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1 Introduction

Consistent estimation of asymptotic variance-covariance matrix plays a crucial role in the

large-sample tests in the econometrics literature. An estimator that is consistent when

there are heteroskedasticity and serial correlations in data is known as the heteroskedastic-

ity and autocorrelation consistent (HAC) covariance matrix estimator, or simply a HAC

estimator. A large-sample test that involves a HAC estimator is thus robust to the presence

of heteroskedasticy and serial correlations of unknown form.

A leading class of HAC estimators is the nonparametric kernel estimator originated

from the estimation of spectral density; see, e.g., Parzen (1957), Hannan (1970), and

Priestley (1981). The kernel estimator was introduced to the econometrics literature by

Newey and West (1987) and Gallant (1987). This class of estimators was subsequently

refined by Andrews (1991), Andrews and Monahan (1992), Newey and West (1994), and

Phillips, Sun, and Jin (2003, 2006), among others. Robinson (1991), Hansen (1992), de

Jong (2000), de Jong and Davidson (2000), and Jansson (2002) also provided various

consistency proofs. For an early review of HAC estimation we refer to den Haan and

Levin (1997).

A drawback of the kernel HAC estimator is that its performance varies with the choices

of the kernel function and its bandwidth. As these choices are somewhat arbitrary in prac-

tice, the statistical inferences resulted from the robust tests with the kernel HAC estima-

tor are unavoidably vulnerable. Kiefer, Vogelsang, and Bunzel (2000), henceforth KVB,

proposed an asymptotically pivotal test for regression parameters that does not require

consistent estimation of asymptotic covariance matrix but relies on a normalizing matrix

to eliminate the nuisance parameters; see also Bunzel, Kiefer, and Vogelsang (2001) and

Vogelsang (2003). The resulting test is thus robust to heteroskedasticity and serial cor-

relations while circumventing the difficulties in kernel estimation. More generally, Kiefer

and Vogelsang (2002a, b) showed that a kernel HAC estimator with the bandwidth equal

to sample size can also serve as a normalizing matrix in the KVB approach. This greatly

expands the class of KVB’s robust tests. Kiefer and Vogelsang (2005) provided a theory

that relates the HAC estimation and KVB approach.

The KVB approach can be extended to construct robust model specification tests.

Lobato (2001) constructed a robust portmanteau test for serial correlations. For general

moment conditions with unknown parameters, Kuan and Lee (2006) proposed two robust
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M tests without consistent estimation of asymptotic covariance matrix, which include

Lobato’s test as a special case. It is worth mentioning that one of Kuan and Lee’s tests

is valid even when there is estimation effect in the sample moment conditions. This is

practically important because HAC estimation is usually very difficult, if not impossible,

to implement when estimation effect is present. Lee (2006) also obtained robust M tests

with kernel-based normalizing matrices. The robust tests for over-identifying restrictions

(OIR) in the context of the generalized method of moments (GMM) were constructed by

Lee and Kuan (2006).

It has been documented in the literature that the kernel HAC estimators are downward

biased so that the resulting tests are typically over-sized in finite samples. On the other

hand, the asymptotic distribution of KVB’s robust test provides very good approximation

to its finite-sample counterpart. Thus, as far as test size is concerned, KVB’s robust test

ought to be preferred to the conventional tests with a kernel HAC estimator. In a Gaussian

location model, Jansson (2004) found that the error in rejection probability of the KVB

test decays at a fast rate O(T−1 log T ), whereas such a rate for the conventional tests with

a kernel HAC estimator is no better than O(T−1/2). It has been found, however, that the

KVB tests suffer from power loss in finite samples; such loss may be quite substantial,

especially when an inappropriate kernel is used to compute the normalizing matrix and/or

the number of restrictions increases.

This note is organized as follows. Section 2 is a review of the basic asymptotic theory

for the OLS estimator and the Wald test for linear hypotheses. In Section 3, we present

HAC estimation and discuss how a kernel function and its bandwidth can be determined.

The KVB approach and robust tests for regression parameters are introduced in Section 4.

The KVB approach is extended to construct robust M tests in Section 5. We also consider

robust test for serial correlations and robust OIR test.

2 Basic Asymptotic Theory

Consider the linear specification yt = x′tβ+et, and the OLS estimator β̂T (k×1). We shall

review some basic asymptotic theory for β̂T and the Wald test of regression parameters.

In what follows, we let [c] denote the integer part of c, IP−→ convergence in probability, ⇒

weak convergence (of associated probability measures), D−→ convergence in distribution,
d= equality in distribution, W k a vector of k independent, standard Wiener processes,
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and Bk the Brownian bridge obtained from W k such that Bk(r) = W k(r) − rW k(1),

0 ≤ r ≤ 1. When k = 1, we simply write W1 as W and B1 as B.

We impose the following “high level” conditions on data.

[A1] For some βo, εt = yt − x′tβo such that IE(xtεt) = 0 and

1√
T

[Tr]∑
t=1

xtεt ⇒ SoW k(r), r ∈ [0, 1],

where So is the nonsingular, matrix square root of

Σo = lim
T→∞

var

(
1√
T

T∑
t=1

xtεt

)
,

i.e., Σo = SoS
′
o.

[A2] M [Tr] := [Tr]−1
∑[Tr]

t=1 xtx
′
t

IP−→M o uniformly in r ∈ (0, 1] such that M o is nonsin-

gular.

By [A1],

1√
T

T∑
t=1

xtεt
D−→ SoW k(1) d= N (0, Σo).

By [A2], MT = T−1
∑T

t=1 xtx
′
t

IP−→M o, and hence

√
T
(
β̂T − βo

)
= M−1

T

1√
T

T∑
t=1

xt(yt − x′tβo)

D−→M−1
o SoW k(1)

d= N (0,M−1
o ΣoM

−1
o ).

(1)

This is the well known asymptotic normality result for the OLS estimator.

With the results in (1), the limiting distributions of the well known large-sample tests

are easily obtained. Consider the null hypothesis H0 : Rβo = r with R a q × k matrix

with full row rank. Under the null hypothesis, (1) implies

√
T
(
Rβ̂T − r

) D−→ N (0, RM−1
o ΣoM

−1
o R

′). (2)

Replacing M o and Σo with their respective consistent estimators MT and Σ̂T , we have(
RM−1

T Σ̂TM
−1
T R

)−1/2√
TR

(
β̂T − βo

) D−→ N (0, Iq).
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It follows that the Wald test of this hypothesis is

WT = T
(
Rβ̂T − r

)′(
RM−1

T Σ̂TM
−1
T R

′)−1(
Rβ̂T − r

) D−→ χ2(q). (3)

Note thatWT would not have a limiting χ2 distribution if Σ̂T is not a consistent estimator

for Σo. For other large-sample tests, such as the LM test and Hausman test, it is also

crucial to have a consistent estimator of the asymptotic variance-covariance matrix.

3 HAC Estimation

For consistent estimation of Σo, first note that, by definition,

Σo = lim
T→∞

1
T

T∑
t=1

T∑
s=1

IE(xtεtεsx
′
s).

For notation simplicity, we write

Σo = lim
T→∞

ΣT = lim
T→∞

T−1∑
j=−T+1

ΓT (j), (4)

with

ΓT (j) =


1
T

∑T
t=j+1 IE(xtεtεt−jx′t−j), j = 0, 1, 2, . . . ,

1
T

∑T
t=−j+1 IE(xt+jεt+jεtx′t), j = −1,−2, . . . .

When xtεt are covariance stationary, ΓT (j) = Γ(j) = IE(xtεtεt−jxt−j), and the spectral

density of xtεt at frequency ω is

f(ω) =
1

2π

∞∑
j=−∞

Γ(j)e−ijω,

where i =
√
−1. In this case, Σo is 2π × f(0) and hence also known as the long-run

variance of xtεt.

3.1 Kernel HAC Estimators

It is clear that the exact form of Σo depends on data characteristics. When xtεt are

serially uncorrelated, all the autocovariances in (4) vanish, so that

Σo = lim
T→∞

ΓT (0) = lim
T→∞

1
T

T∑
t=1

IE(ε2txtx
′
t). (5)
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This variance-covariance matrix can be consistently estimated by White’s heteroskedasticity-

consistent estimator:

Σ̂T =
1
T

T∑
t=1

ê2
txtx

′
t,

with êt the OLS residuals; see White (1984). The matrix (5) can be further simplified

when εt are conditionally homoskedastic: IE(ε2t | F t−1) = σ2
o , where F t−1 denotes the

σ-algebra generated by {(xi, εi), i ≤ t− 1}. In this case, (5) is simplified as

Σo = σ2
o

(
lim
T→∞

1
T

T∑
t=1

IE(xtx
′
t)

)
= σ2

oM o,

which can be consistently estimated by Σ̂T = σ̂2
TMT , with σ̂2

T = T−1
∑T

t=1 ê
2
t .

When xtεt exhibit serial correlations, it is still possible to estimate (4) consistently.

Letting `(T ) denote a function of T that diverges with T we have

Σ†T =
`(T )∑

j=−`(T )

ΓT (j)→ Σo,

as T tends to infinity. It is then natural to estimate Σ†T by its sample counterpart:

Σ̂
†
T =

`(T )∑
j=−`(T )

Γ̂T (j),

with the sample autocovariances:

Γ̂T (j) =


1
T

∑T
t=j+1 xtêtêt−jx

′
t−j , j = 0, 1, 2, . . . ,

1
T

∑T
t=−j+1 xt+j êt+j êtx

′
t, j = −1,−2, . . . .

The estimator Σ̂
†
T would be consistent for Σo provided that `(T ) does not grow too fast

with T ; see the discussion in Section 3.2.

A problem with Σ̂
†
T is that it need not be a positive semi-definite matrix and hence can

not be a proper variance-covariance matrix. A consistent estimator that is also positive

semi-definite is the following estimator of the spectral density:

Σ̂
κ

T =
T−1∑

j=−T+1

κ
( j

`(T )

)
Γ̂T (j), (6)

where κ is a proper kernel function and `(T ) is its bandwidth, which jointly determine

the weights assigned to Γ̂T (j). Typically, κ is required to satisfy: |κ(x)| ≤ 1, κ(0) = 1,
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κ(x) = κ(−x) for all x ∈ R,
∫
|κ(x)| dx < ∞, κ is continuous at 0 and at all but a finite

number of other points in R, and∫ ∞
−∞

κ(x)e−ixω dx ≥ 0, ∀ω ∈ R.

Note that the last condition ensures positive semi-definiteness; see Andrews (1991).

Below are some commonly used kernel functions:1

(i) Bartlett kernel (Newey and West, 1987):

κ(x) =

 1− |x|, |x| ≤ 1,

0, otherwise;

(ii) Parzen kernel (Gallant, 1987):

κ(x) =


1− 6x2 + 6|x|3, |x| ≤ 1/2,

2(1− |x|)3, 1/2 ≤ |x| ≤ 1,

0, otherwise;

(iii) Quadratic spectral kernel (Andrews, 1991):

κ(x) =
25

12π2x2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)
;

(iv) Daniel kernel (Ng and Perron, 1996):

κ(x) =
sin(πx)
πx

.

These kernels are all symmetric about the vertical axis, where the first two kernels

have a bounded support [−1, 1], but the other two have unbounded support. These kernel

functions with non-negative x are depicted in Figure 1. For the Bartlett and Parzen

kernels, the weight assigned to Γ̂T (j) decreases with |j| and becomes zero for |j| ≥ `(T ).

Hence, `(T ) in these functions is also known as a truncation lag parameter. For the

quadratic spectral and Daniel kernels, `(T ) does not have this interpretation because the

weight decreases to zero at, respectively, |j| = 1.2`(T ) and j = `(T ), but then exhibits

damped sine waves afterwards. In what follows, the HAC estimator (6) with the Bartlett,

Parzen, quadratic spectral and Daniel kernels will be denoted as, respectively, Σ̂
B

T , Σ̂
P

T ,

Σ̂
QS

T and Σ̂
D

T .
1Unlike Andrews (1991), we do not discuss the Tukey-Hanning kernel because it does not result in a

positive semi-definite HAC estimator.
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Figure 1: The Bartlett, Parzen, quandratic spectral and Daniel kernels.

Remark: The kernel weighting scheme brings bias to the estimated autocovariances. As

`(T ) diverges with T , Γ̂T (j) receive weights close to unity asymptotically. Thus, the kernel

function entails little asymptotic bias and hence does not affect the consistency of Σ̂
κ

T .

Such bias may not be negligible in finite samples, however.

3.2 Choices of Kernel Function and Bandwidth

In theory, the bandwidth `(T ) must diverge with T at a rate slower than T so as to ensure

the consistency of Σ̂
κ

T . It should be clear from (4) that, when `(T ) does not depend on

T , Σ̂
κ

T can not be a consistent estimator because it does not estimate infinitely many

autocovariances in Σo. When `(T ) grows too fast, the bias resulted from estimating the

autocovariances will accumulate too rapidly and can not be averaged out in the limit. In

this case, Σ̂
κ

T also loses consistency.

Newey and West (1987) found that, under certain mixing conditions on data and the

Bartlett kernel, `(T ) is o(T 1/4). Andrews (1991) improved on their result by showing that

for the Bartlett, Parzen, and quadratic spectral kernels, `(T ) can grow at the rate o(T 1/2)

when data are fourth order stationary; such a rate may be further improved to o(T ) when

the assumption on data is strengthened, as also shown in de Jong and Davidson (2000)
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under the condition that the data are near epoch dependent on some mixing sequence.2

Note that a faster divergence rate of `(T ) permits estimating more autocovariances as

sample size grows.

The growth rate of `(T ) provides little guidance on how `(T ) should be chosen in a

given sample. Based on an asymptotically truncated mean squared error (MSE) criterion,

Andrews (1991) showed that the optimal growth rate `∗(T ) are

`∗(T ) = 1.1447(c1T )1/3, (Bartlett)

`∗(T ) = 2.6614(c2T )1/5, (Parzen)

`∗(T ) = 1.3221(c2T )1/5, (quadractic spectral)

(7)

where c1 and c2 are some unknown numbers depending on the spectral density, and√
T/`∗(T ) (Σ̂

κ
T −Σo) = OIP(1).

This implies that the rate of convergence of Σ̂
B

T is T−1/3 and that of Σ̂
P

T and Σ̂
QS

T is

T−2/5. That is, the commonly used Bartlett kernel in fact has a slower convergence rate.

In terms of asymptotic MSE, Andrews (1991) found that the quardratic spectral kernel

is 8.6% more efficient asymptotically than the Parzen kernel, while the Bartlett kernel

is the least efficient among those considered in Andrews (1991) due to its slower MSE

convergence rate. Thus, as far as MSE is concerned, the quadratic spectral kernel is to be

preferred, at least asymptotically.

Based on the optimal growth rates of (7), Andrews (1991) suggested an “automatic”

method to determine the bandwidth in a given sample. In particular, one first estimates an

AR(1) model for each element of xtεt and obtains the AR(1) coefficients ρ̂a and variance

estimates σ̂2
a for a = 1, . . . , k. Then, the unknown numbers (c1 and c2) in (7) are computed

according to:

ĉ1 =
k∑
a=1

4ρ̂2
aσ̂

4
a

(1− ρ̂a)6(1 + ρ̂a)2

/
k∑
a=1

σ̂4
a

(1− ρ̂a)4
,

ĉ2 =
k∑
a=1

4ρ̂2
aσ̂

4
a

(1− ρ̂a)8

/
k∑
a=1

σ̂4
a

(1− ρ̂a)4
.

The desired bandwidth is obtained by plugging ĉ1 and ĉ2 into (7). Other models, such

as VAR(1), ARMA(1,1), MA(m) models, may also be employed in the first step; the

corresponding formulae for ĉ1 and ĉ2 are given in Andrews (1991, pp. 835–836).
2For the definition of near epoch dependence and related asymptotic theory see Gallant and

White (1988).
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3.3 Other Improved HAC Estimators

Other than finding a suitable kernel function and a proper bandwidth, the performance of

kernel HAC estimators may also be improved by pre-whitening the data, as proposed by

Andrews and Monahan (1992), or by computing sample autocovariances based on forecast

errors, instead of OLS residuals, as proposed by Kuan and Hsieh (2008).

The whitening method relies on the model residuals from regressing v̂t = xtêt on its

lagged values. Intuitively, these residuals will be less serially correlated and hence have

a smoother spectral density around frequency zero. This usually renders the estimate of

spectral density more accurate. Consider a b th order vector AR (VAR) model of v̂t:

v̂t =
b∑

j=1

Âj v̂t−j + v̈t,

where Âj are the estimated coefficient matrices, and v̈t are the VAR residuals. By com-

puting the sample autocovariances of v̈t, we can easily construct a kernel HAC estimator

Σ̈
κ
T according to (6). The pre-whitened HAC estimator of Σo is then recovered by “re-

coloring” Σ̈
κ
T , i.e.,

̂̈Σκ
T = D̂Σ̈

κ
T D̂

′
, D̂ =

(
Ik −

b∑
j=1

Âj

)−1
.

While this estimator performs quite well in finite samples, its dependence on another

user-chosen parameter, the VAR lag order b, makes the implementation more difficult.

Kuan and Hsieh (2008) found that the kernel HAC estimator may also be improved

by replacing êt with one-step-ahead forecast errors: ẽt = yt − xtβ̃t−1, where β̃t−1 are the

recursive OLS estimators based on the subsample of first t−1 observation. This estimator

is computationally more demanding because of recursive estimation, but it avoids an

unnecessary constraint resulted from OLS estimation, namely,
∑T

t=1 xtêt = 0. Kuan and

Hsieh (2008) demonstrated that, compared with the kernel HAC estimator with OLS

residuals, the forecast-error-based estimator has a smaller bias but a larger MSE, and

it usually results in smaller size distortion than do the conventional and pre-whitened

HAC estimators. This suggests that bias-reduction may be more important than MSE-

minimization in HAC estimation, cf. Andrews (1991).
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4 KVB Approach

We have seen that kernel HAC estimation requires the choices of the kernel function and

its bandwidth. Such choices are somewhat arbitrary in practice. To circumvent these

difficulties, KVB proposed an approach that yields an asymptotically pivotal test without

consistent estimation of the asymptotic covariance matrix. The main idea of the KVB

approach is to employ a normalizing matrix that is capable of eliminating the nuisance

parameters in So, the matrix square root of Σo. This normalizing matrix is inconsistent

for Σo but is free from the choice of the kernel bandwidth, in contrast with kernel HAC

estimators.

4.1 Robust Tests with KVB’s Normalizing Matrix

Let ϕ̂t denote the normalized partial sum of xiêi:

ϕ̂t =
1√
T

t∑
i=1

xiêi,

and define the normalizing matrix ĈT as

ĈT =
1
T

T∑
t=1

ϕ̂tϕ̂
′
t =

1
T 2

T∑
t=1

(
t∑
i=1

xiêi

)(
t∑
i=1

êix
′
i

)
. (8)

By [A1]–[A2], we have from (1) that

ϕ̂[Tr] =
1√
T

[Tr]∑
i=1

xiεi −
[Tr]
T

 1
[Tr]

[Tr]∑
i=1

xix
′
i

√T (β̂T − βo)

⇒ SoW k(r)− rM oM
−1
o SoW k(1)

= SoBk(r).

Hence,

ĈT ⇒ So

(∫ 1

0
Bk(r)Bk(r)

′ dr
)
S′o =: SoP kS

′
o.

While the kerenl HAC estimator (6) has a nonstochastic limit, ĈT in (8) has a random

limit depending on So and a functional of the Brownian bridge.

By replacing Σ̂T in the Wald test (3) with ĈT , we obtain the following statistic:

W†T = T
(
Rβ̂T − r

)′(
RM−1

T ĈTM
−1
T R

′)−1(
Rβ̂T − r

)
. (9)
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To derive its null limit, first note that

RM−1
T ĈTM

−1
T R

′ ⇒ RM−1
o SoP kS

′
oM

−1
o R

′.

Let Go denote the matrix square root of RM−1
o SoS

′
oM

−1
o R

′. Then, RM−1
o SoW k(r)

d=

GoW q(r), and hence

RM−1
T ĈTM

−1
T R

′ ⇒ GoP qG
′
o.

Note also that (2) can be expressed as

√
TR

(
β̂T − βo

) D−→ GoWq(1).

Putting these results together, the statistic (9) is such that

W†T ⇒Wq(1)′G′o
(
GoP qG

′
o

)−1
GoWq(1) = Wq(1)′P−1

q Wq(1). (10)

Compared with (3), W†T does not have a limiting χ2 distribution, yet it is asymptotically

pivotal because the null limit in (10) does not depend on the matrix of nuisance param-

eters, Go. Although the asymptotic distribution of W†T is non-standard, it can be easily

simulated. Lobato (2001) reported the critical values of this distribution for various values

of q. Note that Kiefer et al. (2000) considered a statistic, analogous to the classical F test:

F †T =W†T /q, which has the null limit W q(1)′P−1
q W q(1)/q.

When the null hypothesis is βi = r, a robust test analogous to the conventional t test

is thus

t† =

√
T
(
β̂i,T − r

)√
δ̂i

D−→ W (1)[∫ 1
0 B(r)2 dr

]1/2 , (11)

where δ̂i is the i th diagonal element of M−1
T ĈTM

−1
T . Some quantiles of this asymptotic

distribution, taken from Kiefer et al. (2000), are summarized in the second row of Table 1.

This distribution is symmetric about the vertical axis but is more disperse than the stan-

dard normal distribution. Abadir and Paruolo (2002) showed that the distribution of the

limit in (11) is the same as that analyzed in Abadir and Paruolo (1997) which contains

analytic formulae of its density function and moments.

Remark: An advantage of the robust test with KVB’s normalizing matrix is that its

asymptotic distribution is usually a very good approximation to its finite-sample coun-

terpart. The empirical size of such test is thus close to the nominal size; that is, the
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Table 1: The quantiles of the t† and t tests based on Σ̂
κ

T without truncation.

prob. 90% 95% 97.5% 99%

t† with ĈT 3.890 5.374 6.811 8.544

t with Σ̂
B

T 2.740 3.764 4.771 6.090

t with Σ̂
P

T 2.840 4.228 5.671 8.112

t with Σ̂
QS

T 5.188 8.283 12.374 20.380

t with Σ̂
D

T 4.822 7.711 11.573 19.180

probability of type I error is properly controlled. By contrast, kernel HAC estimators are

typically downward biased, so that the resulting tests are over-sized in finite samples. As

a result, the tests based on a kernel HAC estimator may incorrectly reject the null more

frequently than it should.

4.2 Kernel-Based Normalizing Matrices

Kiefer and Vogelsang (2002a) showed that 2ĈT is algebraically equivalent to Σ̂
B

T without

truncation, i.e., `(T ) = T . To see this, note that summation by parts gives

T∑
j=1

ajbj = aT

T∑
i=1

bi −
T−1∑
j=1

(aj+1 − aj)

(
j∑
i=1

bi

)
,

and
∑T

i=1 v̂i =
∑T

i=1 xiêi = 0. Then, Σ̂
B

T without truncation is

Σ̂
B

T =
1
T

T∑
i=1

v̂i

T∑
j=1

(
1− |i− j|

T

)
v̂′j

=
1
T

1√
T

T∑
i=1

v̂i

T∑
j=1

(|i− j − 1| − |i− j|)

(
1√
T

j∑
h=1

v̂′h

)
.

As (|i− j − 1| − |i− j|) = −1 if j > j and = 1 if i ≤ j,

Σ̂
B

T =
1
T

T∑
j=1

 1√
T

j∑
i=1

v̂i −
T∑

i=j+1

v̂i

 ϕ̂′j =
1
T

T∑
j=1

2ϕ̂jϕ̂
′
j = 2ĈT .

The usual Wald test based on Σ̂
B

T without truncation is thus the same as W†T /2. In

particular, the t test based on Σ̂
B

T without truncation is t†/
√

2; some of its critical values,

computed from the analytic result of Abadir and Paruolo (1997), are summarized in the
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third row of Table 1. It can be seen that this distribution is still more disperse than the

standard normal distribution.

Kiefer and Vogelsang (2002b) extended the relation between ĈT and Σ̂
B

T discussed

above and showed that, for a general kernel function with the continuous second order

derivative κ′′, Σ̂
κ

T ⇒ SoP
κ
kS
′
o, with

P κ
k = −

∫ 1

0

∫ 1

0
κ′′(r − s)Bk(r)Bk(s)

′ dr ds

=
∫ 1

0

∫ 1

0
κ(r − s) dBk(r) dBk(s)

′,

where the last equality follows from integration by parts. Although the Bartlett ker-

nel is not continuously differentiable everywhere, the above result holds with PB
k =

2
∫ 1

0 Bk(r)Bk(r)′ dr. Consequently, the tests based on various kernel HAC estimators

with the bandwidth equal to sample size are also asymptotically pivotal. This result is

practically useful because kernel HAC estimators have been included in most econometric

packages. For the t tests based on Σ̂
κ

T with the bandwidth equal to sample, some of their

critical values are given in Table 1. See Kiefer and Vogelsang (2002b) and Phillips et

al. (2006) for other critical values.

It has been demonstrated in Kiefer and Vogelsang (2002b) that, for Σ̂
κ

T with the

bandwidth equal to sample size, Σ̂
B

T compares favorably with Σ̂
QS

T in terms of test power.

This is in sharp contrast with the result in HAC estimation, where the latter is preferred

to other kernels.

5 Robust M Tests

We now extend the KVB approach to constructing robust M tests. The M test considered

by Newey (1985), Tauchen (1985), and White (1987) is a general class of specification

tests on moment conditions that are functions of unknown parameters. This class of tests

includes most model specification tests in the econometrics literature; the specification

tests under the quasi-maximum likelihood framework are leading examples.

5.1 Robust M Tests Based on the KVB Approach

We consider the hypothesis that IE[f(ηt;θo)] = 0 for some θo ∈ Θ ⊂ Rk, where ηt are

random data vectors, θo is the k × 1 true parameter vector, and f is a q × 1 vector of

13



functions. Let θ̂T denote a root-T consistent estimator of θo such that

√
T (θ̂T − θo) = Qo

[
1√
T

T∑
t=1

q(ηt;θo)

]
+ oIP(1), (12)

where Qo is a k × k nonsingular matrix and q is a vector-valued function in Rk. For

example, when θ̂T is a quasi-maximum likelihood (QML) estimator, Qo is the inverse

of the limit of the Hessian matrix evaluated at θo, and q(ηt;θo) is the score function

evaluated at θo. The nonlinear least dquares (NLS) and GMM estimators can also be

expressed in a similar form.

To illustrate, we first consider the case that θo is known. Define

m[rT ](θ) =
1
T

[rT ]∑
t=1

f(ηt;θ), 0 < r ≤ 1,

where T is the sample size; for r = 1, mT (θ) is the sample average of f(ηt;θ). An M

test is based on mT (θo). When T 1/2mT (θo) is governed by a central limit theorem such

that under the null, T 1/2mT (θo)
D−→ N (0, Σo), where Σo is nonsingular. When Σo is

consistently estimated by an estimator Σ̂T , the conventional M test is:

TmT (θo)
′Σ̂
−1

T mT (θo)
D−→ χ2(q),

under the null hypothesis. This is analogous to the result of the Wald test (3).

We now impose the following conditions.

[B1] (a) Under the null,
√
Tm[rT ](θo) ⇒ SoWq(r) for 0 ≤ r ≤ 1, where So is the

nonsingular, matrix square root of Σo.

[B1] (b) Under the null, 1√
T

∑T
t=1 f(ηt;θo)

1√
T

∑T
t=1 q(ηt;θo)

⇒ GoWq+k(1),

where Go is nonsingular with the nonsingular diagonal blocks G11 (q × q) and G22

(k × k) and the off-diagonal blocks G12 (q × k) and G21 (k × q).

[B2] F [rT ](θo) = [rT ]−1
∑[rT ]

t=1 ∇θf
(
ηt;θo

) IP−→ F o, uniformly in 0 < r ≤ 1, where F o is

a q × k non-stochastic matrix; ∇θF [rT ](θo) is bounded in probability.
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Observe that the upper left (q × q) block of GoG
′
o, G11G

′
11 +G12G

′
12, is the asymptotic

covariance matrix of T−1/2
∑T

t=1 f(ηt;θo), and hence is also Σo in [B1](a). The lower

right (k × k) block of GoG
′
o, G22G

′
22 +G21G

′
21, is the asymptotic covariance matrix of

T−1/2
∑T

t=1 q(ηt;θo). Then, in view of (12), θ̂T is asymptotically normally distributed

with

√
T (θ̂T − θo)⇒ QoAoWk(1),

where Ao is the matrix square root of G22G
′
22 +G21G

′
21.

Remark: It is important to note that [B1](b) requires Go to be nonsingular, so that the

sample moments can not be correlated with the estimator asymptotically. This excludes

the cases in which the estimator is obtained from solving the sample moment conditions.

For example, when θ̂T is the quasi-maximum likelihood estimator, f in the moment con-

ditions can not be the score function. See also Section 5.3.

Following the KVB approach discussed in Section 4, a robust M test without consistent

estimation of the asymptotic covariance matrix is

MT = TmT (θo)
′CT (θo)

−1mT (θo), (13)

where CT (θo) = T−1
∑T

t=1ϕt(θo)ϕt(θo)
′ with

ϕt(θo) =
1√
T

t∑
i=1

[
f(ηi;θo)−mT (θo)

]
=
√
Tmt(θo)−

t

T

√
TmT (θo).

Note that the summands of ϕt(θo) are “centered” (i.e., f(ηi;θo)−mT (θo)).

By [B1](a), T 1/2mT (θo)⇒ SoWq(1), and

ϕ[rT ](θo)⇒ So
[
Wq(r)− rWq(1)

]
= SoBq(r), 0 ≤ r ≤ 1.

Hence, CT (θo)⇒ SoP qS
′
o with P q =

∫ 1
0 Bq(r)Bq(r)′ dr. It follows that

MT
D−→Wq(1)′P−1

q Wq(1).

This result is analogous to the result of the robust “Wald” test in (10).

In practice, θo is typically unknown and must be estimated. In the light of (13), it is

natural to compute a robust M test as

M̂T = TmT (θ̂T )′Ĉ
−1

T mT (θ̂T ), (14)
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where the normalizing matrix is ĈT = CT (θ̂T ) = T−1
∑T

t=1ϕt(θ̂T )ϕt(θ̂T )′ with

ϕt(θ̂T ) =
1√
T

t∑
i=1

[
f(ηi; θ̂T )−mT (θ̂T )

]
=
√
Tmt(θ̂T )− t

T

√
TmT (θ̂T ).

To derive the limit of (14), we note that a Taylor expansion of T 1/2m[rT ](θ̂T ) about θo
gives

√
Tm[rT ](θ̂T ) =

√
Tm[rT ](θo) +

[rT ]
T
F [rT ](θo)

[√
T (θ̂T − θo)

]
+ oIP(1), (15)

where F [rT ](θo) is defined in [B2]. The second term on the right-hand side of (15)

characterizes the estimation effect of replacing θo with θ̂T in m[rT ], and it converges

to rF oQoAoWk(1). Clearly, the estimation would be absent in the limit if F o = 0.

By (15), T 1/2mT (θ̂T ) involves the estimation effect, and [B1](b) and [B2] imply

√
TmT (θ̂T ) =

√
TmT (θo) + F T (θo)Qo

1√
T

T∑
i=1

q(ηt,θo) + oIP(1),

⇒ [Iq F oQo]GoWq+k(1)

d= V oWq(1),

where V o is the matrix square root of [Iq F oQo]GoG
′
o[Iq F oQo]′. On the other hand,

ϕ[rT ](θ̂T ) =
√
Tm[rT ](θo) +

[rT ]
T
F [rT ](θo)

[√
T (θ̂T − θo)

]
− [rT ]

T

√
TmT (θo)−

[rT ]
T
F T (θo)

[√
T (θ̂T − θo)

]
+ oIP(1)

=
√
Tm[rT ](θo)−

[rT ]
T

√
TmT (θo) + oIP(1),

which is free from the estimation effect due to “centering”. It follows that

ĈT = CT (θo) + oIP(1)⇒ SoP qS
′
o,

as in the case that θo is known. Hence, using ĈT as a normalizing matrix is unable to

eliminate the nuisance parameters in V o. Indeed,

M̂T
D−→Wq(1)′V ′o

[
SoP qS

′
o

]−1
V oWq(1),

where the matrices of nuisance parameter, V o and So, are present in the limit. It is easily

seen that, when there is no estimation effect (F o = 0) and V o = So so that

M̂T
D−→Wq(1)′P−1

q Wq(1).
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Thus, M̂T in (14) is not asymptotically pivotal unless the estimation effect is absent.

The discussion above suggests that, to construct a proper normalizing matrix in the

presence of estimation effect, ϕ[rT ] ought to preserve the estimation effect and converge

to a limit with the matrix of nuisance parameters V o. To this end, Kuan and Lee (2006)

proposed computing the normalizing matrix based on θ̃t, t = k + 1, . . . , T , which are the

recursive counterparts of θ̂T and computed from the sub-sample of first t observations.

Specifically,

C̃T = T−1
T∑

t=k+1

ϕ̃tϕ̃
′
t

with

ϕ̃t = ϕt(θ̃t, θ̃T ) =
1√
T

t∑
i=1

[
f(ηi, θ̃t)−mT (θ̃T )

]
.

The M test analogous to (14) is thus

M̃T = TmT (θ̂T )′C̃
−1

T mT (θ̂T ). (16)

For an extension of M̃T that admits kernel-based normalizing matrices, see Lee (2006).

Note that the first-order Taylor expansion of T−1/2m[rT ]

(
θ̃[rT ]

)
about θo yields

√
Tm[rT ]

(
θ̃[rT ]

)
=
√
Tm[rT ]

(
θo
)

+ F [rT ](θo)Qo

 1√
T

[rT ]∑
t=1

q(ηt;θo)

+ oIP(1),

cf. (15). Given [B1] and [B2],

√
Tm[rT ]

(
θ̃[rT ]

)
⇒ [Iq F oQo]GoWq+k(r)

d= V oWq(r),

and T 1/2mT (θ̂T )⇒ V oWq(1). Thus,

ϕ̃[rT ] =
√
Tm[rT ](θ̃[rT ])−

[rT ]
T

√
TmT (θ̃T )⇒ V oBq(r),

which involves V o, instead of So. Consequently, C̃T ⇒ V oP qV
′
o, and

M̃T
D−→Wq(1)′P−1

q Wq(1).

This shows that M̃T is asymptotically pivotal regardless of the estimation effect and has

the same weak limit as M̂T andMT . It is, however, computationally more demanding to

implement M̃T because recursive estimation is needed.

17



Figure 2: The asymptotic local powers of the standard M test (solid), M̃T (dashed) and

M̈T (dotted) at 5% level.

Remarks:

1. M̃T is not only a robust M test without consistent estimation of asymptotic covari-

ance matrix, but also an alternative to the estimation effect problem in M testing.

This is practically important for M tests because consistent estimation of the asymp-

totic covariance matrix of T 1/2mT (θ̂T ), V oV
′
o, is typically difficult.

2. It is crucial to employ a “centered” normalizing matrix in the proposed tests. Kuan

and Lee (2006) found that the M test with a non-centered normalizing matrix (in

which ϕ̃t = T−1/2
∑t

i=1 f(ηi, θ̃t)) virtually has no power. This is consistent with

a conclusion of Hall (2000) on kernel HAC estimators; see also Hall, Inoue, and

Peixe (2003). To illustrate, we plot the simulated asymptotic local powers of the

standard M test (based on its asymptotic, non-central χ2 distribution), M̃T with

a centered normalizing matrix, and M̈T with a non-centered normalizing matrix in

Figure 2. It can be seen that M̈T has no power, whereas M̃T suffers from some

power loss, compared with the asymptotic power of the standard M test.

5.2 Example: Robust Tests for Serial Correlations

We now present an example of robust M test for serial correlations. Lobato (2001) con-

structed a portmanteau test that does not require consistent estimation of the asymptotic
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covariance matrix, yet it is applicable only to raw time series. For a robust information

matrix test on high order moments, see Kuan and Lee (2006).

Consider the specification: yt = h(xt;θ) + et(θ), where h is a possibly nonlinear

function, xt is a k × 1 vector of observed variables, θ is a p × 1 vector of unknown

parameters, et(θ) is a random error. Let IE(yt|xt) = h(xt;θo) and θo is the unique

solution to IE[∇h(xt,θ)et(θ)] = 0. When h(xt;θ) is evaluated at θo, the resulting error

is denoted as εt := et(θo). For notation simplicity, we write yt−1,q = [yt−1, . . . , yt−q]′ with

q > p, ht−1,q(θ) and et−1,q(θ) are similarly defined. Note that εt−1,q := et−1,q(θo). Also

let θ̂T denote the NLS estimator, which is consistent for θo under quite general conditions.

Hence, et(θ̂T ) is the t th model residual evaluated at θ̂T , and et−1,q(θ̂T ) is the vector of q

lagged residuals, also evaluated at θ̂T .

As the well known Q test, we are interested in testing

IE[f t,q(θo)] = IE(εtεt−1,q) = 0.

Letting Tq = T − q, define

mTq
(θ) =

1
Tq

T∑
t=q+1

[
yt − h(xt;θ)

][
yt−1,q − ht−1,q(θ)

]
=

1
Tq

T∑
t=q+1

et(θ)et−1,q(θ).

We can base an M test of this hypothesis on mTq
(θ̂T ) = T−1

q

∑T
t=q+1 et(θ̂T )et−1,q(θ̂T ).

We have learned that T 1/2
q mTq

(θ̂T ) and T
1/2
q mTq

(θo) are not asymptotically equivalent

unless F Tq
(θo) converges to F o = 0, where

F Tq
(θo) =

−1
Tq

T∑
t=q+1

[
εt−1,q∇θht(θo) + εt∇θht−1,q(θo)

]
.

Note that F o would be zero if {xt} and {εt} are mutually independent. When h(xt;θo)

is a linear function x′tθo, F o = 0 when {xt} and {εt} are mutually uncorrelated.

For the models that F Tq
(θo)

IP−→ 0, the robust M test based on model residuals is

M̂Tq
= TqmTq

(θ̂T )′Ĉ
−1

Tq
mTq

(θ̂T ),

where the normalizing matrix is ĈTq
= T−1

q

∑T
t=q+1ϕt(θ̂T )ϕt(θ̂T )′ with

ϕt(θ̂T ) =
1√
Tq

t∑
i=q+1

[
ei(θ̂T )ei−1,q(θ̂T )

]
− t− q

Tq

1√
Tq

T∑
i=q+1

[
ei(θ̂T )ei−1,q(θ̂T )

]
.

This test is asymptotically pivotal with the null limit Wq(1)′P−1
q Wq(1).
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It is readily seen that M̂Tq
includes the test of Lobato (2001) for raw time series as a

special case. To see this, note that Lobato (2001) based his test on sample autocovriances.

In the present context, when h(xt;θ) contains only the constant term, the estimator θ̂T is

the sample mean of yt, and mTq
(θ̂T ) is a vector of sample autocovariances. Hence, M̂Tq

is exactly the test of Lobato (2001), which is asymptotically pivotal because the constant

is uncorrelated with all εt (so that F o = 0).

The M̂Tq
test is, however, not valid for testing the residuals of dynamic models, such

as AR models and models with lagged dependent variables. Consider now the linear

AR(p) specification: h(xt;θ) = y′t−1,pθ. As ∇θht(xt;θ) = y′t−1,p is correlated with

εt−1,q, F Tq
(θo) does not converge to zero, so that the null limit of M̂Tq

still contains

nuisance parameters. Nonetheless, we can compute the robust M test (16) using the

recursive (NLS) estimators θ̃t, t = q + 1, . . . , T . The required normalizing matrix is

C̃Tq
= T−1

q

∑T
t=q+1 ϕ̃tϕ̃

′
t with

ϕ̃t =
1√
Tq

t∑
i=q+1

[
ei(θ̃t)ei−1,q(θ̃t)

]
− t− q

Tq

1√
Tq

T∑
i=q+1

[
ei(θ̃T )ei−1,q(θ̃T )

]
,

where ei(θ̃t) = yi−h(xi; θ̃t) is the i th residual evaluated at θ̃t, and ei−1,q(θ̃t) is the vector

of q lagged residuals. The robust M test for the residuals of dynamic models is:

M̃Tq
= Tm′Tq

(θ̂T )C̃
−1

Tq
mTq

(θ̂T ) D−→Wq(1)′P−1
q Wq(1).

This test is valid for testing the residuals of both static and dynamic regression models

and is a significant generalization of the robust test of Lobato (2001).

5.3 Robust OIR Tests

For the moment conditions IE[f(ηt;θo)] = 0, the parameter θo is said to be over-identified

(just-identified) if the number of moment conditions, q, is greater than (equal to) the

number of parameters, k. The GMM estimator of θo is

θ̂T = argminθ∈Θ mT (θ)′HTmT (θ),

where HT is a symmetric, positive semi-definite weighting matrix that converges to Ho.

The normalized GMM estimator can be expressed as

√
T (θ̂T − θo) = −(F ′oHoF o)

−1F ′oHo

[
1√
T

T∑
t=1

f(ηt;θo)

]
+ oIP(1), (17)
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and its asymptotic covariance matrix is

Ωo(Ho) = (F ′oHoF o)
−1F ′oHoΣoHoF o(F

′
oHoF o)

−1.

In particular, Ωo(Σ
−1
o ) = (F ′oΣ

−1
o F o)−1. It is easily shown that Ωo(Ho) − Ωo(Σ

−1
o )

is a positive semi-definite matrix for any Ho 6= Σ−1
o . This suggests that the optimal

GMM estimator, θ̂
∗
T , can be obtained by setting the weighting matrix HT as Σ̂

−1

T , a

consistent estimator of Σ−1
o , and minimizing mT (θ)′Σ̂

−1

T mT (θ). Thus, a preliminary

GMM estimator of θo is needed to compute Σ̂T before doing optimal estimation.

The OIR test for IE[f(ηt;θo)] = 0 with q > k is an M test based on the GMM

estimator. Given the HT -based GMM estimator θ̂T and the weighting matrix ḦT , the

conventional OIR test is

J (θ̂T , ḦT ) = TmT (θ̂T )′ḦTmT (θ̂T ).

The OIR test of Hansen (1982) is J ∗ = J (θ̂
∗
T , Σ̂

−1

T ) = TmT (θ̂
∗
T )′Σ̂

−1

T mT (θ̂
∗
T ). It is not

difficult to show that J (θ̂T , ḦT ) is not asymptotically pivotal, yet J ∗ D−→ χ2(q − k).

Although the OIR test is an M test, the robust M tests studied in Section 5.1 are

not applicable. From (17) we can see that, asymptotically, the GMM estimator is a linear

transformation of the moment conditions, and hence Go in [B1](b) can not be nonsingular.

To construct a robust OIR test, let Λ denote the matrix square root of Ho such that

ΛΛ′ = Ho and

VΛ′F o
= Iq −Λ′F o(F

′
oΛΛ′F o)

−1F ′oΛ

which is symmetric and idempotent with rank q − p. Then by (17), we have

√
TmT (θ̂T ) =

[
Iq − F o(F

′
oHoF o)

−1F ′oHo

]√
TmT (θo) + oIP(1)

= Λ′−1VΛ′F o
Λ′
√
TmT (θo) + oIP(1)

D−→ U ′SoWq(1),

(18)

where U := ΛVΛ′F o
Λ−1 is singular with rank q − p.

Lee and Kuan (2006) suggested using the normalizing matrix Γ̂T = Û
′
T ĈT ÛT , where

ĈT is the normalizing matrix defined in Section 5.1 and converges in distribution to

SoP qS
′
o, and ÛT = Λ̂T V̂ T Λ̂

−1

T is a consistent estimator of U , with Λ̂T the matrix square

root of HT , F̂ T = T−1
∑T

t=1∇θf(ηt; θ̂T ), and

V̂ T = Iq − Λ̂
′
T F̂ T [F̂

′
THT F̂ T ]−1F̂

′
T Λ̂T .
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Then, Γ̂T ⇒
(
U ′SoP qS

′
oU
)
. Note that ÛT has rank q− p for all T , and so does Γ̂T . Lee

and Kuan (2006) showed that

Γ̂
+

T ⇒
(
U ′SoP qS

′
oU
)+
,

where we write A+ as the Moore-Penrose generalized inverse of A.3

A robust OIR test without consistent estimation of the asymptotic covariance matrix

can then be computed as

J (θ̂T , Γ̂
+

T ) = TmT (θ̂T )′Γ̂
+

TmT (θ̂T ).

It follows from (18) that

J (θ̂T , Γ̂
+

T ) D−→Wq(1)′S′oU
(
U ′SoP qS

′
oU
)+
U ′SoWq(1),

which equals in distribution to W q−p(1)′P−1
q−pW q−p(1), as shown in Lee and Kuan (2006).

It is worth mentioning that J (θ̂T , Γ̂
+

T ) needs only a consistent GMM estimator, in contrast

with Hansen’s OIR test that depends on the optimal GMM estimator. Compared with the

M test M̃T , J (θ̂T , Γ̂
+

T ) is also robust to the estimation effect, but its normalizing matrix

does not require recursive estimation.

3This convergence does not follow from the continuous mapping theorem because the generalized inverse

is not a continuous function in general. Here, Γ̂T is constructed such that it has rank q−k for all T , which

is also the rank of its limit U ′SoP qS
′
oU . The convergence thus carries over under this generalized inverse

because there is no rank deficiency in the limit.
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