel (2000): A Wald-type test is
Wi = T(RB; —r) (RM;'CrM;'R) " (RB; — ),

- - - N - - /\I{‘/
where a normalizing matrix C'7 is used in place of 3.

e (' is inconsistent for X2, but is able to eliminate the nuisance parameters

in X,.
e Advantages:
¢ Do not have to choose a kernel bandwidth.

¢ The resulting test remains pivotal asymptotically.

¢ The limiting distribution of the test approximates the finite-sample

distribution very well (i.e., little size distortion).
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o let p, = T-1/2 2221 x;¢;. The normalizing matrix 6’T IS
| I s t t
Gre 3 Yt 13 (Soa ) (Lest).

e The limit of @p,:

SO[Tr} \/,Zwez o Tr wa Br—B,)

= SOWk(T) — TMOMO_ISOWk(l)
= SoBk(T’>.

Hence,

1
Cr= SO (/ Bk(T)Bk(T)/dT) SIO =: SOPkSIO.
0
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e Let G, denote the matrix square root of RM,'S,S' M ;' R'. Then,
RM;'C;M;'R = RM,'S,P,S'M,'R £ G,P,G’,.
and VTR (Br — B,) — RM,'S,W;(1) £ G,W,(1).
o W} is thus asymptotically pivotal:
Wi = W,(1)G,(G,P,G,) 'G,W,(1) = W,(1) P W,(1).
Lobato (2001) reported some quantiles, cf. Kiefer et al. (2000).

e For the null of 3, = r, a t-type test is
\/T(BZT -7) p W(1)
Vi, Jy Blry2ar]

This distribution is more disperse than the standard normal distribution.

th =
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o Kiefer and Vogelsang (2002a): 2C; = f]? without truncation, i.e.,
¢(T) = T. The usual Wald test based on f]? without truncation is
thus the same as W}/Q In particular, the ¢ test based on f]? without
truncation is also t1/+/2.

e Kiefer and Vogelsang (2002b): ET = S,P; S/, with

/ / (r — ) By (r)By(s) dr ds:

The Wald test based on ET without truncation can also serve as a KVB's

robust test.

~B
o A test based on 3 without truncation compares favorably with that based
Q@S . :
on X5 in terms of test power. Hence, the Bartlett kernel is to be preferred

in constructing a KVB test, in contrast with HAC estimation.
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The null hypothesis: TE[f(n,;0,)] = 0, where 8, is the k X 1 true parameter

vector, and f is a ¢ X 1 vector of functions.

0, Is Known

Define my,1y(0) =T~ S £(n,:0), for r € (0,1].
e An M test is based on my(0,), the sample counterpart of the null.
e By a CLT, T"*m(6,) 2, N (0, X,), and the conventional M test is:
(0,5 mr(8,) = (),
when f]T is a consistent estimator of X,.

e The limiting x? distribution hinges on consistent estimation of ,.
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[B1](a) Under the null, vT'm7)(0,) = S,W,(r) for 0 < r < 1, where S,

is the nonsingular, matrix square root of 3J,.

 Cr(6,) =T 321 ¢1(6,),(6,) with

0100~ 3 [F(n:0,) ~ms(0,]

e Analogous to KVB's Wald-type test, an M test is
Mpr=Tmp(0,)Cr(0,)” mT(H ) BN W, (1 )P 1Wq(1).

o By [B1](a), T*mr(8,) = S,W,(1).
o @u1(0,) = S, (W, (r) —rW,(1)] = 8,B,(r), 0 <r <1.
o Cr(8,) = S,P,S, with P, = [ B,(r)B,(r) dr.
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e Replacing 8, in m7 and ¢, with a root-7" consistent estimator 01 that

satisfies

ﬁ(éT - 90) =Q

—|—O]P(1).

% Z Q(nt; 90)

e Kuan and Lee (2006): The M test is
_— N —~_1 R
MT = TmT(OT)'C’T mT(HT),

where Cp = Cr(07) = T~ Y1, ¢,(01),(07)' with
t

@u0r) = == 3" [f(mi:0r) — mr0y)].

e The limit of M\T depends on the estimation effect of replacing 6, with
Or.
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[B1](b) Under the null,

\/_Zt 1 F(n4;0,)

:> GOWq—H{:(l))
ﬁ thl Q(m, 90)

where G, is nonsingular.

B2] Fi.r1(6,) = [rT) SV Vo f (m1;0,) — F,, uniformly in r € (0,1],
where F', is a ¢ X k non-stochastic matrix; Vo F',7(6,) = Op(1).

e A Taylor expansion about 8, gives
7]

ﬁm ( ) \/7m [rT| ( ) T

the second term is the estimation effect and converges to 7 F,Q A, W(1),

= Fu1)(0,) [VT(67 — 0,)] +op(1);

where A, is the matrix square root of G9:GY, + G21GY;.



e [B1](b) and [B2] imply
VImy(0r) = (I, FoQ,|G.W,ii(1) = V,W,(1),

where V/, is the matrix square root of I, F,Q,|G,G.[I, F,Q,]'. Note
V,=S,when F, =0 (i.e., no estimation effect).

e Due to “centering”, the estimation effects in go[rT](éT) cancel out:

01(01) = VT, 1(80) + T F1(0,)[VT(6r — 0,
— @ \/TmT(HO) — @FT<00) [ﬁ(éT — 9())] + O]P(l)

= ﬁm[rT(go) - @ ﬁmT(go) + OIP(l)'

° éT =Cr(0,) + op(l) = S,P,S,, regardless of the estimation effect.
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e When estimation effect is present, 6T is unable to eliminate V', and
My = W, 1)V, [S,P,S.] 'V, W,(1),
That is, //\/\lT depends on S, and V, and is not asymptotically pivotal.
e When there is no estimation effect (F', =0), V, = S,, and
My = W, (1) P W, (1),
which is also the limit of M.

e Remark: The nonsingularity of G, required in [B1](b) is crucial for the M
tests here. It excludes the cases that the moment functions (f) and the
estimator (which depends on q) are asymptotically correlated, e.g., the

over-identifying restrictions in the context of GMM.



M Test under Estimation Effect C.-M. Kuan, HAC.22

e Kuan and Lee (2006): Cp = T ZtT_kH @) with

~

1
Lpt Py Ht, OT = Z 7727 015 mT<0T)} )

2:1

ﬂ

where 0, are the recursive estimators based on first ¢ observations.

e The M testis

—_— —1 N S
My = Tmr(07)Cr mp(0r) = W, (1) P, W,(1),

which has the same limit as M.

& T1/2mT(éT) = VOWq(l).
o @1 = VoBy(r), and hence Cr= V,P,)V,

e While HAC estimation of V/, is practically difficult, .//\\/l/T avoids estimating

V, and hence is also robust to estimation effect.
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Specification: y, = h(x; 0) + e,(8) with the NLS estimator 0.

o [E(y|xt) = h(wi:0,) and g := e(0,) = yr — h(w4;0,).
e The null hypothesis is
[E[f;(60)] = E(ci€-14) = 0,
where €1, = [e1-1,. .., €14

o Letting T}, = T — ¢, define

T
1
mr,(0) = th§1 er(0)er—1,4(0).

We can base an M test on mTq(éT) =T, Z;F:qﬂ et(éT)et_Lq(éT).

o T;ﬂmTq(@T) and qu/QmTq(HO) are not asymptotically equivalent unless

FTq(HO) converges to F', = 0.
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® Here, FTq (90) = —Tq_l Z?:cﬁ—l [et_quVth(Oo) + €tVth_1,q(90)] .

e F', would be zero if {x;} and {e;} are mutually independent. When
h(x:; 0,) = x,0,, F, = 0 when {x;} and {&;} are mutually uncorrelated.
¢ The M test based on model residuals is
-1

Mz, = T,y mz,(07)Cy, mr, (0r) —— W, (1) P W,(1),

where the normalizing matrix is C7, = Tq_1 th:qH @, with

;

. - - t— q 1

P = E lei(O7)e;14(07)] — E ei(0r)e; T)]
t V Tq i=q+1 ' q i=q+1 q

o M\Tq includes the test of Lobato (2001) for raw time series as a special

Case.
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e F', # 0 for the residuals of dynamic models, such as AR models and

models with lagged dependent variables.

© The M test based on the residuals of dynamic models is

~—1

Mz, = T'm, (0r)Cy, mz,(61) = W, (1) P W, (1),

where the normalizing matrix is C’Tq = Tq_1 Zt:qH PP with

t
~ t— 1
Z ez 1q t)} q Z 62 ez 1,q HT)L

qz q+1

and €;(0;) = y;—h(x;; ;) is the i th residual evaluated at the recursive

NLS estimator Ht.

o Mr, is a specification test without consistent estimation of the asymp-

totic covariance matrix.
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Figure 1: The Bartlett, Parzen, quadratic spectral and Daniel kernels.
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24 28 32

Figure 2: The asymptotic local powers of the standard M test (solid), //\/lvT (dashed) and M (dotted)
at 5% level.



