
Chapter 2

Statistical Concepts

In this chapter we review some probability and statistics results to be used in subsequent

chapters. We focus on the properties of multivariate random vectors and discuss the

basic ideas of parameter estimation and hypothesis testing. Most of statistics textbooks

also cover similar topics but are in the univariate context; beginning graduate students

in economics may find Amemiya (1994) a useful reference. More advanced topics in

probability theory will be left to Chapter 5.

2.1 Distribution Functions

Given a random experiment, let Ω denote the collection of all its possible outcomes and

IP denote the probability measure assigned to sets of outcomes (subsets of Ω); a subset

of Ω is referred to as an event. For the event A, IP(A) is a measure of the likelihood of

A such that 0 ≤ IP(A) ≤ 1. The larger is IP(A), the more likely is the event A to occur.

A d-dimensional random vector (Rd-valued random variable) is a function defined on

Ω and takes values in R
d. Thus, the value of a random vector depends on the random

outcome ω ∈ Ω. Formal definitions of probability space and random variables are given

in Section 5.1.

The (joint) distribution function of the R
d-valued random variable z is the non-

decreasing, right-continuous function Fz such that for ζ = (ζ1 . . . ζd)
′ ∈ R

d,

Fz(ζ) = IP{ω ∈ Ω: z1(ω) ≤ ζ1, . . . , zd(ω) ≤ ζd},

with

lim
ζ1→−∞, ..., ζd→−∞

Fz(ζ) = 0, lim
ζ1→∞, ..., ζd→∞

Fz(ζ) = 1.
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18 CHAPTER 2. STATISTICAL CONCEPTS

Note that the distribution function of z is a standard point function defined on R
d and

provides a convenient way to characterize the randomness of z. The (joint) density

function of Fz, if exists, is the non-negative function fz such that

Fz(ζ) =
∫ ζd

−∞
· · ·

∫ ζ1

−∞
fz(s1, . . . , sd) ds1 · · · dsd,

where the right-hand side is a Riemann integral. Clearly, the density function fz must

be integrated to one on R
d.

The marginal distribution function of the i th component of z is

Fzi
(ζi) = IP{ω ∈ Ω: zi(ω) ≤ ζi} = Fz(∞, . . . ,∞, ζi,∞, . . . ,∞).

Thus, the marginal distribution function of zi is the joint distribution function without

restrictions on the other elements zj, j �= i. The marginal density function of zi is the

non-negative function fzi
such that

Fzi
(ζi) =

∫ ζi

−∞
fzi

(s) ds.

It is readily seen that the marginal density function fzi
can also be obtained from the

associated joint density function by integrating out the other elements:

fzi
(si) =

∫
R

· · ·
∫

R

fz(s1, . . . , sd) ds1 · · · dsi−1 dsi+1 · · · dsd.

If there are two random vectors z1 and z2, they are said to be independent if,

and only if, their joint distribution function is the product of all marginal distribution

functions:

Fz1,z2
(ζ1, ζ2) = Fz1

(ζ1)Fz2
(ζ2);

otherwise, they are dependent. If random vectors possess density functions, they are

independent if, and only if, their joint density function is also the product of marginal

density functions. Intuitively, there exists absolutely no relationship between two inde-

pendent random vectors. As a consequence, functions of independent random vectors

remain independent, as stated in the result below.

Lemma 2.1 If z1 and z2 are independent random vectors, then their transformations,

h1(z1) and h2(z2), are also independent random variables (vectors).
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2.2. MOMENTS 19

2.2 Moments

Given the d-dimensional random vector z with the distribution function Fz, the expec-

tation of the i th element zi is defined as

IE(zi) =
∫

· · ·
∫

Rd

ζi dFz(ζ1, . . . , ζd),

where the right-hand side is a Stieltjes integral; for more details about different integrals

we refer to Rudin (1976). As this integral equals∫
R

ζi dFz(∞, . . . ,∞, ζi,∞, . . . ,∞) =
∫

R

ζi dFzi
(ζi),

the expectation of zi can be taken with respect to either the joint distribution function

Fz or the marginal distribution function Fzi
. The expectation of a random variable is a

location measure because it is a weighted average of all possible values of this variable,

with the weights being associated probabilities.

We say that the random variable zi has a finite expected value (or the expectation

IE(zi) exists) if IE |zi| < ∞. A random variable need not have a finite expected value;

if it does, this random variable is said to be integrable. More generally, the expectation

of a random vector is defined elementwise. That is, for a random vector z, IE(z) exists

if all IE(zi), i = 1, . . . , d, exist (z is integrable if all zi, i = 1, . . . , d, are integrable).

It is easily seen that the expectation operator does not have any effect on a constant;

i.e., IE(b) = b for any constant b. For integrable random variables zi and zj , the

expectation operator is monotonic in the sense that

IE(zi) ≤ IE(zj),

for any zi ≤ zj with probability one. Moreover, the expectation operator is linear in

the sense that

IE(azi + bzj) = a IE(zi) + b IE(zj),

where a and b are two real numbers. This property immediately generalizes to integrable

random vectors.

Lemma 2.2 Let A (n × d) and B (n × c) be two non-stochastic matrices. Then for

any integrable random vectors z (d × 1) and y (c × 1),

IE(Az + By) = A IE(z) + B IE(y);

in particular, if b is an n-dimensional nonstochastic vector, then IE(Az+b) = A IE(z)+

b.
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20 CHAPTER 2. STATISTICAL CONCEPTS

More generally, let y = g(z) be a well-defined, vector-valued function of z. The

expectation of y is

IE(y) = IE[g(z)] =
∫

Rd

g(ζ) dFz(ζ).

When g(z) = zk
i , IE[g(z)] = IE(zk

i ) is known as the k th moment of zi, where k need not

be an integer. In particular, IE(zi) is the first moment of zi. When a random variable

has finite k th moment, its moments of order less than k are also finite. When the k th

moment of a random variable does not exist, then the moments of order greater than

k also fail to exist. See Section 2.3 for some examples of random variables that possess

only low order moments. A random vector is said to have finite k th moment if its

elements all have finite k th moment. A random variable with finite second moment is

said to be square integrable; a random vector is square integrable if its elements are all

square integrable.

The k th central moment of zi is IE[zi − IE(zi)]
k. In particular, the second central

moment of the square integrable random variable zi is

IE[zi − IE(zi)]
2 = IE(z2

i ) − [IE(zi)]
2,

which is a measure of dispersion of the values of zi. The second central moment is also

known as variance, denoted as var(·). The square root of variance is standard deviation.

It can be verified that, given the square integrable random variable zi and real numbers

a and b,

var(azi + b) = var(azi) = a2 var(zi).

This shows that variance is location invariant but depends on the scale (measurement

units) of random variables.

When g(z) = zizj , IE[g(z)] = IE(zizj) is the cross moment of zi and zj. The cross

central moment of zi and zj is

IE[(zi − IE(zi))(zj − IE(zj))] = IE(zizj) − IE(zi) IE(zj),

which is a measure of the co-variation between these two random variables. The cross

central moment of two random variables is known as their covariance, denoted as

cov(·, ·). Clearly, cov(zi, zj) = cov(zj , zi) and cov(zi, zi) = var(zi). It can be seen

that for real numbers a, b, c, d,

cov(azi + b, czj + d) = cov(azi, czj) = ac cov(zi, zj).
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2.2. MOMENTS 21

Thus, covariance is also location invariant but not scale invariant.

Observe that for any real numbers a and b,

var(azi + bzj) = a2 var(zi) + b2 var(zj) + 2ab cov(zi, zj),

so that

var(zi − azj) = var(zi) + a2 var(zj) − 2a cov(zi, zj),

which must be non-negative. Setting a = cov(zi, zj)/ var(zj), we have

var(zi) − cov(zi, zj)
2/ var(zj) ≥ 0.

In particular, when zi = azj + b for some real numbers a and b, we have var(zi) =

a2 var(zj) and cov(zi, zj) = a var(zj), so that

var(zi) − cov(zi, zj)
2/ var(zj) = 0.

This yields the Cauchy-Schwarz inequality for square integrable random variables.

Lemma 2.3 (Cauchy-Schwarz) Let zi, zj be two square integrable random variables.

Then,

cov(zi, zj)
2 ≤ var(zi) var(zj),

where the equality holds when zi = azj + b for some real numbers a and b.

cf. the Cauchy-Schwarz inequality (Lemma 1.1) in Section 1.2. This also suggests that

when two random variables are square integrable, their covariance must be finite.

The correlation coefficient of zi and zj is defined as

corr(zi, zj) =
cov(zi, zj)√

var(zi) var(zj)
.

Clearly, a correlation coefficient provides the same information as its corresponding

covariance. Moreover, we have from Lemma 2.3 that

−1 ≤ corr(zi, zj) ≤ 1.

For two random variables zi and zj and real numbers a, b, c, d,

corr(azi + b, czj + d) = corr(azi, czj) =
ac

|a| |c| corr(zi, zj).
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22 CHAPTER 2. STATISTICAL CONCEPTS

Thus, the correlation coefficient is not only location invariant but also scale invariant,

apart from the sign change. If corr(zi, zj) = 0, zi and zj are said to be uncorrelated. If

corr(zi, zj) > 0, zi and zj are said to be positively correlated; if corr(zi, zj) < 0, zi and

zj are negatively correlated. When zi = azj + b, corr(zi, zj) = 1 if a > 0 and −1 if a < 0.

In both cases, zi and zj are em perfectly correlated.

For a d-dimensional, square integrable random vector z, its variance-covariance ma-

trix is

var(z) = IE[(z − IE(z))(z − IE(z))′]

=

⎡
⎢⎢⎢⎢⎢⎣

var(z1) cov(z1, z2) · · · cov(z1, zd)

cov(z2, z1) var(z2) · · · cov(z2, zd)
...

...
. . .

...

cov(zd, z1) cov(zd, z2) · · · var(zd)

⎤
⎥⎥⎥⎥⎥⎦ ,

which must be symmetric because cov(zi, zj) = cov(zj , zi). As (z− IE(z))(z− IE(z))′ is

positive semi-definite with probability one, the monotonicity of the expectation operator

implies that var(z) is positive semi-definite.

For two random vectors y (c × 1) and z (d × 1), the d × c covariance matrix of z

and y is

cov(z,y) = IE[(z − IE z)(y − IEy)′] = IE(zy′) − IE(z) IE(y′).

Two random vectors are uncorrelated if their covariance matrix is a zero matrix. If

y and z are independent, their joint distribution function is the product of individual

distribution functions. It follows that the cross moment of y and z is the product of

their individual first moment: that

IE(zy′) = IE(z) IE(y′).

This shows that independence implies cov(z,y) = 0. Uncorrelated random vectors are

not necessarily independent, however.

Based on the properties of variance and covariance for random variables, we have

the following result for random vectors.

Lemma 2.4 Let A (n×d), B (n× c), and C (m× c) be non-stochastic matrices and b

an n-dimensional non-stochastic vector. Then for any square integrable random vectors

z (d × 1) and y (c × 1),

var(Az + By) = A var(z)A′ + B var(y)B′ + 2A cov(z,y)B′,

var(Az + b) = var(Az) = A var(z)A′.
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2.3. SPECIAL DISTRIBUTIONS 23

Given two square integrable random vectors z and y, suppose that var(y) is positive

definite. As the variance-covariance matrix of (z′ y′)′ must be a positive semi-definite

matrix,

[I − cov(z,y) var(y)−1]

[
var(z) cov(z,y)

cov(y,z) var(y)

] [
I

− var(y)−1 cov(y,z)

]

= var(z) − cov(z,y) var(y)−1 cov(y,z)

is also a positive semi-definite matrix. This establishes the multivariate version of the

Cauchy-Schwarz inequality for square integrable random vectors.

Lemma 2.5 (Cauchy-Schwarz) Let y,z be two square integrable random vectors.

Then,

var(z) − cov(z,y) var(y)−1 cov(y,z)

is a positive semi-definite matrix.

A random vector is said to be degenerate (have a singular distribution) if its variance-

covariance matrix is singular. Let Σ be the variance-covariance matrix of the d-

dimensional random vector z. If Σ is singular, then there exists a non-zero vector

c such that Σc = 0. For this particular c, we have

c′Σc = IE[c′(z − IE(z))]2 = 0.

It follows that c′[z − IE(z)] = 0 with probability one; i.e, the elements of z are linearly

dependent with probability one. This implies that all the probability mass of z is

concentrated in a subspace of dimension less than d.

2.3 Special Distributions

In this section we discuss several useful distributions. A random vector z is said to have

a multivariate normal (Gaussian) distribution with mean μ and variance-covariance

matrix Σ, denoted as z ∼ N (μ,Σ), if it has the density function

1
(2π)d/2 det(Σ)1/2

exp
(
−1

2
(z − μ)′Σ−1(z − μ)

)
.

For d = 1, this is just the density of the univariate normal random variable. Note that

the multivariate normal density function is completely characterized by its mean vector

c© Chung-Ming Kuan, 2004



24 CHAPTER 2. STATISTICAL CONCEPTS

and variance-covariance matrix. A normal random variable has moments of all orders;

in particular, its even-order central moments are

IE(z − μ)k = (k − 1) · · · 3 · 1 var(z)k/2, k ≥ 2 and k is even,

and its odd-order central moments are all zeros. A normal random variable with mean

zero and variance one is usually called the standard normal random variable.

When Σ is a diagonal matrix with diagonal elements σii, i = 1, . . . , d, the elements

of z are uncorrelated. Note that for normal random variables, uncorrelatedness implies

independence. In this case, the density function is simply the product of marginal

density functions for z1, . . . , zd:

1

(2π)d/2(
∏d

i=1 σii)1/2
exp

(
−1

2

d∑
i=1

(zi − μi)
2

σii

)
.

When σii = σ2
o , a constant, this joint density simplifies to

1
(2πσ2

o)d/2
exp

(
− 1

2σ2
o

d∑
i=1

(zi − μi)
2

)
.

Although uncorrelated normal random variables are also independent, we stress again

that this need not be true for other random variables.

The result below shows that proper linear transformations of normal random vectors

remain normally distributed.

Lemma 2.6 Let z be a d-dimensional random vector distributed as N (μ,Σ). Also let

A be an n× d non-stochastic matrix with full row rank n < d and b be a d-dimensional

non-stochastic vector. Then,

Az + b ∼ N (Aμ + b,AΣA′).

Lemma 2.6 implies that, when z ∼ N (μ,Σ), any sub-vector (element) of z also has a

multivariate (univariate) normal distribution; the converse need not be true, however.

It is also easily seen that

Σ−1/2(z − μ) ∼ N (0, Id),

where Σ−1/2 is such that Σ−1/2ΣΣ−1/2 = I, as defined in Section 1.7. Proper standard-

ization of a normal random vector thus yields a normal random vector with independent
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2.3. SPECIAL DISTRIBUTIONS 25

elements. If A is not of full row rank, var(Az) = AΣA′ does not have full rank, so

that Az is degenerate.

Let z ∼ N (μ, Id). The sum of squares of the elements of z is the non-central

chi-square random variable with d degrees of freedom and the non-centrality parameter

ν = μ′μ, denoted as

z′z ∼ χ2(d; ν).

The density function of χ2(d; ν) is

f(x) = exp
(
− ν + x

2

)
xd/2−1 1

2d/2

∞∑
i=0

xiνi

i! 22i Γ(i + d/2)
, x > 0,

where Γ is the gamma function with

Γ(n) =
∫ ∞

0
e−xxn−1 dx.

It can be shown that a χ2(d; ν) random variable has mean (d+ ν) and variance 2d+4ν.

When μ = 0, the non-centrality parameter ν = 0, and χ2(d; 0) is known as the central

chi-square random variable, denoted as χ2(d). The density of χ2(d) is

f(x) = exp
(
− x

2

)
xd/2−1 1

2d/2 Γ(d/2)
, x > 0,

with mean d and variance 2d. The result below follows directly from Lemma 2.6.

Lemma 2.7 Let z be a d-dimensional random vector distributed as N (μ,Σ). Then,

z′Σ−1z ∼ χ2(d;μ′Σ−1μ);

in particular, if μ = 0, z′Σ−1z ∼ χ2(d).

Let w and x be two independent random variables such that w ∼ N (μ, 1) and

x ∼ χ2(n). Then

w√
x/n

∼ t(n;μ),

the non-central t distribution with n degrees of freedom and the non-centrality param-

eter μ. The density function of t(n;μ) is

f(x) =
nn/2 exp(−μ2/2)

Γ(n/2)Γ(1/2)(n + x2)(n+1)/2

∞∑
i=0

Γ
(n + i + 1

2

)μi

i!

(
2x2

n + x2

)i/2

(sign x)i.
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26 CHAPTER 2. STATISTICAL CONCEPTS

When μ = 0, t(n;μ) reduces to the central t distribution, denoted as t(n), which has

the density

f(x) =
Γ((n + 1)/2)

Γ(n/2)Γ(1/2)n1/2

(
1 +

x2

n

)−(n+1)/2

.

The t(n) random variable is symmetric about zero, and its k th moment exists only for

k < n; when n > 2, its mean is zero and variance is n/(n − 2).

As n tends to infinity, it can be seen that

(
1 +

x2

n

)−(n+1)/2

=
[(

1 +
x2

n

)n/x2
]−x2/2 (

1 +
x2

n

)−1/2
→ exp(−x2/2).

Also note that Γ(1/2) = π1/2 and that for large n,

Γ((n + 1)/2)
Γ(n/2)

≈ (n/2)1/2.

Thus, when n tends to infinity, the density of t(n) converges to

1√
2π

exp(−x2/2),

the density of the standard normal random variable. When n = 1, the density for t(1)

becomes

f(x) =
1

π[1 + x2]
.

This is also the density of the Cauchy random variable with the location parameter 0.

The Cauchy random variable is a very special random variable because it does not even

have finite first moment.

Let z1 and z2 be two independent random variables such that z1 ∼ χ2(n1; ν1) and

z2 ∼ χ2(n2; ν2). Then,

z1/n1

z2/n2

∼ F (n1, n2; ν1, ν2),

the non-central F distribution with the degrees of freedom n1 and n2 and the non-

centrality parameters ν1 and ν2. The k th moment of F (n1, n2; ν1, ν2) exists when k <

n2/2. In many statistical applications we usually encounter F (n1, n2; ν1, 0). When

n2 > 2, the mean of F (n1, n2; ν1, 0)is

n2(n1 + ν1)
n1(n2 − 2)

;
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2.4. LIKELIHOOD 27

when n2 > 4, the variance is

2
(n2

n1

)2 (n1 + ν1)2 + (n1 + 2ν1)(n2 − 2)
(n2 − 2)2(n2 − 4)

.

If both ν1 and ν2 are zero, we have the central F distribution F (n1, n2). When n2 > 2,

F (n1, n2) has mean n2/(n2 − 2); when n2 > 4, it has variance

2n2
2(n1 + n2 − 2)

n1(n2 − 2)2(n2 − 4)
.

Note that if a random variable is distributed as t(n), its square has the F (1, n) distri-

bution.

2.4 Likelihood

Suppose that we postulate p as the joint probability function of the discrete random

variables z1, . . . , zT with the parameter vector θ. Plugging the observed values ζ1, . . . , ζT

of these random variables into p we obtain a function of θ:

L(θ) := p(ζ1, . . . , ζT ;θ).

This function represents the probability (likelihood) that those observed values are

generated from the postulated probability function p; different parameter values of

course result in different probability values. Thus, L(θ) is also known as the likelihood

function of θ.

Similarly, let f denote the postulated joint density function of the random vectors

z1, . . . ,zT with the parameter vector θ. Then given the observed values ζ1, . . . , ζT , the

likelihood function of θ is

L(θ) := f(ζ1, . . . , ζT ;θ).

In what follows, we will use L and f interchangeably. Note, however, that a postu-

lated density function need not be the true density function that generates the random

variables.

When f is differentiable and non-zero with probability one, the gradient vector of

log L(θ),

∇θ log L(θ) =
1

L(θ)
∇θL(θ),
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28 CHAPTER 2. STATISTICAL CONCEPTS

is known as the score vector, denoted as s(ζ1, . . . , ζT ;θ). We can then write

s(ζ1, . . . , ζT ;θ)f(ζ1, . . . , ζT ;θ) = ∇θf(ζ1, . . . , ζT ;θ).

For a given θ, the score vector varies with the observed values ζ1, . . . , ζT , so that it is

also a random vector. We therefore denote the score vector as s(z1, . . . ,zT ;θ).

When differentiation and integration can be interchanged, we have for each θ,

∫
Rd

· · ·
∫

Rd

s(ζ1, . . . , ζT ;θ) f(ζ1, . . . , ζT ;θ) dζ1 . . . dζT

=
∫

Rd

· · ·
∫

Rd

∇θf(ζ1, . . . , ζT ;θ) dζ1 . . . dζT

= ∇θ

(∫
Rd

· · ·
∫

Rd

f(ζ1, . . . , ζT ;θ) dζ1 . . . dζT

)

= ∇θ 1

= 0.

The left-hand side is in effect the expectation of the score vector with respect to f . If

there exists θo such that f(ζ1, . . . , ζT ;θo) is the true density function, we immediately

obtain the following result.

Lemma 2.8 If there exists θo such that f(ζ1, . . . , ζT ;θo) is the joint density function

of the random vectors z1, . . . ,zT . Then under regularity conditions,

IE[s(z1, . . . ,zT ;θo)] = 0,

where s(z1, . . . ,zT ;θo) is the score evaluated at θo, and IE is taken with respect to the

true density function.

Remark: The validity of Lemma 2.8 requires differentiability of the likelihood function

and interchangeability of differentiation and integration; see, e.g., Amemiya (1985) for

some sufficient conditions of these properties. Lemma 2.9 below also requires similar

conditions.

It is easy to see that the Hessian matrix of the log-likelihood function is

∇2
θ log L(θ) =

1
L(θ)

∇2
θL(θ) − 1

L(θ)2
[∇θL(θ)][∇θL(θ)]′,
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2.4. LIKELIHOOD 29

where the second term is just the outer product of the score vector. Again by inter-

changing differentiation and integration, we have for each θ that
∫

Rd

· · ·
∫

Rd

1
L(θ)

∇2
θL(θ) f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT

=
∫

Rd

· · ·
∫

Rd

∇2
θf(ζ1, . . . , ζT ;θ) dζ1 · · · dζT

= ∇2
θ

(∫
Rd

· · ·
∫

Rd

f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT

)

= ∇2
θ 1

= 0.

It follows that

−
∫

Rd

· · ·
∫

Rd

∇2
θ log L(θ) f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT

=
∫

Rd

· · ·
∫

Rd

s(ζ1, . . . , ζT ;θ)s(ζ1, . . . , ζT ;θ)′f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT ,

where the left-hand side is the negative of the expected Hessian matrix and the right-

hand side is the variance-covariance matrix of s(z1, . . . ,zT ;θ), both with respect to

the postulated density function f . If f(ζ1, . . . , ζT ;θo) is the true density function, the

variance-covariance matrix of s(z1, . . . ,zT ;θo) is known as the information matrix. The

result above, together with Lemma 2.8, yields the so-called information matrix equality.

Lemma 2.9 If there exists θo such that f(ζ1, . . . , ζT ;θo) is the joint density function

of the random vectors z1, . . . ,zT . Then under regularity conditions,

IE[∇2
θ log L(θo)] + var(s(z1, . . . ,zT ;θo)) = 0,

where ∇2
θ log L(θo) is the Hessian matrix of log L evaluated at θo, and IE and var are

taken with respect to the true density function.

Remark: When f is not the true density function, Lemma 2.8 and 2.9 need not hold.

That is, neither IE[s(z1, . . . ,zT ;θ)] nor

IE[∇2
θ log L(θ)] + var(s(z1, . . . ,zT ;θ))

is necessarily zero.
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2.5 Estimation

2.5.1 Point Estimation

Let θo denote a parameter vector associated with the joint distribution of T random

vectors z1, . . . ,zT . A point estimator (or simply an estimator) for θo is a function of

these random vectors:

θ̂ = h(z1, . . . ,zT ),

where h is some function. An estimator is clearly a random vector. Once the observed

values of z1, . . . ,zT are plugged into this function, we obtain a point estimate. That is,

a point estimate is just a particular value that an estimator may assume.

A simple principle of constructing estimators for moments is known as analog estima-

tion. This principle suggests to estimate population moments using their finite-sample

counterparts. For example, given a sample of T random variables z1, . . . , zT with the

common k th moment IE(zk
1 ), the analog estimator for IE(zk

1 ) is simply the sample av-

erage of zk
i :

1
T

T∑
t=1

zk
i .

In particular, the sample mean z̄ is the analog estimator for the population mean.

To estimate the parameter vector θo, it is also natural to maximize the associated

likelihood function L(θ). The resulting solution is known as the maximum likelihood

estimator (MLE) for θo, denoted as θ̃ or θ̃T , where the subscript T indicates that this

is an estimator based on a sample of T observations. As the maximum of a function

is invariant with respect to monotonic transformations, it is quite common to compute

the MLE by maximizing the log-likelihood function log L(θ). It follows that the score

vector evaluated at θ̃ must be zero; i.e., s(ζ1, . . . , ζT ; θ̃) = 0.

2.5.2 Criteria for Point Estimators

Let θ̂ be an estimator for θo. The difference IE(θ̂) − θo is called the bias of θ̂. An

estimator is said to be unbiased if it has zero bias, i.e.,

IE(θ̂) = θo;

otherwise, it is biased. Unbiasedness does not imply that an estimate must be close

to the true parameter. In fact, it is even possible that all the values of an unbiased

estimator deviate from the true parameter by a constant.
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Given two unbiased estimators, it is therefore natural to choose the one whose values

are more concentrated around the true parameter. For real-valued unbiased estimators,

this amounts to selecting an estimator with a smaller variance. If they are vector-

valued, we adopt the following efficiency criterion. An unbiased estimator θ̂1 is said to

be “better” (more efficient) than an unbiased estimator θ̂2 if

var(a′θ̂2) ≥ var(a′θ̂1),

for all non-zero vectors a. This is equivalent to the condition that

a′[var(θ̂2) − var(θ̂1)]a ≥ 0,

for all non-zero vectors a. Thus, an unbiased estimator θ̂1 is more efficient than an

unbiased estimator θ̂2 if var(θ̂2) − var(θ̂1) is a positive semi-definite matrix. Given a

class of unbiased estimators, if one of them is better than all other estimators in that

class, it is the “best” (most efficient) within this class.

More generally, we can compare estimators based on mean squared error (MSE):

IE[(θ̂ − θo)(θ̂ − θo)
′]

= IE[(θ̂ − IE(θ̂) + IE(θ̂) − θo)(θ̂ − IE(θ̂) + IE(θ̂) − θo)
′]

= var(θ̂) + [IE(θ̂) − θo] [IE(θ̂) − θo]
′,

where the second term is the outer product of the bias vector. An estimator θ̂1 (not

necessarily unbiased) is said to be better (more efficient) than θ̂2 if MSE(θ̂2)−MSE(θ̂1)

is a positive semi-definite matrix. Clearly, the MSE criterion reduces to the previous

variance-based criterion when estimators are unbiased.

The following result shows that the inverse of the information matrix is a lower

bound, also known as the Cramér-Rao lower bound, for the variance-covariance matrix

of any unbiased estimator.

Lemma 2.10 (Cramér-Rao) If there exists θo such that f(ζ1, . . . , ζT ;θo) is the joint

density function of the random vectors z1, . . . ,zT . Let θ̂ denote an unbiased estimator

for θ based on these random vectors. If var(s(z1, . . . ,zT ;θo)) is positive definite,

var(θ̂) − var(s(z1, . . . ,zT ;θo))
−1

is a positive semi-definite matrix.
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Proof: We first note that for any unbiased estimator θ̂ for θ,∫
Rd

· · ·
∫

Rd

(θ̂ − θ) s(ζ1, . . . , ζT ;θ) f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT

=
∫

Rd

· · ·
∫

Rd

θ̂ s(ζ1, . . . , ζT ;θ) f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT

= ∇θ

(∫
Rd

· · ·
∫

Rd

θ̂ f(ζ1, . . . , ζT ;θ) dζ1 · · · dζT

)

= ∇θθ

= I,

where the third equality holds because θ̂ is unbiased for θ when f(ζ1, . . . , ζT ;θ) is the

associated density function. Thus,

cov(θ̂, s(z1, . . . ,zT ;θo)) = I.

The assertion now follows from Lemma 2.5, the multivariate version of the Cauchy-

Schwarz inequality. �

By Lemma 2.10, an unbiased estimator is the best if its variance-covariance matrix

achieves the Cramér-Rao lower bound; the converse need not be true, however.

2.5.3 Interval Estimation

While a point estimate is a particular value representing the unknown parameter, in-

terval estimation results in a range of values that may contain the unknown parameter

with certain probability.

Suppose that there is an estimate θ̂ for the true parameter θo and a function q(θ̂, θo)

whose distribution is known. Then, given a probability value γ, we can find suitable

values a and b such that

IP{a < q(θ̂, θo) < b} = γ.

Solving the inequality above for θo we may obtain an interval containing θo. This leads

to the probability statement:

IP{α < θo < β} = γ,

where α and β depend on a, b, and θ̂. We can then conclude that we are γ×100 percent

sure that the interval (α, β) contains θo. Here, γ is the confidence coefficient, and (α, β)
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is the associated confidence interval for θo. It is easily seen that the larger the value

of γ, the wider is the associated confidence interval. Note that for a given confidence

coefficient, there may exist different confidence intervals satisfying the same probability

statement. It is then desirable to find the smallest possible confidence interval.

Let A1 denote the event that a confidence interval contains θ1 and A2 the event

that a confidence interval contains θ2. The intersection A = A1 ∩ A2 is thus the event

that a confidence “box” covers both parameters. When A1 and A2 are independent

such that IP(A1) = IP(A2) = γ, we have IP(A) = γ2. When these two events are not

independent (e.g., the parameter estimators of θ1 and θ2 are correlated), it becomes

difficult to determine IP(A). As such, finding a proper confidence “box” based on

individual confidence intervals is by no means an easy job. On the other hand, if a

function q(θ̂1, θ̂2, θ1, θ2) with a known distribution is available, we can, for a given γ,

find the values a and b such that

IP{a < q(θ̂1, θ̂2, θ1, θ2) < b} = γ.

By solving the inequality above for θ1 and θ2 we may obtain a confidence region in

which the point (θ1, θ2) lies with probability γ.

2.6 Hypothesis Testing

2.6.1 Basic Concepts

Given a sample of data, it is often desirable to check if certain characteristics of the

underlying random mechanism (population) are supported by these data. For this pur-

pose, a hypothesis of these characteristics must be specified, and a test is constructed so

as to generate a rule of rejecting or accepting (not rejecting) the postulated hypothesis.

The hypothesis being tested is called the null hypothesis, denoted as H0; the other

states or values of the characteristics of interest form an alternative hypothesis, denoted

as H1. Hypotheses are usually formulated in terms of the parameters of models. For

example, one may specify that H0 : θo = a for some a and H1 : θo �= a. Here, H0 is

a simple hypothesis in the sense that the parameter vector being tested takes a single

value, but H1 is a composite hypothesis in that the parameter vector may take more

than one values. Given a sample of random variables z1, . . . ,zT , a test statistic is a

function of these random variables, denoted as T (z1, . . . ,zT ). The critical region C

of T (z1, . . . ,zT ) is the range of its possible values that lead to rejection of the null
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hypothesis. In what follows, the set

Γ = {ζ1, . . . , ζT : T (ζ1, . . . , ζT ) ∈ C}

will also be referred to as the critical region of T . The complement of the critical region,

Cc, is the region containing the values of T (z1, . . . ,zT ) that lead to acceptance of the

null hypothesis. We can also define

Γc = {ζ1, . . . , ζT : T (ζ1, . . . , ζT ) ∈ Cc}

as the acceptance region of T .

A test may yield incorrect inferences. A test is said to commit the type I error if

it rejects the null hypothesis when the null hypothesis is in fact true; a test is said to

commit the type II error if it accepts the null hypothesis when the alternative hypothesis

is true. Suppose that we are interested in testing H0 : θo = a against H1 : θo = b. Let

IP0 be the probability asociated with θo = a and IP1 the probability with θo = b. The

probability of the type I error is then

α = IP0{(z1, . . . ,zT ) ∈ Γ} =
∫

Γ
f0(ζ1, . . . , ζT ;a) dζ1 · · · dζT ,

where f0(z1, . . . ,zT ;a) is the joint density with the parameter θo = a. The value α is

also known as the size or significance level of the test. The probability of the type II

error is

β = IP1{(z1, . . . ,zT ) ∈ Γc} =
∫

Γc

f1(ζ1, . . . , ζT ; b) dζ1 · · · dζT ,

where f1(z1, . . . ,zT ; b) is the joint density with the parameter θo = b. Clearly, α

decreases when the critical region Γ is smaller; in the mean time, β increases due to a

larger Γc. Thus, there is usually a trade-off between these two error probabilities.

Note, however, that the probability of the type II error cannot be defined as above

when the alternative hypothesis is composite: θo ∈ Θ1, where Θ1 is a set of parameter

values in the parameter space. Consider now the probability 1−IP1(Γc) = IP1(Γ), which

is the probability of rejecting the null hypothesis when H1 is true. Thus, both IP0(Γ)

and IP1(Γ) are the probabilities of rejecting the null hypothesis under two different

parameter values. More generally, define the power function of the test as

π(θo) = IPθo
{(z1, . . . ,zT ) ∈ Γ},

where θo varies in the parameter space. In particular, π(a) = α. For θo ∈ Θ1, π(θo)

describes the ability of a test that can correctly detect the falsity of the null hypothesis;
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these probabilities are also referred to as the powers of the test. The probability of the

type II error under the composite alternative hypothesis θo ∈ Θ1 can now be defined as

β = max
θo∈Θ1

[1 − π(θo)].

2.6.2 Construction of Tests

Given the null hypothesis θo = a, the test statistic T (z1, . . . ,zT ) is usually based on

the comparison of an estimator of θo and the hypothesized value a. This statistic must

have a known distribution under the null hypothesis, which will be referred to as the

null distribution.

Given the statistic T (z1, . . . ,zT ), the probability IP0{T (z1, . . . ,zT ) ∈ C} can be

determined by the null distribution of T . If this probability is small, the event that

T (z1, . . . ,zT ) ∈ C would be considered “unlikely” or “improbable” under the null

hypothesis, while the event that T (z1, . . . ,zT ) ∈ Cc would be considered “likely” or

“probable.” When the former, unlikely event occurs (i.e., for data z1 = ζ1, . . . ,zT = ζT ,

T (ζ1, . . . , ζT ) falls in C), it constitutes an evidence against the null hypothesis, so that

the null hypothesis is rejected; otherwise, we accept (do not reject) the null hypothesis.

We have seen that there is a trade-off between the error probabilities α and β. To

construct a test, we may fix one of these two error probabilities at a small level. It

is typical to specify a small significance level α and determine the associated critical

region C by

α = IP0{T (z1, . . . ,zT ) ∈ C}.

As such, we shall write the critical region for the significance level α as Cα. This

approach ensures that, even though the decision of rejection might be wrong, the prob-

ability of making the type I error is no greater than α. A test statistic is said to be

significant if it is in the critical region; otherwise, it is insignificant.

Another approach is to reject the null hypothesis if

IP0{v : v > T (ζ1, . . . , ζT )}

is small. This probability is the tail probability of the null distribution and also known

as the p-value of the statistic T . Although this approach does not require specifying

the critical region, it is virtually the same as the previous approach.

The rationale of our test decision is that the null hypothesis is rejected because the

test statistic takes an unlikely value. It is then natural to expect that the calculated
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statistic is relatively more likely under the alternative hypothesis. Given the null hy-

pothesis θo = a and alternative hypothesis θo ∈ Θ1, we would like to have a test such

that

π(a) ≤ π(θo), θo ∈ Θ1.

A test is said to be unbiased if its size is no greater than the powers under the alternative

hypothesis. Moreover, we would like to have a test that can detect the falsity of the

null hypothesis with probability approaching one when there is sufficient information.

That is, for every θo ∈ Θ1,

π(θo) = IPθo
{T (z1, . . . ,zT ) ∈ C} → 1,

as T → ∞. A test is said to be consistent if its power approaches one when the sample

size becomes infinitely large.

Example 2.11 Given the sample of i.i.d. normal random variables z1, . . . , zT with mean

μo and variance one. We would like to test the null hypothesis μo = 0. A natural

estimator for μo is the sample average z̄ = T−1
∑T

t=1 zt. It is well known that

√
T (z̄ − μo) ∼ N (0, 1).

Hence,
√

T z̄ ∼ N (0, 1) under the null hypothesis; that is, the null distribution of the

statistic
√

T z̄ is the standard normal distribution. Given the significance level α, we

can determine the critical region Cα using

α = IP0(
√

T z̄ ∈ Cα).

Let Φ denote the distribution function of the standard normal random variable. For

α = 0.05, we know

0.05 = IP0(
√

T z̄ > 1.645) = 1 − Φ(1.645).

The critical region is then (1.645,∞); the null hypothesis is rejected if the calculated

statistic falls in this interval. When the null hypothesis is false, the distribution of
√

T z̄

is no longer N (0, 1) but N (μo, 1) for some non-zero μo. Suppose that μo > 0. Then,

IP1(
√

T z̄ > 1.645) = IP1(
√

T (z̄ − μo) > 1.645 −
√

Tμo).

Since
√

T (z̄ − μo) ∼ N (0, 1) under the alternative hypothesis, we have the power:

IP1(
√

T z̄ > 1.645) = 1 − Φ(1.645 −
√

Tμo).
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Given that μo > 0, this probability must be greater than the test size (0.05), so that the

test is unbiased. On the other hand, when T increases, 1.645 −
√

Tμo becomes smaller

so that Φ(1.645 −
√

Tμo) decreases. Thus, the test power improves when T increases.

In particular, as T tends to infinity, the power of this test approaches one, showing that√
T z̄ is a consistent test. �
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