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1

1 Introduction

Time series models are designed to capture various characteristics in time series data.
These models have been widely used in many disciplines in the science. In particular,
it has been found that time series models are very useful in analyzing economic and
financial data. This motivates more and more econometricians and statisticians to devote
themselves to the development of new (or refined) time series models and methods. This
note serves as an introduction to basic time series models and related issues in model
estimation and hypothesis testing. This note does not try to cover all the topics in the
time series analysis; readers are referred to other time series textbooks for more detailed
discussion of the topics not covered by this note. I acknowledge that many results of
this note are taken freely from some textbooks, such as Brockwell and Davis (1987),
Hamilton (1994), Fuller (1996), and Tsay (2002).

2 Basic Concepts

2.1 Weak and Strict Stationarity

Let Y denote a random element in some probability space such that for each t, Yt is
a random variable, and for a random outcome ω in this probability space, Y (ω) is a
function of t. Let yt denote an observation of Yt. The collection {Yt} is usually referred
to as a stochastic process or a time series with {yt} as its realization (time path). For
notational convenience, we will not distinguish between Yt and yt; hence {yt} may denote
a time series or its realization.

A time series {yt} is said to be weakly stationary or covariance stationary if IE(yt) = µ,
and autocovariances

IE[(yt − µ)(yt−j − µ)] = γj , j = 0,±1,±2, . . . ,

depend on j but not on t. As γ0 = var(yt), the autocorrelations of yt are

ρj = γj/γ0, j = 0,±1,±2, . . . ,

which are also independent of t. Clearly, a weakly stationary series has ρj = ρ−j. In
particular, a series with zero mean, constant variance, and zero autocorrelations is called
a white noise.

The finite dimensional distributions of a time series {yt} are the joint distribution
functions of yt1 , yt2 , . . . , ytn for any finite collection of t1, t2, . . . , tn. A time series {yt}
is said to be strictly stationary if its finite dimensional distributions are invariant under
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2.2 Difference Equations 2

time displacements, i.e., for each s,

Ft1,...,tn(c1, . . . , cn) = Ft1+s,...,tn+s(c1, . . . , cn).

A sequence of i.i.d. random variables is strictly stationary, but the converse need not
hold. Note that strict stationary imposes no restriction on moments. When a strict
stationary series has a finite second moment, it must be weakly stationary. A time series
{yt} is Gaussian if its finite dimensional distribution functions are all Gaussian. A white
noise with Gaussian marginal distributions is a Gaussian series which is also a sequence
of i.i.d. normal random variables. Hence, a Gaussian white noise is strictly and weakly
stationary. A sequence of i.i.d. Cauchy random variables is strictly stationary but not
weakly stationary.

2.2 Difference Equations

Given the first-order difference equation:

yt = ψ1yt−1 + ut, t = 0, 1, 2, . . . ,

recursive substitution yields

yt = ψt+1
1 y−1 + ψt

1u0 + ψt−1
1 u1 + · · · + ψ1ut−1 + ut.

Similarly,

yt+j = ψj+1
1 yt−1 + ψj

1ut + ψj−1
1 ut+1 + · · · + ψ1ut+j−1 + ut+j.

Define the impulse response (dynamic multiplier) of the future observation yt+j to the
effect of one unit change of ut as ∂yt+j/∂ut. In this case,

∂yt+j

∂ut

= ψj
1,

which depends only on j but not on t. A dynamic system is said to be stable if its impulse
response eventually vanishes as j tends to infinity; a dynamic system is explosive if its
impulse response diverges as j increases. Clearly, the first-order difference equation is
stable (explosive) when |ψ1| < 1 (|ψ1| > 1), and the impulse response converges to zero
(diverges) exponentially fast. Only when ψ1 = 1 will a given change of ut have a constant
effect on all future observations.

Consider now the p th-order difference equation:

yt = ψ1yt−1 + ψ2yt−2 + · · · + ψpyt−p + ut.
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2.2 Difference Equations 3

To determine whether a p th-order difference equation is stable or not, we write this
equation as a first-order vector difference equation:⎡⎢⎢⎢⎢⎢⎢⎢⎣

yt

yt−1

yt−2
...

yt−p+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

ηt

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ψ1 ψ2 · · · ψp−1 ψp

1 0 · · · 0 0
0 1 · · · 0 0
...

... · · · ...
...

0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

F

⎡⎢⎢⎢⎢⎢⎢⎢⎣

yt−1

yt−2

yt−3
...

yt−p

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

ηt−1

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ut

0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

νt

;

that is ηt = Fηt−1 + νt. Thus,

ηt+j = F j+1ηt−1 + F jνt + F j−1νt+1 + · · · + Fνt+j−1 + νt+j .

The impulse response of η is

∇νt
ηt+j = F j .

Let f t
mn denote the (m,n) th element of F t. It is straightforward to verify that

yt+j = f j+1
11 yt−1 + f j+1

12 yt−2 + · · · + f j+1
1p yt−p +

j∑
i=0

f i
11ut+j−i.

The impulse response of yt+j is thus

∂yt+j

∂ut

= f j
11,

the (1, 1) th element of F j.

Recall that the eigenvalues of F are the roots of its characteristic equation:

λp − ψ1λ
p−1 − · · · − ψp−1λ− ψp = 0,

and hence are also known as characteristic roots. For example, for a second-order differ-
ence equation,

F =

[
ψ1 ψ2

1 0

]
,

and its eigenvalues are the solutions to the characteristic equation:

det(F − λI2) = −(ψ1 − λ)λ− ψ2 = λ2 − ψ1λ− ψ2 = 0.

Specifically, these two roots are

λ1 =
ψ1 +

√
ψ2

1 + 4ψ2

2
, λ2 =

ψ1 −
√
ψ2

1 + 4ψ2

2
.
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2.3 Back-Shift Operator 4

An eigenvalue λ∗ = a+ bi is less than one in modulus if |λ∗| = (a2 + b2)1/2 < 1; that is,
λ∗ is inside the inside the unit circle on the complex plane. Suppose that all eigenvalues
of F are distinct. Then, F can be diagonalized by a nonsingular matrix C such that
C−1FC = Λ, where Λ is the diagonal matrix with all the eigenvalues of F on its main
diagonal. It follows that F j = CΛjC−1. When all the eigenvalues of F are less than one
in modulus (inside the unit circle), Λj (hence F j) converges to a zero matrix as j tends
to infinity so that the p th-order difference equation is stable. On the other hand, when
there is at least one eigenvalue greater than one in modulus, this eigenvalue eventually
dominates so that F j will explode. In this case, the p th-order difference equation is
explosive.

For a stable first-order difference equation, summing the impulse responses yields an
accumulated response (interim multiplier):

j∑
i=0

∂yt+j

∂ut+i

= ψj
1 + ψj−1

1 + · · · + ψ1 + 1.

Letting j tend to infinity, we have for |ψ1| < 1,

lim
j→∞

j∑
i=0

ψj−i
1 =

1
1 − ψ1

,

which represents the long-run effect (total multiplier) of a permanent change in u. This
is the total effect resulted from the changes of current and all subsequent innovations.
For a first-oder vector difference equation, the long-run effect of a permanent change of
ν is then

lim
j→∞

j∑
i=0

F j−i = (Ip − F )−1.

It can also be shown that the (1, 1) th element of (Ip − F )−1 is

1
1 − ψ1 − · · · − ψp

,

which is the long-run effect of a permanent change of u in a stable p th-oder difference
equation; see Hamilton (1994) for details.

2.3 Back-Shift Operator

The back-shift operator B applied to a time series yt is defined as Byt = yt−1. We also
write B2yt = B(Byt) = yt−2, B3yt = B(B2yt) = yt−3, and so on. Applying this operator
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2.3 Back-Shift Operator 5

to the constant c, we have B(c) = c. It is easily seen that the back-shift operator has the
following linear properties: for constants c and d and two time series yt and zt,

B(cyt + dzt) = c(Byt) + d(Bzt) = cyt−1 + dzt−1.

This operator is convenient for representing and manipulating time series.

Using the back-shift operator we can write the first-order difference equation as

yt = ψ1Byt + ut, or (1 − ψ1B)yt = ut.

By pre-multiplying both sides of this equation by (1 +ψ1B+ψ2
1B2 + · · ·+ψt

1Bt) we have

(1 + ψ1B + ψ2
1B2 + · · · + ψt

1Bt)ut

= (1 + ψ1B + ψ2
1B2 + · · · + ψt

1Bt)(1 − ψ1B)yt

= (1 − ψt+1
1 Bt+1)yt.

Then provided that y−1 is finite and |ψ1| < 1,

(1 + ψ1B + ψ2
1B2 + · · · + ψt

1Bt)(1 − ψ1B)yt ≈ yt,

when t is large. This suggests that when |ψ1| < 1,

lim
t→∞(1 + ψ1B + ψ2

1B2 + · · · + ψt
1Bt)(1 − ψ1B) = I,

the identity operator. We may then define the inverse of (1 − ψ1B) as

(1 − ψ1B)−1 = lim
t→∞(1 + ψ1B + ψ2

1B2 + · · · + ψt
1Bt).

The inverse of other polynomials in B can be defined in a similar way.

Consider again a second-order difference equation expressed in terms of the back-shift
operator:

(1 − ψ1B − ψ2B2)yt = ut.

We know that this equation is stable if all the roots of λ2−ψ1λ−ψ2 = 0 are inside the unit
circle. Letting λ1 and λ2 denote the characteristic roots, the characteristic polynomial
can be factored as

λ2 − ψ1λ− ψ2 = (λ− λ1)(λ− λ2).

Now, setting λ = z−1 and multiplying both sides by z2 yield a polynomial in z:

(1 − ψ1z − ψ2z
2) = (1 − λ1z)(1 − λ2z),
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6

which has roots: z1 = 1/λ1 and z2 = 1/λ2. This shows that the second-order difference
equation is stable if all the roots of (1 − ψ1z − ψ2z

2) = 0 are outside the unit circle.
As the polynomial in z corresponds to the polynomial in B for this difference equation,
the condition that all the characteristic roots are inside the unit circle is equivalent
to requiring that all the roots of the polynomial in B are outside the unit circle. More
generally, a p th-order difference equation is stable if all the roots of 1−ψ1z−. . .−ψpz

p = 0
are outside the unit circle.

3 Stationary and Invertible ARMA Processes

In this section, we consider processes {yt} that are generated by a white noise {εt}
which has mean zero and variance σ2

ε . While yt are observed random variables, εt are
unobservable and usually referred to as “innovations” or “random shocks.”

3.1 Moving Average Processes

The process {yt} is said to be a moving average (MA) process if it can be expressed as

yt = µ+ Π(B)εt,

where µ is a real number, and Π(B) is a polynomial in B. For example, when Π(B) =
π0 − π1B, {yt} is an MA process of order one, also known as an MA(1) process. It is
typical to set π0 = 1 so that an MA(1) process is

yt = µ+ εt − π1εt−1.

For this MA(1) process, we have IE(yt) = µ and the autocovariances:

γ0 = IE[(εt − π1εt−1)
2] = (1 + π2

1)σ
2
ε ,

γ1 = IE[(εt − π1εt−1)(εt−1 − π1εt−2)] = −π1σ
2
ε ,

γj = 0, j = 2, 3, . . . .

Hence, the autocorrelations are ρ1 = −π1/(1+π2
1) and ρj = 0 for j = 2, 3, . . .. Note that

this series is weakly stationary regardless of the value of π.

In Figure 1 we plot a white noise series and the time paths of three MA(1) processes
with π1 = 0.2, 0.5, 0.8. It can be seen that these paths are very ragged, and their patterns
are similar. When π1 gets larger, the resulting process has slightly larger first-order
autocorrelation, and its time path is less “choppy”.

When Π(B) = 1 − π1B − π2B2 − · · · − πqBq, we have an MA process of order q, also
known as an MA(q) process,

yt = µ+ εt − π1εt−1 − π2εt−2 − · · · − πqεt−q.
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3.1 Moving Average Processes 7

Figure 1: White noise (upper left) and MA processes with π1 = 0.2 (upper right), 0.5
(lower left) and 0.8 (lower right).

In this case, IE(yt) = µ, and

γ0 = (1 + π2
1 + · · · + π2

q)σ
2
ε ,

γ1 = (−π1 + π1π2 + π2π3 + · · · + πq−1πq)σ
2
ε ,

γ2 = (−π2 + π1π3 + π2π4 + · · · + πq−2πq)σ
2
ε ,

...

γq = −πqσ
2
ε ,

γj = 0, j = q + 1, q + 2, . . .

More concisely, for j = 1, 2, . . .,

γj =

(
q−j∑
k=1

πkπk+j − πj

)
σ2

ε ,

with πj = 0 if j > q. Also, ρj = 0 for j = q + 1, q + 2, . . .. Note that an MA(q) process
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3.2 Autoregressive Processes 8

has only a “fixed” memory for q periods, in the sense that two elements of this series
become uncorrelated when they are more than q periods apart. An MA(q) process is also
weakly stationary regardless of the values of its MA coefficients.

By letting q tend to infinity, we have an MA(∞) process:

yt = µ+ εt −
∞∑

j=1

πjεt−j ,

which has IE(yt) = µ and

γj =

( ∞∑
k=1

πkπk+j − πj

)
σ2

ε , j = 0, 1, 2, . . .

Clearly, γ0 is well defined provided that
∑∞

j=0 π
2
j < ∞, i.e., πj are square summable.

When πj are square summable, we have from the Cauchy-Schwartz inequality,

∞∑
k=0

πkπk+j ≤
( ∞∑

k=0

π2
k

)1/2( ∞∑
k=0

π2
k+j

)1/2

<∞,

so that all the autocovariances are also well defined. This shows that an MA(∞) process
is weakly stationary provided that its MA coefficients πj are square summable.

3.2 Autoregressive Processes

An autoregressive (AR) process is such that

Ψ(B)yt = c+ εt,

where c is a real number, {εt} is again a white noise with mean zero and variance σ2
ε ,

and Ψ(B) is a polynomial in B. When Ψ(B) is of order p, this is an AR process of order
p, also known as an AR(p) process.

Consider the AR(1) process with Ψ(B) = 1 − ψ1B:

yt = c+ ψ1yt−1 + εt.

From the discussion of the first-order difference equation we know that when |ψ1| ≥ 1,
the effect of εt on yt+j does not die out when j increases, and hence yt cannot be weakly
stationary. To ensure weak stationarity, an AR process is required to have all the roots
of Ψ(z) = 0 outside the unit circle. For an AR(1) process, this condition is equivalent to
|ψ1| < 1. Note that (1− ψ1B)−1 = (1 + ψ1B + ψ2

1B2 + · · · ). When |ψ1| < 1, we can then
write

yt = (1 − ψ1B)−1(c+ εt)

= (1 + ψ1 + ψ2
1 + · · · )c+ (1 + ψ1B + ψ2

1B2 + · · · )εt
= c/(1 − ψ1) + (1 + ψ1B + ψ2

1B2 + · · · )εt,
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3.2 Autoregressive Processes 9

where 1/(1 − ψ1) is just Ψ(1)−1. This shows that a stationary AR(1) process has an
MA(∞) representation with square summable MA coefficients.

It is now easy to see that IE(yt) = c/(1 − ψ1),

γ0 = (1 + ψ2
1 + ψ4

1 + · · · )σ2
ε = σ2

ε/(1 − ψ2
1),

γ1 = (ψ1 + ψ3
1 + ψ5

1 + · · · )σ2
ε = ψ1[σ

2
ε/(1 − ψ2

1)],

γ2 = (ψ2
1 + ψ4

1 + ψ6
1 + · · · )σ2

ε = ψ2
1 [σ

2
ε/(1 − ψ2

1)],

...

More concisely,

γj = ψj
1

σ2
ε

1 − ψ2
1

= ψj
1γ0, j = 0, 1, 2, . . . ,

so that ρj = ψj
1. In other words, the autocorrelations (memory) of a weakly stationary

AR(1) process dies out exponentially fast.

An alternative approach to deriving the moments of an AR(1) process is as follows.
Given that {yt} is weakly stationary, we can write

µ = IE(yt) = c+ ψ1 IE(yt−1) = c+ ψ1µ,

so that µ = c/(1 − ψ1). Hence,

(yt − µ) = ψ1(yt−1 − µ) + εt,

i.e., the process in terms of its deviations from the mean has the same AR structure. As

IE(εtyt−j) =

{
σ2

ε , j = 0,
0, j = 1, 2, . . . ,

the autocovariances are

γj = IE[(yt − µ)(yt−j − µ)] = ψ1 IE[(yt−1 − µ)(yt−j − µ)] = ψ1γj−1, j = 1, 2, . . . ,

for j = 1, 2, . . ., with

γ0 = IE[(yt − µ)2] = ψ2
1 IE[(yt−1 − µ)2] + σ2

ε = ψ2
1γ0 + σ2

ε . = σ2
ε/(1 − ψ2

1).

These results are precisely what we obtained earlier. Hence, the autocovariances and
autocorrelations of an AR(1) process have the same AR(1) structure.

In Figure 2 we plot a white noise series and the time paths of three AR processes
with ψ1 = 0.2, 0.5, 0.8. It can be seen that as ψ1 increases, the process has stronger
autocorrelations through time, and the resulting time path becomes smoother.
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3.2 Autoregressive Processes 10

Figure 2: White noise (upper left) and AR processes with ψ1 = 0.2 (upper right), 0.5
(lower left) and 0.8 (lower right).

The previous results extend straightforwardly to the AR(p) process with the polyno-
mial Ψ(B) = 1 − ψ1B − ψ2B2 − · · · − ψpBp:

yt = c+ ψ1yt−1 + ψ2yt−2 + · · · + ψpyt−p + εt.

This AR(p) process is weakly stationary if all the roots of Ψ(z) = 0 are outside the unit
circle. A weakly stationary AR(p) process also has an MA(∞) representation:

yt = Ψ(1)−1c+ Ψ(B)−1εt.

In this case, µ = Ψ(1)−1c = c/(1−ψ1 −ψ2 − · · · −ψp), and the autocovariances have the
same AR(p) structure:

γj = ψ1γj−1 + ψ2γj−2 + · · · + ψpγj−p, j = 1, 2, . . . ,

and γ0 = ψ1γ1 + ψ2γ2 + · · · + ψpγp + σ2
ε . For autocorrelations, we have

ρj = ψ1ρj−1 + ψ2ρj−2 + · · · + ψpρj−p, j = 1, 2, . . .

c© Chung-Ming Kuan, 2005



3.3 Autoregressive Moving Average Processes 11

These equations are known as the Yule-Walker equations which form a p th-order differ-
ence equation in ρj . This system is also stable because it has the same AR(p) structure
as yt. Given that the initial value of this difference equation is ρ0 = 1, ρj must converge
to zero exponentially fast as j tends to infinity.

3.3 Autoregressive Moving Average Processes

Combining an AR(p) process and an MA(q) process we obtain a mixed ARMA(p, q)
process:

Ψ(B)yt = c+ Π(B)εt,

where Ψ(B) is a p th-order polynomial in B and Π(B) is a q th-order polynomial in B. If
these two polynomials have a common factor, these factors would cancel out, resulting in
an ARMA process with lower orders. Thus, it is always assumed that the AR and MA
polynomials of an ARMA(p, q) process do not have any common factor.

When all the roots of Ψ(z) = 0 are outside the unit circle, we can let Φ(B) =
Ψ(B)−1Π(B) and write

yt = Ψ(1)−1c+ Φ(B)εt = Ψ(1)−1c+
∞∑

j=0

φjεt−j ,

with φ0 = 1. This process has mean µ = c/(1−ψ1 −· · ·−ψp). In terms of the deviations
from the mean, we have the ARMA process

Ψ(B)(yt − µ) = Π(B)εt.

To compute the autocovariances, we note that

Ψ(B)(yt − µ)(yt−j − µ) = Π(B)εt(yt−j − µ).

We do not state explicitly the autocovariances γj for j ≤ q because they are quite
complicated; readers are referred to other textbooks for details. Yet we note that for
j = q + 1, q + 2, . . ., IE[Π(B)εt(yt−j − µ)] = 0, so that

γj = ψ1γj−1 + · · · + ψpγj−p.

That is, the autocovariances for j > q obey the AR(p) structure.

3.4 Invertibility of MA Processes

The MA process yt = µ+ Π(B)εt is said to be invertible if all the roots of Π(z) = 0 are
outside the unit circle. Similarly, the ARMA process,

Ψ(B)yt = c+ Π(B)εt,
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is invertible if all the roots of Π(z) = 0 are outside the unit circle.

It is easy to see that the MA(1) process yt = µ+(1−π1B)εt with |π1| < 1 is invertible.
An invertible MA(1) process has the following AR(∞) representation:

(1 − π1B)−1(yt − µ) =
∞∑

j=0

πj
1Bj(yt − µ) = εt.

This expression shows that for invertible MA(1) processes, each innovation εt can be
expressed as a weighted sum of current and all past observations yt. More generally, each
innovation εt of MA(q) processes can also be expressed as a weighted sum of current and
all past yt.

On the other hand, an MA(1) process with |π1| > 1 is non-invertible. When |π1| > 1,
(1 + π1B + π2

1B2 + · · · ) can not be defined as (1 − π1B)−1. Consider the polynomial of
the forward-shift operator B−1, where B−1 is such that B−1yt = yt+1 and B−1B = I.
Then for the polynomial (1 − π−1

1 B−1) with root inside the unit circle, its inverse is well
defined as

(1 − π−1
1 B−1)−1 = (1 + π−1

1 B−1 + π−2
1 B−2 + · · · ).

Straightforward calculation shows that

−π−1
1 B−1(1 + π−1

1 B−1 + π−2
1 B−2 + · · · )(1 − π1B) = I.

This suggests that for |π1| > 1, we can define

(1 − π1B)−1 = −(1 − π−1
1 B−1

)−1(
π−1

1 B−1
)
.

It follows that a non-invertible MA(1) process can be represented as

−π−1
1 B−1(1 + π−1

1 B−1 + π−2
1 B−2 + · · · )(yt − µ) = εt,

which is a weighted sum of all future yt. This result also extends to non-invertible
MA(q) processes so that each innovation εt depends on all future observations. As far as
forecasting is concerned, it make practical sense to consider invertible processes whose
innovations depend on what happen in the past. This is a reason why researchers usually
confine themselves with stationary and invertible ARMA processes.

3.5 Vector AR processes

In many empirical studies, we usually encounter multiple time series and thus would like
to analyze not only the dynamic pattern of a particular time series but also the dynamic
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3.5 Vector AR processes 13

relationships across different time series. In this section we will extend univariate AR
processes discussed in Section 3.2 to vector AR (VAR) processes.

Let {εt} be a d-dimensional vector time series with mean zero, the variance-covariance
matrix Σε, and the autocovariances cov(εt, εs) = o for all t �= s. Then, {yt} is a VAR
process when

Ψ(B)yt = c + εt,

where c is a vector of constants, and Ψ(B) = Id−Ψ1B−Ψ2B2−. . . is a matrix polynomial
in B with Ψj a d× d matrix. This is a VAR(p) process if the order of Ψ(B) is p.

When Ψ(B) = Id − Ψ1B, we have a VAR(1) process. Similar as before, define
(Id − Ψ1B)−1 as Id + Ψ1B + Ψ2

1B2 + · · · . The MA(∞) representation of this process is
then

yt = (I − Ψ1)
−1c +

∞∑
j=0

Ψj
1εt−j .

It is easy to see that the effect of εt−j on yt eventually dies out provided that all the
characteristic roots of Ψ1 are less than one in modulus (inside the unit circle). This
condition also defines weak stationarity of yt. The VAR(p) process Ψ(B)yt = c + εt can
also be expressed as a pd-dimensional VAR(1) process:⎡⎢⎢⎢⎢⎢⎢⎢⎣

yt

yt−1

yt−2
...

yt−p+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Y t

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c

o

o
...
o

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸︷︷︸

C

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ψ1 Ψ2 · · · Ψp−1 Ψp

Id o · · · o o

o Id · · · o o
...

... · · · ...
...

o o · · · Id o

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

F

⎡⎢⎢⎢⎢⎢⎢⎢⎣

yt−1

yt−2

yt−3
...

yt−p

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Y t−1

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

εt

o

o
...
o

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Et

;

that is, Y t = C + F Y t−1 + Et. It follows that the VAR(p) process is stationary if all
the characteristic roots of F are inside the unit circle.

The properties of VAR processes are similar to those of univariate AR processes. For
the VAR(1) process yt = c + Ψ1yt−1 + εt, we have IE(yt) = (Id − Ψ1)

−1c, and the
autocovariances are

Γj = cov(yt,yt−j) =
∞∑
i=0

Ψi+j
1 ΣεΨ

i′
1 , j = 0, 1, 2, . . . ;

in particular, Γ0 = var(yt) =
∑∞

i=0 Ψi
1ΣεΨ

i′
1 . Note that Γj = Γ′

−j . For Γ0, its k th diag-
onal element is γkk,0, the variance of yk,t, and its (h, k) th element is γhk,0, the contempo-
raneous covariance of yh,t and yk,t. More concisely, we have the multivariate Yule-Walker
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3.6 Impulse Responses and Error Variance Decomposition 14

equations:

Γj = Ψ1Γj−1, j = 1, 2, . . . ,

and Γ0 = Ψ1Γ
′
1 + Σε. Let D denote the diagonal matrix with the k th diagonal element

γkk,0. The autocorrelations of yt are

Rj = D−1/2ΓjD
−1/2, j = 0, 1, 2, . . .

For the VAR(p) process Ψ(B)yt = c + εt, IE(yt) = Ψ(1)−1c, and the multivariate Yule-
Walker equations of autocovariances now read

Γj = Ψ1Γj−1 + Ψ2Γj−2 + · · · + ΨpΓj−p, j = 1, 2, . . . ,

and Γ0 = Ψ1Γ
′
1 + Ψ2Γ

′
2 + · · · + ΨpΓ

′
p + Σε.

3.6 Impulse Responses and Error Variance Decomposition

Characterizing the impulse responses of a VAR process is more involved. Consider the
VAR(p) process Ψ(B)yt = c + εt and write its MA representation as

yt = Φ(1)c + Φ(B)εt = Φ(1)c +
∞∑

j=0

Φj εt−j ,

where the polynomial Φ(B) = Ψ(B)−1 with Φ0 = Id. The impulse response of yt to one
unit shock to the i th equation, εi,t−j , is the i th column of Φj, which can be expressed
as Φjei, where ei is the i th Cartesian unit vector. In particular, the impulse response
of the VAR(1) process yt to εi,t−j is the i th column of Ψj

1. The accumulated response
over n periods is

Anei =

⎛⎝ n∑
j=0

Φj

⎞⎠ ei,

and the long-run effect is A∞ei, where A∞ = Φ(1) = Ψ(1)−1.

As Σε is not necessarily a diagonal matrix, one unit shock of εi,t−j may be accom-
panied by the shock of other innovations. Merely focusing on the shock of a particular
element of εt−j and ignoring other shocks may not give a complete description of the
dynamic effect of innovations. To circumvent this problem, consider the Cholesky de-
composition Σε = LL′, where L is a lower triangular matrix with non-zero diagonal
elements, and the transformed innovations vt = L−1εt. As var(vt) = L−1ΣεL

−1′ = Id,
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3.6 Impulse Responses and Error Variance Decomposition 15

the elements of vt are uncorrelated random variables and will be referred to as “orthog-
onalized innovations.” The MA representation of the VAR(p) process yt in terms of vt

is

yt = Φ(1)c +
∞∑

j=0

ΦjL vt−j = Φ(1)c +
∞∑

j=0

Θj vt−j ,

where Θj = ΦjL are transformed coefficient matrices. The orthogonalized impulse re-
sponse is then defined as the impulse response to one unit shock of the orthogonalized
innovations. Thus, the orthogonalized impulse response to vt−j is the coefficient matrix
Θj ; In particular, the i th column of Θj , Θjei, is the impulse response of yt to one unit
shock of vi,t−j . Note that there is no “scaling” problem here because var(vt) is an iden-
tity matrix so that one unit shock is equivalent to the shock of one standard deviation.
A drawback of the orthogonalized impulse response function is that it depends on the
ordering of the elements of yt. To see this, observe that, as Φ0 = Id, the immediate
response to vt is Θ0 = L. Thus, the immediate effect on y1,t is resulted from its own (or-
thogonalied) innovation v1,t, y2,t is immediately affected by the first two (orthogonalized)
innovations: v1,t and v2,t, and so on. As such, changing the ordering of the elements of
yt results in different impulse responses. That is, the orthogonalized impulse responses
are not uniquely defined.

Let F t denote the information set up to time t. Pesaran and Shin (1998) define the
generalized impulse response of yt to the shock εi,t−j = δ as

IE
(
yt | εi,t−j = δ,F t−j−1

)− IE
(
yt | F t−j−1

)
.

From the MA representation it is easily seen that

IE
(
yt | εi,t−j = δ,F t−j−1

)
= Φ(1)c +

∞∑
k=j+1

Φkεt−k + Φj IE(εt−j | εi,t−j = δ).

This differs from IE
(
yt | F t−j−1

)
by the last term Φj IE(εt−j | εi,t−j = δ), which is the

generalized impulse response to the shock εi,t−j = δ. When εt has a multivariate normal
distribution, it is well known that

IE(εk,t | εi,t = δ) =
σki

σii

δ,

where σki is the (k, i) th element of Σε. Using this result we immediately obtain

IE(εt | εi,t = δ) = Σεeiδ/σii,

so that the generalized impulse response is

Φj IE(εt−j | εi,t−j = δ) = ΦjΣεeiδ/σii.
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3.6 Impulse Responses and Error Variance Decomposition 16

Setting δ = σ
1/2
ii , a shock of one standard deviation to the i th equation, the generalized

impulse response of yt is ΦjΣεei/σ
1/2
ii . It is clear that this impulse response does not

depend on the ordering of the elements of yt but requires the normality assumption on
εt.

When Σε is diagonal, the Cholesky decomposition is based on L = Σ1/2
ε which is

also diagonal. In this case, Σεei = σiiei and Σ1/2
ε ei = σ

1/2
ii ei. The generalized impulse

response then becomes

Φjσ
1/2
ii ei = ΦjΣ

1/2
ε ei = Θjei,

which is also the orthogonalized impulse response. It can also be shown that when Σε

is not diagonal, the two impulse responses coincide only for the shock entering the first
equation but not otherwise.

Recall that a VAR(p) process written in terms of the orthogonalized innovations vt

is yt = Φ(1)c +
∑∞

j=0 Θj vt−j. The optimal forecast of yt+h based on the information
set F t is

ŷt(h) := IE
(
yt+h | F t

)
= Φ(1)c +

∞∑
j=h

Θj vt+h−j .

The h-step forecast error is then yt+h − ŷt(h) =
∑h−1

j=0 Θj vt+h−j , with the i th element:

yi,t+h − ŷi,t(h) =
h−1∑
j=0

e′
iΘj vt+h−j =

h−1∑
j=0

d∑
k=1

θik,jvk,t+h−j.

As var(vt) = Id, the elements of vt are mutually uncorrelated as well as serially uncor-
related, the h-step forecast error variance of yi,t+h is defined as

IE
[
yi,t+h − ŷi,t(h)

]2 =
h−1∑
j=0

d∑
k=1

θ2
ik,j =

d∑
k=1

h−1∑
j=0

(e′
iΘjek)

2,

in which
∑h−1

j=0 (e′
iΘjek)2 is due to the contribution of the k th innovation. This error

variance can also be expressed in terms of the original coefficient matrices:

d∑
k=1

(e′
iΘjek)

2 = e′
iΘjΘ

′
jei = e′

iΦjΣεΦ
′
jei.

The proportion of the total forecast error variance that can be attributed to the k th

innovation is∑h−1
j=0 (e′

iΘjek)2∑h−1
j=0

∑d
k=1(e

′
iΘjek)2

=

∑h−1
j=0 (e′

iΘjek)2∑h−1
j=0 e′

iΦjΣεΦ
′
jei

,
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which is known as the orthogonalized forecast error variance decomposition. As these
ratios sum to one (over k), this decomposition enables us to determine the relative
importance of a particular (orthogonalized) innovation. Note that for different h, the
resulting forecast errors and their variance decompositions are also different. Pesaran
and Shin (1998) define the generalized forecast error variance decomposition as∑h−1

j=0 (e′
iΦjΣεek)

2/σii∑h−1
j=0 e′

iΦjΣεΦ
′
jei

,

yet these ratios do not sum to one. This decomposition. although does not depend on
the ordering of variables, can not be interpreted as a measure of relative importance of
innovations.

4 Box-Jenkins Approach

A fundamental result in the time series analysis is Wold’s decomposition which asserts
that any covariance-stationary process can be represented as the sum of two components:
an MA(∞) component and a linearly deterministic component; see e.g., Fuller (1996, pp.
96–98). Fitting a model with infinitely many parameters is practically intractable. The
Box-Jenkins approach is designed to find a model with a parsimonious ARMA structure
(i.e., a small number of parameters) which can well represent the MA(∞) component.

The standard Box-Jenkins approach consists of the following steps:

1. Transform the original time series to a covariance stationary series.

2. Identify a preliminary ARMA(p, q) model for the transformed series.

3. Estimate unknown parameters in this preliminary model.

4. Conduct diagnostic tests to check model adequacy and re-estimate an ARMA model
if the preliminary model is found inappropriate.

These steps may be repeated until a suitable model is found.

4.1 Differencing

When a series exhibit trending behavior, the first step of the Box-Jenkins approach
amounts to “de-trending” this series. For example, one may transform the original series
{ηt} by taking the first difference:

yt = ηt − ηt−1 = (1 − B)ηt.
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4.1 Differencing 18

Figure 3: The time paths of a Gaussian random walk.

When yt are obtained from differencing once, ηt are in fact cumulative sums of yt. In
other words, ηt are integrated yt. If the differenced series {yt} is an ARMA process,
{ηt} is known as an ARIMA (autoregressive, integrated, moving average) process. When
yt are i.i.d. random variables and hence form an ARMA(0, 0) process, then {ηt} is an
ARIMA(0, 1, 0) process, also known as a random walk. We plot two sample paths of a
Gaussian random walk in Figure 3, where one exhibits upward trending pattern and the
other has large swings. These paths are all relatively smooth and quite different from
those of stationary processes.

Suppose that (1 − B)ηt = yt and {yt} is a weakly stationary AR(1) process: yt =
ψ1yt−1 + εt. Then, {ηt} is also an ARMA(2, 0) process:

(1 − ψ1B)(1 − B)ηt = [1 − (1 + ψ1) + ψ1B2]ηt = εt,

but the AR polynomial Ψ(z) = 0 has a root on the unit circle. Such a root is also
known as a unit root. Similarly, when {yt} is a stationary ARMA(p, q) process, {ηt} is
an ARIMA(p, 1, q) process or an ARMA(p+ 1, q) process with an AR unit root. In what
follows, an ARIMA(p, 1, q) process is understood as the process whose first differenced
series is a stationary ARMA(p, q) process. An ARIMA(p, 1, q) process is also known as
an integrated process, or simply an I(1) process.

The data may be differenced several times. When yt are obtained by differencing ηt

twice:

yt = (ηt − ηt−1) − (ηt−1 − ηt−2) = (ηt − 2ηt−1 + ηt−2),

{ηt} is an ARIMA(p, 2, q) process or an I(2) process. More generally, an ARIMA(p, d, q)
process is an I(d) process, and it must be differenced d times to yield a stationary ARMA
representation.
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For quarterly data ηt, there may exist quarterly regularity (seasonal pattern). To
eliminate this pattern, it is common to conduct the following seasonal differencing:

yt = ηt − ηt−4 = (1 − B4)ηt.

Note that the polynomial (1 − z4) = 0 contains four unit roots because

(1 − z4) = (1 − z2)(1 + z2) = (1 − z)(1 + z)(1 + iz)(1 − iz),

where each unit root accounts for the behavior of ηt at different frequencies; we omit the
details. For monthly data, seasonal differencing is such that

yt = ηt − ηt−12 = (1 − B12)ηt.

For data at other frequencies, different seasonal differencing operators may be employed.

In practice, differencing is not the only way to eliminate trending or seasonal patterns.
For example, one may remove the deterministic time trend by regressing ηt on a simple
time trend variable t or on trends with different orders: t, t2, . . . , tp. It must be empha-
sized that the trending behavior of an I(1) process, usually known as a stochastic trend,
is quite different from a deterministic trend. For data exhibiting seasonality, one may
also eliminate seasonal patterns by regressing ηt on seasonal dummies or by estimating a
seasonal ARMA model. Which methods should be used depend on the properties of the
time series being studied.

4.2 Identification

Identifying a proper ARMA model is never an easy task; the original Box-Jenkins ap-
proach provides only a quick and easy way to determine a preliminary model. As comput-
ing at the present time is much easy, such identification procedures may not be necessary.

Recall that the autocorrelations ρj of an AR(p) process decay to zero exponentially
fast and that ρj of an MA(q) process has an abrupt cut-off at j = q such that ρj = 0 for
j > q. An important step in model identification is to examine the sample autocorrela-
tions:

ρ̂j = γ̂j/γ̂0,

where γ̂j =
∑T

t=j+1(yt − ȳ)(yt−j − ȳ)/T and where ȳ =
∑T

t=1 yt/T . Under regularity
conditions,1

ρ̂j
IP−→ γj/γ0 = ρj ,

1For an MA(∞) process with absolute summable MA coefficients, it is typically required the innova-

tions εt to have finite 4 th moment when they are i.i.d. random variables or to have uniformly bounded

6 th moment when they are independent (but not necessarily identically distributed) random variables.

See e.g., Brockwell and Davis (1987, pp. 214–215).
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and
√
T ρ̂j are asymptotically normally distributed. Thus, the plot of ρ̂j against j provides

a rough diagnostic check of the property of the underlying process. When ρ̂j of a time
series become close to zero from a particular lag, say q, this series may be an MA(q)
process; when ρ̂j exhibit an exponentially decaying (damped) pattern, this series may be
an AR process.

A well known result of sample autocorrelations is that, for those j such that ρj ≈ 0,
the variances of the corresponding sample autocorrelations are:

var(ρ̂j) ≈
1
T

∞∑
i=−∞

ρ2
i ;

see e.g., Fuller (1996, p. 318). In particular, for an MA(q) process,

var(ρ̂j) ≈
1
T

(
1 + 2ρ2

1 + · · · + 2ρ2
q

)
, j = q + 1, q + 2, . . . .

This result, together with the asymptotic normality of
√
T ρ̂j , suggest that one may

construct the 95% confidence interval of ρ̂j using

±1.96√
T

(
1 + 2ρ̂2

1 + · · · + 2ρ̂2
q

)1/2;

replacing 1.96 with 1.645 in the bounds above yields the 90% confidence interval. The ρ̂j

falling within this interval is then considered not significantly different from zero. Note
also that for a white noise,

var(ρ̂j) ≈ 1/T, j = 1, 2, . . . ,

so that ±1.96/
√
T (±1.645/

√
T ) form the 95% (90%) confidence interval.

Remarks:

1. For convenience, many existing programs simply use ±1.96/
√
T (or ±2/

√
T ) as the

95% confidence interval. From the discussion above one can see that these bounds
are in fact appropriate only for checking the autocorrelations of a white noise.

2. The confidence interval obtained above is for checking a single sample autocorre-
lation. When m sample autocorrelations are examined jointly, such an interval
is not appropriate because it results in a significance level much larger than 5%
(or 10%). To perform a joint test, a confidence region taking into account the
variance-covariance structure of these sample autocorrelations is needed.
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In addition to checking autocorrelations, the model identification in the Box-Jenkins
approach also evaluates the the partial autocorrelation function. The partial autocorre-
lation αj of a covariance-stationary time series yt is defined as

α1 = corr(yt, yt−1) = ρ1,

αm = corr
[
yt − M(yt | Yt−1

t−m+1), yt−m − M(yt−m | Yt−1
t−m+1)

]
, m = 2, 3, . . . ,

where M(yt | Yt−1
t−m+1) is the linear projection of yt on the space of 1, yt−1, . . . , yt−m+1, in

the sense that it minimizes the mean squared error:

IE
[
yt − (a0 + a1yt−1 + · · · + am−1yt−m+1)

]2
.

Thus, the m th partial autocorrelation is simply the correlation between yt and yt−m,
after the effects of yt−1, . . . , yt−m+1 are excluded. By the Frisch-Waugh-Lovell Theorem,
the partial correlation coefficient αm is also the last coefficient of the linear projection of
yt on 1, yt−1, . . . , yt−m.

Suppose that yt is an AR(p) process. Then, yt are correlated with yt−m for m ≤ p,
so that the last coefficient of the linear projection of yt on 1, yt−1, . . . , yt−m should be
different from zero; otherwise, yt are uncorrelated with yt−m, and the last coefficient of
the linear projection above must be zero. That is, the partial autocorrelations of an
AR(p) process exhibit an abrupt cut-off at the lag p. On the other hand, all the partial
autocorrelations αm of an invertible MA process are non-zero because this process has an
AR(∞) representation. Similar to autocorrelations, αm also approaches zero exponen-
tially fast when m becomes large. In practice, the first m sample partial autocorrelations
α̂i are the coefficient estimates of ai,i of the following regressions:

yt = a1,0 + a1,1yt−1 + et,

yt = a2,0 + a2,1yt−1 + a2,2yt−2 + et,

yt = a3,0 + a3,1yt−1 + a3,2yt−2 + a3,3yt−3 + et,

...

yt = am,0 + am,1yt−1 + am,2yt−2 + · · · + am,myt−m + et.

The plot of α̂i against i thus provides a rough diagnostic check of the underlying process
and may be used to determine the order of an AR process. It can also be shown that

√
T var(α̂i)

D−→ N (0, 1). m = p+ 1, p + 2, . . . ;

see e.g., Brockwell and Davis (1987, p. 234). To determine whether α̂i is sufficiently
close to zero, one may construct a confidence interval (±1.96/

√
T or ±1.645/

√
T ) for α̂i,

analogous to that for sample autocorrelations.
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For a stationary and invertible ARMA(p, q) process, both autocorrelations and partial
autocorrelations gradually decay to zero and do not have abrupt cut-off points. Identi-
fying ARMA orders using these functions is therefore difficult and somewhat arbitrary.

4.3 Model Estimation

When a preliminary ARMA(p, q) model Ψ(B)yt = c+Π(B)εt is chosen, it remains to esti-
mate the unknown parameters, including the AR parameters ψ1, . . . , ψp, MA parameters
π1, . . . , πq, the constant term c, and the variance σ2

ε . Let θ denote the vector of these
unknown parameters. A typical estimation method is the method of qausi-maximum like-
lihood; the resulting estimator of θ is known as the quasi-maximum likelihood estimator
(QMLE).

We first discuss the estimation of the AR(p) model: Ψ(B)yt = c+ εt. To implement
the method of quasi-maximum likelihood, it is typical to postulate a condition density
function f(yt | Y t−1;θ), where Y t−1 = (y1, y2, . . . , yt−1)′. Corresponding to this condi-
tional density, let f(Y t;θ) denote the joint density function of Y t. In what follows, we
may omit θ in these density functions so as to simplify notations. Given these densities,
the joint likelihood function is

LT (Y T ;θ) = f(yT | Y T−1)f(Y t−1)

= f(yT | Y T−1)f(yT−1 | Y T−2)f(Y t−2)

...

=
( T∏

j=p+1

f(yj | Y j−1)
)
f(Y p).

To obtain the QMLE of θ, one maximizes the average of the log-likelihood function:

LT (Y T ;θ) =
1
T

lnLT (Y T ;θ) =
1
T

(
ln f(Y p) +

T∑
j=p+1

ln f(yj | Y j−1)
)
.

Note that the postulated density functions need not be the true conditional densities.
This is why the resulting estimators are referred to as QMLEs, rather than MLEs.

Assuming that the conditional distributions of yt given Y t−1 are normal, we have

f(yt | Y t−1;θ) =
1√
2πσ2

ε

exp

(
−(yt − c− ψ1yt−1 − · · · − ψpyt−p)

2

2σ2
ε

)
.

Taking the initial y1, . . . , yp as given, we can ignore the joint density f(Y p;θ) and max-
imize

Lc
T (Y T ;θ) =

1
T

T∑
j=p+1

ln f(yj | Y j−1; θ).
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It is now easy to see that, conditional on the initial values y1, . . . , yp, the resulting QMLEs
of c, ψ1, . . . , ψp are nothing but the OLS estimators, and the QMLE of σ2

ε is

σ̂2 =
1
T

T∑
j=p+1

ê2t ,

where êt are the OLS residuals. Such estimators are also known as the conditional QMLEs
of the AR(p) model.

When f(Y p;θ) is taken into account, we have under the normality assumption,

f(Y p;θ) =(2πσ2
e )−p/2 det(V p)

−1/2

exp
[−1
2σ2

ε

(
Y p − c

1 − ψ1 − · · · − ψp

�
)′

V −1
p

(
Y p − c

1 − ψ1 − · · · − ψp

�
)]
,

where � is the p-dimensional vector of ones,

σ2
εV p =

⎛⎜⎜⎜⎜⎝
γ0 γ1 · · · γp−1

γ1 γ0 · · · γp−2
...

...
. . .

...
γp−1 γp−2 · · · γ0

⎞⎟⎟⎟⎟⎠ ,

and γj are the autocovariances of the AR(p) process. The log-likelihood function is now
a complex nonlinear function in unknown parameters and must be solved numerically.
The resulting QMLEs are also know as the the exact QMLEs.

The estimation of MA and ARMA models is more involved because the innovations
εt are not observable and can only be computed recursively. We consider the MA(1)
model: yt = µ+ εt − π1εt−1. Given ε0 = 0, εt can be obtained recursively as

εt = yt − µ+ π1εt−1,

so that they depend only on observed yt and unknown parameters. That is, ε1 = y1 −µ,
ε2 = y2 − µ+ π1(y1 − µ), and so on. Under the normality assumption,

f(yt | Y t−1, ε0 = 0;θ) = f(yt|ut−1, ε0 = 0;θ)

=
1√
2πσ2

ε

exp
(−(yt − µ+ π1εt−1)

2

2σ2
ε

)
,

and the quasi-log-likelihood function conditional on ε0 = 0 is s

L(Y T | ε0 = 0;θ) = −1
2

log(2π) − 1
2

log(σ2
ε) −

1
T

T∑
t=1

(yt − µ+ π1εt−1)2

2σ2
ε

.
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It is clear that plugging the recursive formulae of εt results in a highly nonlinear function
in parameters. Thus, this likelihood function must be maximized using a numerical
algorithm; the resulting solution is the conditional QMLE of the MA(1) model.

Similarly, the conditional QMLE of the MA(q) model is obtained from maximizing
the likelihood function conditional on ε0 = ε−1 = · · · = ε−q+1 = 0, and εt are computed
via the following recursions:

εt = yt − µ+ π1εt−1 + · · · + πqεt−q.

We omit the details. To compute the conditional QMLE of the ARMA(p,q), we need
p initial values of y0, y−1, . . . , y−p+1 and q initial values of ε0, ε−1, . . . , ε−q+1, and εt are
computed via

εt = yt − c− ψ1yt−1 − · · · − ψpyt−p + π1εt−1 + · · · + πqεt−q.

It is typical to set the initial ε’s to zero, as in the case for MA models, and set the initial
y’s to the estimates of the expected value c/(1 − ψ1 − · · · − ψp). For more details of the
conditional QMLE and exact QMLE of ARMA(p, q) models, we refer to Hamilton (1994).

4.4 Asymptotic Properties of the QMLE

Recall that the conditional QMLE and the exact QMLE of ARMA models handle initial
values in different ways. If the underlying process is indeed weakly stationary, the effect
of initial values would eventually die out. This suggest that these two estimators should
have the same asymptotic properties, yet their finite-sample properties may be quite
different. In this section, we simply use θ̃T to denote the (conditional or exact) QMLE
of θ and sketch its asymptotic properties.

The QMLE θ̃T maximizes the average of the quasi-log-likelihood function and solves
the average of the score ∇LT (Y T ; θ̃T ) = o. Let θ∗ denote the unknown parameter vector
that solves

∇ IE
[LT (Y T ;θ)

]
= o.

Also let

HT (θ) = IE[∇2LT (Y T ;θ)],

BT (θ) = var(
√
T∇LT (Y T ;θ))

Under suitable regularity conditions that ensure a strong uniform law of large numbers
and a central limit theorem, θ̃T is strongly consistent for θ∗, and

BT (θ∗)−1/2HT (θ∗)
√
T (θ̃T − θ∗) D−→ N (o, I).

c© Chung-Ming Kuan, 2005



4.5 Diagnostic Checking 25

Letting CT (θ∗) = HT (θ∗)−1BT (θ∗)HT (θ∗)−1, we have

CT (θ∗)−1/2
√
T (θ̃T − θ∗) D−→ N (o, I).

When the model is correctly specified, the information matrix equality holds: HT (θ∗) +
BT (θ∗) = o. In this case, CT (θ∗) simplifies to

CT (θ∗) = −HT (Y T ;θ∗)−1 = BT (θ∗)−1,

so that

BT (θ∗)1/2
√
T (θ̃T − θ∗) = −HT (θ∗)1/2

√
T (θ̃T − θ∗) D−→ N (o, I).

Thus, the QMLE is asymptotically efficient in the sense that its asymptotic covariance
matrix CT (θ∗) reaches the Cramér-Rao lower bound asymptotically.

In the traditional time series analysis, the information matrix equality is taken for
granted. Thus, one only has to consistently estimate either HT (θ∗) or BT (θ∗). It is
straightforward to estimate HT (θ∗) using its sample counterpart: the Hessian matrix of
the quasi-log-likelihood function evaluated at θ̃T , viz., H̃T = ∇2LT (Y T ; θ̃T ). With this
estimator, we have

−H̃
1/2
T

√
T (θ̃T − θ∗) D−→ N (o, I);

this result is the foundation of likelihood-based tests for model parameters (e.g., tests of
parameter significance). Unfortunately, the information matrix equality need not hold in
practice. For example, this equality breaks down when an ARMA(p, q) model is estimated
but the data series in in fact an ARMA(p′, q′) process with p′ > p and/or q′ > q. That is,
the information matrix equality would not hold when important dynamic structures are
ignored in model specification. In this case, CT (θ∗) can not be simplified; both HT (θ∗)
and BT (θ∗) must be estimated to form a consistent estimator for CT (θ∗). In particular,
a Newey-West type estimator is usually needed to estimate BT (θ∗).

4.5 Diagnostic Checking

Based on the asymptotic normality result of the QMLE, one can easily test model param-
eters using the Wald, Lagrange Multiplier, and likelihood ratio tests. Other than these
tests, it is also typical to conduct diagnostic checks of the residual series of an estimated
ARMA model. An intuition of such diagnostic checks is that, when the estimated model
correctly captures the dynamics of yt, its residuals ẽt ought to be “clean” and behave
like a white noise.
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To test whether the residual series is close to a white noise, it is natural to check the
sample autocorrelations of ẽt:

ρ̂r
j =

T−j∑
t=1

(ẽt − ē)(ẽt+j − ē)∑T
t=1(ẽt − ē)2

,

where ē is the sample average of ARMA residuals. Note that the superscript r of ρ̂r
j is

used to signify that this sample autocorrelation is computed from residuals. A joint test
of m sample autocorrelations being zero is the so-called Box-Pierce test:

Qr
T = T

m∑
j=1

(
ρ̂r

j

)2
,

whose asymptotic null distribution is χ2(m − p − q). A modified version, known as the
Ljung-Box test, is

Q̃r
T = T (T + 2)

m∑
j=1

(
ρ̂r

j

)2
T − j

.

It is easily seen that the asymptotic behavior of Q̃r
T would be the same as Qr

T because the
scaling factors does not matter asymptotically. Thus, the asymptotic null distribution of
the Ljung-Box test is also χ2(m− p− q). We will discuss these two tests in more details
when we discuss the tests of the martingale difference property.

The structure of ARMA models may also be determined using model selection criteria.
Two leading choices of such criteria are the Akaike Information Criterion (AIC) and
Schwartz Information Criterion (SIC):

AIC = ln σ̃2
T +

2(p + q + 1)
T

,

SIC = ln σ̃2
T +

(p + q + 1) ln T
T

,

where σ̃2
T is the QMLE of σ2

ε . These two criteria are in effect the Gaussian log-likelihood
values penalized by model complexity (in terms of the number of model parameters).
The SIC is also known as the Bayesian Information Criterion (BIC). In practice, one
may estimate an array of ARMA models and choose the one with the smallest AIC (SIC)
as the “best” model. Observe that the SIC penalizes a model more heavily and usually
results in a simpler model in finite samples. Note that the SIC has the property of
“dimensional consistency,” in the sense that it is able to select the correct ARMA orders
when the sample is sufficiently large. Although the AIC is not dimensionally consistent,
this does not imply that the AIC is not useful. When a more complex model is chosen by
the AIC, it still includes the “correct” model as a special case. In this case, the QMLE
remains consistent, yet it may be less efficient than that of the correct model.
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5 Volatility Models

Volatilty is a crucial determinant of asset pricing. A model that can properly characterize
the volatility of asset returns is thus of paramount importance in the finance research.
There are some stylized facts about financial variables. First, financial time series usually
exhibit volatility clustering, in the sense that large (small) changes are followed by large
(small) changes, in either sign. Second, the number of outliers of these variables are
more than what a normal distribution can describe. This suggests that the marginal
distributions of these variables have thicker tails than a normal distribution. Moreover,
volatility asymmetry and changing volatility patterns are also quite common in many
financial time series. Researchers therefore try to construct volatility models that are
able to accommodate these features. In this section, we will present several leading
volatility models in the literature.

5.1 ARCH Models

The autoregressive conditional heteroskedasticity (ARCH) model introduced by Engle
(1982) was a first attempt in econometrics to capture volatility clustering in time series
data. In particular, Engle (1982) used conditional variance to characterize volatility and
postulate a dynamic model for conditional variance. We will discuss some generalizations
and modifications of the ARCH model in subsequent sections; for a comprehensive review
of this class of models we refer to Bollerslev, Chou, and Kroner (1992).

To illustrate the properties of an ARCH process, we first consider a very simple,
weakly stationary ARCH(1) process: yt =

√
ht ut, where ut are i.i.d. random variables

with mean zero and variance one, and

ht = α0 + α1y
2
t−1, α0 > 0, α1 ≥ 0.

Note that ht depend on the past information contained in the information set F t−1. The
conditional mean of yt given F t−1 is

IE(yt | F t−1) =
√
ht IE(ut | F t−1) =

√
ht IE(ut) = 0.

Hence, the conditional variance of yt is

IE(y2
t | F t−1) = ht IE(u2

t | F t−1) = ht IE(u2
t ) = ht.

As ht change with y2
t−1, yt are conditionally heteroskedastic. Writing

y2
t = ht + (y2

t − ht) = α0 + α1y
2
t−1 + ht(u

2
t − 1),
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we obtain an AR(1) representation of y2
t with the innovations ht(u2

t − 1) which have zero
mean and are serially uncorrelated. That is, there are correlations among squared yt

when the ARCH effect is present.

By the law of iterated expectations, it is clear that IE(yt) = IE[IE(yt | F t−1)] = 0 and

var(yt) = IE(ht) = α0 + α1 var(yt−1).

The weak stationarity of yt then implies that var(yt) = α0/(1−α1). The autocovariances
of yt are

IE(ytyt−j) = IE
[√

htht−j ut−j IE(ut | F t−1)
]

= 0, j = 1, 2, . . . .

This shows that yt are serially uncorrelated, yet they are not independent because y2
t are

serially correlated.

Assuming that yt are conditionally normally distributed, more can be said about their
marginal distribution. Under conditional normality, IE(y4

t | F t−1) = 3h2
t , so that

IE(y4
t ) = 3

[
α2

0 + 2α0α1 IE(ht) + α2
1 IE(y4

t−1)
]
.

When IE(y4
t ) is a constant m4, we have

m4 = 3α2
0

(
1 +

2α1

1 − α1

)
+ 2α0α1 IE(ht) + 3α2

1m4,

or equivalently,

m4 =
3α2

0(1 + α1)
(1 − α1)(1 − 3α2

1)
.

This implies that 0 ≤ α2
1 < 1/3. The kurtosis coefficient of yt is then

m4

var(yt)2
= 3

1 − α2
1

1 − 3α2
1

> 3.

This result indicates that the marginal distribution of yt is leptokurtic and has thicker
tails than a normal distribution. Consequently, even when yt are conditionally normally
distributed, the resulting ARCH(1) process can not be a Gaussian white noise.

A novel feature of this simple ARCH process is its multiplicative form. Expressing yt

as a product of
√
ht and ut is quite convenient for modeling the behavior of conditional

variance. An immediate generalization is the ARCH(p) process: yt =
√
ht ut, with the

conditional variance:

ht = α0 + α1y
2
t−1 + · · · + αpy

2
t−p, α0 > 0, α1, . . . , αp ≥ 0.

c© Chung-Ming Kuan, 2005



5.2 GARCH Models 29

This process also results in an AR(p) representation of y2
t :

y2
t = ht + (y2

t − ht) = α0 + α1y
2
t−1 + · · · + αpy

2
t−p + ht(u

2
t − 1),

where the innovations ht(u
2
t − 1) are serially uncorrelated. In this case, {yt} is a white

noise with mean zero and var(yt) = α0/(1 − α1 − · · · − αp). It can also be shown that
the marginal distribution of yt is still leptokurtic under conditional normality. An even
more general process is the AR(p1)-ARCH(p2) process:

yt = c+ ψ1yt−1 + · · · + ψp1
yt−p1

+ εt,

where εt =
√
ht ut, with

ht = α0 + α1y
2
t−1 + · · · + αp2

y2
t−p2

, α0 > 0, α1, . . . , αp2
≥ 0.

The process {yt} now has a more complex conditional mean and is no longer a white
noise.

5.2 GARCH Models

In many applications it was found that a high order ARCH model is usually needed to
describe the dynamics of conditional variances. A natural way to generalize the ARCH
model is to consider an ARMA representation of y2

t , which in turn leads to the generalized
ARCH (GARCH) model of Bollerslev (1986).

To illustrate, we consider the GARCH(1,1) process: yt =
√
ht ut, with the conditional

variance:

ht = α0 + α1y
2
t−1 + β1ht−1, α0 > 0, α1, β1 ≥ 0.

This process has the following ARMA(1,1) representation of y2
t with the innovations

ht(u2
t − 1):

y2
t = ht + (y2

t − ht) = α0 + (α1 + β1)y
2
t−1 + ht(u

2
t − 1) − β1ht−1(u

2
t−1 − 1).

This again shows that there are correlations among squared yt. Clearly, yt have mean
zero and

var(yt) = IE(ht) = α0 + α1 IE(y2
t−1) + β1 IE(ht−1).

Weak stationarity again implies that

var(yt) =
α0

1 − (α1 + β1)
.
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Thus, α1 +β1 must be less than one to ensure a finite variance. It is also easy to see that
the autocovariances of yt and yt−j, j = 1, 2, . . ., are also zero, so that {yt} is still a white
noise. Moreover, the kurtosis coefficient is, under conditional normality,

m4

var(yt)2
= 3

1 − (α1 + β1)
2

1 − (α1 + β1)2 − 2α2
1

> 3,

provided that 1 − (α1 + β1)2 − 2α2
1 > 0. This shows that the GARCH(1,1) process has

a leptokurtic marginal distribution when yt are conditionally normally distributed. In
fact, this result holds even when yt are not conditionally normally distributed; for more
details see Section 3.14 of Tsay (2002).

The more general GARCH(p, q) process is: yt =
√
ht ut, with the conditional variance:

ht = α0 +
p∑

i=1

αiy
2
t−i +

q∑
j=1

βjht−j , α0 > 0, αi, βj ≥ 0.

This leads to the following ARMA representation of y2
t :

y2
t = α0 +

max(p,q)∑
i=1

(αi + βi)y
2
t−i + ht(u

2
t − 1) −

q∑
j=1

βjht−j(u
2
t−j − 1),

where we set αi = 0 if i > p and βi = 0 if i > q. We also have IE(yt) = 0,

var(yt) =
α0

1 −∑max(p,q)
i=1 (αi + βi)

,

provided that 1 −∑max(p,q)
i=1 (αi + βi) > 0, and zero autocovariances. We may, of course,

construct an AR(p1)-GARCH(p2, q) process:

yt = c+ ψ1yt−1 + · · · + ψp1
yt−p1

+ εt,

where εt =
√
ht ut, with

ht = α0 +
p2∑
i=1

αiy
2
t−i +

q∑
j=1

βjht−j , α0 > 0, αi, βj ≥ 0.

An ARMA(p1, q1)-GARCH(p2, q2) process is also possible.

Although there are many empirical studies suggesting that a GARCH(1,1) model
suffices to describe the conditional variances of a wide variety of financial time series,
we note that this need not be true. For example, Chen and Kuan (2002) demonstrated
that many well known diagnostic tests have little power against volatility asymmetry
and hence lead to an incorrect conclusion on the selected GARCH model. As far as
the GARCH(1,1) model is concerned, it is also quite common to observe that the sum
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of the estimated α1 and β1 is close to one. If α1 + β1 is indeed one, var(yt) would
be unbounded, and the process of y2

t has a unit root. Such a process is referred to
as an integrated GARCH (IGARCH) process. Taking into account the constraint that
α1 + β1 = 1, the IGARCH(1,1) process is yt =

√
ht ut, with the conditional variance:

ht = α0 + (1 − β1)y
2
t−1 + β1ht−1, α0 > 0, 0 < β1 < 1.

The IGARCH phenomenon is, however, difficult to interpret because the unconditional
variance of y2

t are growing with t. Some researchers recently argue that the IGARCH
result may be a consequence of ignoring structural changes (level shifts) in conditional
variance. They find that when a model admits two or more regimes of conditional
variances, the resulting estimates of α1 + β1 in each regime is typically much less than
one. Hence, the observed IGARCH effects in many empirical studies may be dubious.

Another important variant of the GARCH process is the GARCH-in-mean (GARCH-
M) process, introduced by Engle, Lilien, and Robins (1987). By noting that asset returns
may also depend on their volatility, they proposed the following GARCH(1,1)-M model:

yt = c+ γht + εt,

with εt =
√
ht ut and

ht = α0 + α1ε
2
t−1 + β1ht−1, α0 > 0, α1, β1 ≥ 0,

where γ is called the risk premium parameter. Due to the presence of ht in the equation
of yt, it is easy to see that yt in this case are serially correlated. The GARCH(1,1)-M
model above can be easily extended by adding an AR structure to the equation of yt

and/or allowing ht to be a GARCH(p, q) process.

5.3 EGARCH Models

While the GARCH models are capable of capturing volatility clustering, there are some
drawbacks of these models. First, the GARCH models are unable to represent volatility
asymmetry. Due to the presence of lagged y2

t in the variance equation, the positive and
negative values of the lagged innovations have the same effect on the conditional vari-
ance. In the finance literature, however, it has long been recognized that volatility often
responds to positive and negative shocks in different ways. For example, Black (1976)
observed that the volatility of stock returns tends to increase (decrease) when there is
“bad news” (“good news”). Second, to ensure positiveness of ht in the GARCH model,
non-negative constraints are imposed on the coefficients in the variance equation. These
constraints are convenient, yet they are not necessary.
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Nelson (1991) considered the following weighted innovations:

g(ut) = θ1ut + γ1(|ut| − IE |ut|),

where |ut| − IE |ut| are also i.i.d. random variables with mean zero, so that g(ut) have
mean zero. When ut are normally distributed, for example, we have IE |ut| =

√
2/π.

Note that g(ut) can be represented as a threshold function:

g(ut) =

{
(θ1 + γ1)ut − γ1 IE |ut|, ut ≥ 0,
(θ1 − γ1)ut − γ1 IE |ut|, ut < 0.

Hence, g(ut) is linear in ut with slope θ1 + γ1 when ut are non-negative, and g(ut) has
slope θ1 − γ1 when ut are negative. It should be noted that the asymmetric response of
g to ut is due to θ1, rather than γ1.

To avoid the non-negativity constraints on the coefficients in the variance equation,
Nelson (1991) proposed the exponential GARCH (EGARCH) model in which ht is an
exponential function of lagged ht and the weighted innovation g(ut−1). Specifically, a
simple EGARCH(1,1) process is yt =

√
ht ut, with the conditional variance:

ht = exp

[
α0 + β1 ln(ht−1) +

(
θ1

yt−1√
ht−1

+ γ1

∣∣∣∣∣ yt−1√
ht−1

∣∣∣∣∣
)]

;

note that IE |ut−1| has been absorbed into the constant term. The coefficient θ1 is usually
interpreted as a measure of the “leverage” effect of ut−1, while γ1 is interpreted as a
measure of the “magnitude” effect. In empirical studies, the estimate of θ1 is typically
negative while γ1 is positive, showing that positive shocks have less impact on volatility.

Although this EGARCH process is still able to capture volatility clustering, it differs
from GARCH processes in the following respects. First, the conditional variance of the
EGARCH process responds differently to positive and negative innovations.2 Second,
due to the presence of exponential function, an innovation with larger magnitude has
much larger impact on ht. Moreover, there is no constraint on the coefficients in ht.

Extending the EGARCH(1,1) process above to the EGARCH(p, q) process is straight-
forward: yt =

√
ht ut, with

ht = exp

⎡⎣α0 +
q∑

i=1

βi ln(ht−i) +
p∑

j=1

(
θj

yt−j√
ht−j

+ γj

∣∣∣∣∣ yt−j√
ht−j

∣∣∣∣∣
)⎤⎦ ,

2Engle and Ng (1993) defined the “news impact curve” as the relationship between the conditional

variance ht and ut−1, holding constant the information on and before time t − 2 (lagged conditional

variances are evaluated at the unconditional variance). Based on this idea, it is easy to see that the news

impact curve of a GARCH process is symmetric, but that of an EGARCH process is asymmetric.
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where θj and γj characterize the asymmetry and magnitude effects of the shock ut−j on
the volatility ht. One may also add an AR structure to the mean equation of yt; allowing
ht to enter the mean equation results in an EGARCH-M process.

5.4 GJR-GARCH Models

Focusing on the impacts of positive and negative shocks, Glosten, Jegannathan, and Run-
kle (1993) proposed a modified GARCH model, now known as the GJR-GARCH model,
that also possesses an asymmetric news impact curve. Comparing to the EGARCH
model, the GJR-GARCH model utilizes a threshold function to capture volatility asym-
metry, but it does not impose an exponential function on the conditional variance equa-
tion. In fact, an EGARCH model may generate unreasonably large conditional variances
because of the exponential function.

A simple GJR-GARCH(1,1) process is yt =
√
ht ut, with

ht = α0 + β1ht−1 + (α1 + θ1Dt−1)y
2
t−1,

where Dt−1 = 1 when yt−1 < 0 and Dt−1 = 0 otherwise. Clearly, ht of the GJR
process also respond differently to positive and negative yt−1; this process reduces to a
standard GARCH(1,1) process if θ1 = 0. This model is thus capable of capturing both
volatility clustering and volatility asymmetry. Without the exponential function, this
model does not yield ridiculous conditional variances. Non-negativity constraints on the
coefficients in ht are still needed, however. It is also straightforward to extend the simple
GJR-GARCH model to an AR(p1)-GJR-GARCH(p2, q) model or a GJR-GARCH(p, q)-
M model. Finally, we note that the asymmetry effects of positive and negative shocks
identified by Glosten, Jegannathan, and Runkle (1993) are different from those based on
the EGARCH model.

5.5 Implementing GARCH Models

In estimating GARCH models, one must determine the conditional distribution of yt (or
εt). A standard approach is to postulate a conditional normal distribution. Although
conditional normality results in a leptokurtic marginal distribution, it can not fully ac-
count for the outliers in real data. It is now also typical to assume yt (or εt) in a GARCH
model to have a conditional t distribution. Recall that a t distribution with ν degrees of
freedom has variance ν/(ν − 2) when ν > 2, and it does not have a finite variance when
ν ≤ 2. Normalizing yt to have conditional variance one yields the density of ut:

f(u) =
Γ((ν + 1)/2)

Γ(ν/2)
√

(ν − 2)π

(
1 +

u2

ν − 2

)−(ν+1)/2

,
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where Γ is the Gamma function such that Γ(a) =
∫∞
0 ya−1e−y dy.

We now consider the estimation of an ARCH(p) model. Similar to the estimation of
an AR(p) model, it is simpler to drop initial p observations and estimate the parame-
ters by maximizing the average of the conditional quasi-log-likelihood function. Under
conditional normality, the QMLE is obtained by maximizing

LT = −T − p

2T
ln(ht) −

1
2T

T∑
i=p+1

y2
t

ht

,

where ht = α0 + α1y
2
t−1 + · · · + αpy

2
t−p. For an AR(p1)-ARCH(p2) model, we maximize

LT = −T − p∗

2T
ln(ht) −

1
2T

T∑
i=p∗+1

(yt − c− ψ1yt−1 − · · · − ψp1
yt−p1

)2

ht

,

where p∗ = max(p1, p2) and ht = α0 + α1y
2
t−1 + · · · + αpy

2
t−p2

. Under conditional t
distribution, we simply substitute the t density function for the normal density. We omit
the details of estimating GARCH models.

Another commonly used distribution is the generalized error distribution; for example,
Nelson (1991) considered this distribution for EGARCH models. Given this assumption,
we may normalize yt to have conditional mean zero and conditional variance one and
obtain the following density of ut:

f(u) =
ν exp[−|u/λ|ν/2]
λ 21+1/ν Γ(1/ν)

, ν > 0,

where ν is the parameter characterizing the thickness of tails and

λ =
[
2−2/ν Γ(1/ν) Γ(3/ν)

]1/2
.

This is a standard normal distribution when ν = 2; for ν < 2 (ν > 2), the tails of the
distribution of u are thicker (thinner) than the normal distribution. In particular, it is
a double exponential distribution when ν = 1 and a uniform distribution on [−√

3,
√

3]
when ν → ∞; see Nelson (1991). Using the density of ut we obtain the quasi-log-likelihood
function of yt, from which the QMLE can be computed numerically.

For a GARCH (EGARCH) model, let ĥt denote the estimated conditional variances
and êt denote the model residuals when there is a mean equation. To examine whether
an estimated GARCH model is appropriate, one may evaluate the standardized residuals:
yt/ĥ

1/2
t (when there is no mean equation) or êt/ĥ

1/2
t (when there is a mean equation).

A Ljung-Box Q test on the standardized residuals is usually used to check if the mean
equation is appropriate; a Q test on the squares of the standardized residuals is used to

c© Chung-Ming Kuan, 2005



5.6 Stochastic Volatility Models 35

evaluate the variance equation; see e.g., Tsay (2002, p. 89). It is also typical to employ
a test of independence, such as the BDS test of Brock et al. (1987), to determine if the
standardized residuals are independent. For example, Bollerslev, Chou and Kroner (1992)
concluded that: “most studies tend to find that once ARCH effects are removed the
BDS test on standardized residuals exhibits very little evidence of nonlinear dependence”
(pp. 22–23). Chen and Kuan (2002) showed, however, that neither the Q-type tests nor
the BDS test is powerful enough to detect neglected volatility asymmetry. Thus, one
tends to accept the null hypothesis of no correlations (or no dependence) when these
tests are applied to the standardized residuals of GARCH and EGARCH models. That
is, these tests can not distinguish between the GARCH and EGARCH models. By
contrast, the test of time reversibility considered by Chen and Kuan (2002), which is also
a test of independence, overcomes this problem. As far as testing volatility asymmetry is
concerned, the “sign bias” test and the “positive (negative) size bias” test of Engle and
Ng (1993) may also be used.

5.6 Stochastic Volatility Models

The stochastic volatility (SV) model is an important alternative to the GARCH models
and has attracted much attention recently. A simple stochastic SV process is yt =

√
ht ut,

with

ln(ht) = α0 + α1 ln(ht−1) + vt, |α1| < 1,

where vt are random variables such that {vt} and {ut} are independent of each other. A
novel feature of SV processes is that the conditional variances ht are driven by a different
set of innovations vt, whereas ht of GARCH processes are not. The inclusion of new
innovations vt admits more flexibility in the model but also renders model estimation
difficult. Similar to an EGARCH process, this process also postulates the conditional
variance ht as an exponential function of past information so that no non-negativity
constraint on the coefficients is needed.

Assuming that ut are independent N (0, 1) random variables and vt are independent
N (0, σ2

v), we have

ln(ht) ∼ N
(

α0

1 − α1

,
σ2

v

1 − α2
1

)
.

Clearly, IE(yt) = 0. Knowing the mean and variance of the lognormal random variable,
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it is easy to derive the unconditional second and fourth moments of yt as:3

IE(y2
t ) = IE(ht) IE(u2

t ) = exp
(

α0

1 − α1

+
σ2

v

2(1 − α2
1)

)
,

IE(y4
t ) = IE(h2

t ) IE(u4
t ) = 3 exp

(
2α0

1 − α1

+
2σ2

v

1 − α2
1

)
.

Thus, yt are also leptokurtic because

IE(y4
t )/[IE(y2

t )]
2 = 3 exp

(
σ2

v

1 − α2
1

)
> 3.

Moreover, yt are serially uncorrelated, while y2
t are serially correlated. Allowing ut and vt

to be correlated produces valatility asymmetry, similar to that of an EGARCH process.

The estimation of an SV model is typically cumbersome; see e.g., Jacquier, Polson,
and Rossi (1994), Harvey, Ruiz, and Shephard (1994), and Harvey and Shephard (1996).
Let Y T denote the collection of all yt and hT the collection of all conditional variances
ht. Then, the density of Y T is

P (Y T ) =
∫
P (Y T , hT ) dhT =

∫
P (Y T |hT )P (hT ) dhT ,

which is a mixture over the density of hT . Difficulty in estimation arises because a
T -dimensional integral must be evaluated. The Markov chain Monte Carlo (MCMC)
method suggested by Jacquier, Polson, and Rossi (1994) avoids this difficulty. Other
estimation methods are the method of quasi-maximum likelihood and the generalized
method of moment; we omit the details.

5.7 Realized Volatility

The parametric volatility models discussed in the preceding sections have their limita-
tions. First, it is hard to evaluate the performance of the estimated conditional variances
because the true conditional variances (or the volatility in general) are not observable.
Second, different volatility models often yield quite different volatility patterns. As such,
the results of parametric volatility models are not robust and hence are vulnerable. Note
that neither squared yt (when there is no mean equation) nor squared êt (when there is a
mean equation) is a good approximation to unobserved conditional variances. Therefore,
a model-free estimate of conditional variance is highly desirable and may serve as a bench-
mark of unobserved volatility. The realized volatility proposed by Andersen, Bollerslev,
Diebold, and Ebens (2001) is such an estimate.

3Note that there is a typo in the formula of IE(y2
t ) in Tsay (2002, p. 110).
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A standard diffusion model of the logarithm of the asset price pt is

dpt = µt dt+ σt dWt,

where µt is the drift term, σt is the diffusion, and W is a standard Wiener process. Let
rt,m = pt − pt−m denote the m-period returns which is the sum of m one-period returns.
The conditional distribution of rt+1,1 is

N
(∫ 1

0
µt+s ds,

∫ 1

0
σ2

t+s ds
)
.

Let [c] denote the largest integer less than c. Partition the time between t and t + 1
into m = [1/δ] non-overlapping sub-periods, each with the length δ (say, 1 minute or 5
minutes). Then, rt+1,1 is the one-day return and also the sum of m δ-period returns:

rt+1,1 = rt+δ,δ + rt+2δ,δ + · · · + rt+1,δ =
[1/δ]∑
j=1

rt+jδ,δ.

The conditional variance of rt+1,1 is thus the conditional variance of the sum of m returns.
When the partition become finer (i.e., δ → 0, or equivalently, m → ∞), it is well known
that the quadratic variations of r are such that

[1/δ]∑
j=1

r2t+jδ,δ →
∫ 1

0
σ2

t+s ds,

in the almost sure sense.

This convergence result suggests that
∑[1/δ]

j=1 r
2
t+jδ,δ serves as a natural estimate of

the conditional variance of rt+1,1. Andersen et al. (2001) refer to this estimate as the
realized volatility of rt+1,1.4 The realized daily volatility can then be computed as the
sum of squared returns of intraday data at higher frequencies (say, squared 5-minute
returns). When rt+1,1 are vectors of asset returns, one may also define the “realized
variance-covariance matrix” as

[1/δ]∑
j=1

(rt+jδ,δ)(rt+jδ,δ)
′,

where each diagonal term is the realized volatility of the corresponding asset return. This
approach was also considered by French, Schwert, and Stambaugh (1987) in computing

4Andersen et al. (2001) claimed that the realized volatility is model free. This is not entirely correct

because the convergence of the quadratic variations holds under the diffusion model, i.e., rt are driven by

a standard Wiener process which has independent increments. Without this condition, the correlations

between the sub-period returns may not be ignored.
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the volatility of monthly returns based on daily returns, yet they estimate both the
volatility of daily returns and their covariances.

Andersen, Bollerslev, Diebold, and Ebens (2001) found by visual inspection that
the unconditional distribution of the stock returns standardized by the realized standard
deviations is approximately normal. This is in contrast with the common wisdom that the
stock returns standardized by the standard deviations of a GARCH model are leptokurtic
in general. They also found that the unconditional distribution of the realized variances
is highly skewed to the right, but the logarithm of the unconditional distribution of the
logarithm of the realized standard deviations is also approximately normal. This result
suggests that the unconditional distribution of stock returns may be well approximated
by a continuous lognormal-normal mixture.
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