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1

1 Introduction

Conducting various diagnostic tests is an important step in time series modeling. In

the literature, there exist numerous diagnostic tests designed to examine the dependence

(correlation) structure of a time series. If a time series is serially uncorrelated, no linear

function of the lagged variables can account for the behavior of the current variable. If

a time series is a martingale difference sequence (its precise definition will be given in

Section 3.1), no function, linear or nonlinear, of the the lagged variables can characterize

the behavior of the current variable. For a serially independent time series, there is no

any relationship between the current and past variables. Diagnostic testing on data series

thus provides information regarding how these data might be modeled. When a model is

estimated, diagnostic tests can be applied to evaluate model residuals, which also serve as

tests of model adequacy.

In practice, there are three classes of diagnostic tests, each focusing on a specific

dependence structure of a time series. The tests of serial uncorrelatedness include the

well known Q tests of Box and Pierce (1970) and Ljung and Box (1978), the robust

Q∗ test of Lobato, Nankervis, and Savin (2001), the spectral tests of Durlauf (1991),

and the robust spectral test of Deo (2000). There are also tests of the martingale dif-

ference hypothesis, including Bierens (1982, 1984, 1990), Bierens and Ploberger (1997),

Hong (1999), Dominguez and Lobato (2000), Whang (2000, 2001), Kuan and Lee (2004),

and Park and Whang (2005). For the hypothesis of serial independence, two leading

tests are the variance ratio test of Cochrane (1988) and the so-called BDS test of Brock,

Dechert, and Scheinkman (1987); see also Campbell, Lo, and MacKinlay (1997) and Brock,

Dechert, Scheinkman, and LeBaron (1996). Skaug and Tjostheim (1993), Pinkse (1998),

and Hong (1999) also proposed non-parametric tests of serial independence.

There are also tests of another important time series property, namely, time reversibil-

ity. A time series is said to be time reversible if its finite-dimensional distributions are

all invariant to the reversal of time indices. For example, sequences of independent ran-

dom variables and stationary Gaussian ARMA processes are time reversible. On the

other hand, a linear, non-Gaussian process is time irreversible in general. Tong (1990)

also states that “time irreversibility is the rule rather than the exception when it comes to

nonliearity” (p. 197). Thus, a test of time reversibility may be interpreted as a joint test of

linearity and Gaussianity or a test of independence; see e.g., Ramsey and Rothman (1996)
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and Chen, Chou, and Kuan (2000). It has been shown that a test of time reversibility is

particularly powerful against asymmetric dependence (Chen and Kuan, 2002).

In this note we shall introduce some commonly used diagnostic tests for time series.

We will not discuss non-parametric tests because they are, in general, not asymptotically

pivotal, in the sense that their asymptotic distributions are data dependent or depend

on some nuisance parameters. This note proceeds as follows. Section 2 focuses on the

tests of serial uncorrelatedness. In Section 3, we discuss the tests of the martingale dif-

ference hypothesis. Section 4 presents the variance ratio test and the BDS test of serial

independence. The tests of time reversibility are discussed in Section 5.

2 Tests of Serial Uncorrelatedness

Given a weakly stationary time series {yt}, let µ denote its mean and γ(·) denote its

autocovariance function, where γ(i) = cov(yt, yt−i) for i = 0, 1, 2, . . .. The autocorrelation

function ρ(·) is such that ρ(i) = γ(i)/γ(0). The series {yt} is serially uncorrelated if, and

only if, its autocorrelation function is identically zero.

2.1 Q Tests

To test if {yt} is serially uncorrelated, existing tests of serial uncorrelatedness focus on a

given number of autocorrelations and ignore ρ(i) for large i. The null hypothesis is, for a

given number m,

H0 : ρ(1) = · · · = ρ(m) = 0. (2.1)

Let γ̂T (i) denote the i th sample autocovariance:

γ̂T (i) =
1
T

T−i∑
t=1

(yt − ȳ)(yt+i − ȳ),

with ȳT the sample average of yt, and ρ̂T (i) = γ̂T (i)/γ̂T (0) is the i th sample autocorrela-

tion. For notation convenience, we shall suppress the subscript T and simply write ȳ, γ̂(i)

and ρ̂(i).

Writing ρm =
(
ρ(1), . . . , ρ(m)

)′, the null hypothesis (2.1) is ρm = 0, and the estimator

of ρm is ρ̂m =
(
ρ̂(1), . . . , ρ̂(m)

)′. Under quite general conditions, it can be shown that, as
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2.1 Q Tests 3

T tends to infinity,

√
T
(
ρ̂m − ρm

) D−→ N (0,V ),

where D−→ stands for convergence in distribution, and the (i, j) th element of V is

vij =
1

γ(0)2
[
ci+1,j+1 − ρ(i)c1,j+1 − ρ(j)c1,i+1 + ρ(i)ρ(j)c1,1

]
,

with

ci+1,j+1 =
∞∑

k=−∞
IE
[
(yt − µ)(yt+i − µ)(yt+k − µ)(yt+k+j − µ)

]
−

IE
[
(yt − µ)(yt+i − µ)

]
IE
[
(yt+k − µ)(yt+k+j − µ)

]
;

see Lobato et al. (2001).1 Thus,

T
(
ρ̂m − ρm

)′
V −1

(
ρ̂m − ρm

) D−→ χ2(m). (2.2)

This distribution result is fundamental for the tests presented in this section.

Under the null hypothesis, V can be simplified such that vij = ci+1,j+1/γ(0)2 with

ci+1,j+1 =
∞∑

k=−∞
IE
[
(yt − µ)(yt+i − µ)(yt+k − µ)(yt+k+j − µ)

]
.

In particular, when yt are serially independent,

ci+1,j+1 =

 0, i 6= j,

γ(0)2, i = j,
(2.3)

so that V reduces to an identity matrix. Consequently, the normalized sample autocor-

relations
√
T ρ̂(i), i = 1, . . . ,m, are independent N (0, 1) random variables asymptotically.

It follows from (2.2) that the joint test of (2.1) is

QT = T ρ̂′mρ̂m = T

m∑
i=1

ρ̂(i)2 D−→ χ2(m). (2.4)

1Fuller (1976, p. 256) gives a different expressions of V in which the (i, j) th element of V is

vij =

∞X
k=−∞

ρ(k)ρ(k − i + j)+ρ(k + j)ρ(k − i)− 2ρ(k)ρ(j)ρ(k − i)−

2ρ(k)ρ(i)ρ(k − j) + 2ρ(i)ρ(j)ρ(k)2.
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2.1 Q Tests 4

Note that the χ2 limiting distribution is obtained from the condition of serial independence,

which is stronger than the null hypothesis. This is the well known Q test of Box and

Pierce (1970).

Remark: Basing on the result that
√
T ρ̂(i) are independent N (0, 1) random variables

asymptotically, many computer programs draw a confidence interval for the plot of sample

autocorrelations ρ̂(i). For example, the 90% and 95% confidence intervals of ρ̂(i) are,

respectively, ±1.645/T 1/2 and ±1.96/T 1/2, which permit a visual check of the significance

of ρ̂(i).

When yt are independent random variables with mean zero, variance σ2, and finite 6 th

moment, we have from a result of Fuller (1976, p. 242) that

cov
(√
T ρ̂(i),

√
T ρ̂(j)

)
=

 T−i
T +O(T−1), i = j 6= 0,

O(T−1), i 6= j.

This result provides an approximation up to O(T−1). Then for sufficiently large T , the

diagonal elements of V are approximately (T − i)/T , whereas the off-diagonal elements

essentially vanish. This leads to the modified Q test of Ljung and Box (1978):

Q̃T = T 2
m∑

i=1

ρ̂(i)2

T − i

D−→ χ2(m), (2.5)

cf. (2.4). The Box-Pierce Q test and the Ljung-Box Q̃ test are asymptotically equivalent,

yet the latter ought to have better finite-sample performance because of its correction

factor (T − i)/T . In practice, the Ljung-Box Q statistic is usually computed as

T (T + 2)
m∑

i=1

ρ̂(i)2

(T − i)
,

which is of course asymptotically equivalent to (2.5).

Another modification of the Q test can be obtained by assuming that

IE
[
(yt − µ)(yt+i − µ)(yt+k − µ)(yt+k+j − µ)

]
= 0, (2.6)

for each k when i 6= j and for k 6= 0 when i = j. Given this assumption, ci+1,j+1 = 0 when

i 6= j, but

ci+1,j+1 = IE
[
(yt − µ)2(yt+i − µ)2

]
, (2.7)
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2.1 Q Tests 5

when i = j. Thus, V is diagonal with the diagonal element vii = ci+1,i+1/γ(0)2, which

can be consistently estimated by

v̂ii =
1
T

∑T−i
t=1 (yt − ȳ)2(yt+i − ȳ)2

[ 1
T

∑T
t=1(yt − ȳ)2]2

.

Then under the null hypothesis, we have the following test due to Lobato et al. (2001):

Q∗
T = T

m∑
i=1

ρ̂(i)2/v̂ii
D−→ χ2(m). (2.8)

Note that the Q∗ test does not require serial independence of yt, in contrast with the

Box-Pierce and Ljung-Box Q tests, but it requires (2.6) which is not easy to interpret.

It can be seen that (2.7) would reduce to (2.3) if yt are conditionally homoskedastic.

Thus, estimating ci+1,j+1 makes the Q∗ test more robust to conditional heteroskedasticity,

such as ARCH (autoregressive conditional heteroskedasticity) and GARCH (generalized

ARCH) processes. Note that a process may be serially uncorrelated yet conditional het-

eroskedasitic. The Q∗ test is to be preferred in practice because of its robustness.

Remarks:

1. When the Q-type tests are applied to the residuals of an ARMA(p,q) model, the

asymptotic null distribution becomes χ2(m− p− q).

2. The asymptotic distribution of the Box-Pierce and Ljung-Box Q tests is derived

under the assumption that {yt} is serially independent. This distribution result is

also valid when {yt} is a martingale difference sequence with additional moment

conditions. Thus, these Q tests can also be interpreted as tests of independence (or

martingale difference), with a focus on autocorrelations.

3. The asymptotic null distribution of the Q-type tests is valid provided that data

possess at least finite (4 + δ) th moment for some δ > 0. Many financial time series,

unfortunately, may not satisfy this moment requirement; see e.g., de Lima (1997).

For such time series, the limiting χ2 distribution of the Q tests may not be a good

approximation to its finite-sample counterpart.
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2.2 The Spectral Tests 6

2.2 The Spectral Tests

Instead of testing a fixed number of autocorrelations ρ(j), it is also possible to asymptot-

ically test if ρ(j) are all zero:

H0 : ρ(1) = ρ(2) = · · · = 0. (2.9)

Recall that the spectral density function is the Fourier transform of the autocorrelations:

f(ω) =
1
2π

∞∑
j=−∞

ρ(j)e−ijω, ω ∈ [−π, π],

where i = (−1)1/2 and ω is the frequency. When the autocorrelations are all zero, the

spectral density reduces to the constant (2π)−1 for all ω. It is then natural to base a test

of all autocorrelations by comparing the sample counterpart of f(ω) and (2π)−1.

Let IT (ω) denote the periodogram, the sample spectral density, of the time series {yt}.

The difference between IT (ω) and (2π)−1 is

1
2π

 T−1∑
j=−(T−1)

ρ̂(j)e−ijω − 1

 ,

which should be “close” to zero for all ω under the null hypothesis. Recall that exp(−ijω) =

cos(jω)− i sin(jω), where sin is an odd function such that sin(jω) = − sin(−jω), and cos

is an even function such that cos(jω) = cos(−jω). Then,

1
2π

 T−1∑
j=−(T−1)

ρ̂(j)e−ijω − 1

 =
1
π

T−1∑
j=1

ρ̂(j) cos(jω).

Integrating this function with respect to ω on [0, a], 0 ≤ a ≤ π, we obtain the cumulated

differences:

1
π

T−1∑
j=1

ρ̂(j)
sin(ja)
j

,

which should also be “close” to zero for all a under the null hypothesis. The spectral test

of Durlauf (1991) is then based on the normalized, cumulated differences:

DT (t) =
√

2T
π

m(T )∑
j=1

ρ̂(j)
sin(jπt)

j
, (2.10)

where πt = a and m(T ) is less than T but grows with T at a slower rate.
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2.2 The Spectral Tests 7

Recall that a standard Brownian motion B can be approximated by a sequence of i.i.d.

N (0, 1) random variables {εt} via the following expression:

WT (t) = ε0t+
√

2
π

T∑
j=1

εj
sin(jπt)

j
⇒ B(t), t ∈ [0, 1],

where ⇒ stands for weak convergence. Then,

WT (t)− tWT (1) =
√

2
π

T∑
j=1

εj
sin(jπt)

j
⇒ B0(t), t ∈ [0, 1], (2.11)

where B0 denotes the Brownian bridge. It is readily seen that (2.10) is quite similar to

the right-hand side of (2.11).

Recall that, under the null hypothesis, T 1/2ρ̂(j) converge in distribution to independent

N (0, 1) random variables when (i) yt are serially independent, or (ii) yt satisfy (2.6) with

conditional homoeskedasticity. Basing on the approximation (2.11) and the asymptotic

normality of T 1/2ρ̂(j), we have from (2.10) that

DT (t) ⇒ B0(t), t ∈ [0, 1]. (2.12)

The spectral tests of Durlauf (1991) are based on various functionals on DT .

Specifically, Durlauf (1991) considered the following test statistics whose limits follow

easily from (2.12) and the continuous mapping theorem.

(1) Anderson-Darling test:

ADT =
∫ 1

0

[DT (t)]2

t(1− t)
dt⇒

∫ 1

0

[B0(t)]2

t(1− t)
dt;

(2) Cramér-von Mises test:

CVMT =
∫ 1

0
[DT (t)]2 dt⇒

∫ 1

0
[B0(t)]2 dt;

(3) Kolmogorov-Smirnov test:

KST = sup |DT (t)| ⇒ sup |B0(t)|;

(4) Kuiper test:

KuT = sup
s,t
|DT (t)−DT (s)| ⇒ sup |B0(t)−B0(s)|.
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2.2 The Spectral Tests 8

These limits are also the limits of the well-known goodness-of-fit tests in the statistics

literature. Some of their critical values have been tabulated in, e.g., Shorack and Well-

ner (1986).

Similar to the finding of Lobato et al. (2001), Deo (2000) noted that when yt are con-

ditionally heteroskedastic, the asymptotic variance of T 1/2ρ̂(j) would be IE(y2
t y

2
t−j)/γ(0)2.

In this case, (2.12) fails to hold because DT is not properly normalized, and hence DT

converges to a different weak limit. As a result, the limiting distributions of the tests con-

sidered by Durlauf (1991) have thicker right-tails under conditional heteroskedasticity and

render these tests over-sized. That is, these tests reject too often under the null hypothesis

than they should.

Deo (2000) proposed the following modification of DT in (2.10):

Dc
T (t) =

√
2T
π

m(T )∑
j=1

ρ̂(j)√
v̂jj

sin(jπt)
j

,

where

√
v̂jj =

1
γ̂(0)

(
1

T − j

T−j∑
t=1

(yt − ȳ)2(yt+j − ȳ)2
)1/2

.

With additional regularity conditions, Deo (2000) consider the modified Cramér-von Mises

test based on Dc
T :

CVMc
T =

∫ 1

0
[Dc

T (t)]2 dt⇒
∫ 1

0
[B0(t)]2 dt.

This modification is analogous to the Q∗ test of Lobato et al. (2001). The simulation

results of Deo (2000) demonstrate that the modified spectral test is indeed robust to some

series that are conditionally heteroskedastic.

Remarks:

1. Durlauf (1991) refers to the spectral test as a test of the martingale difference hy-

pothesis. It should be noted, however, that the condition of all autocorrelations

being zero is necessary but not sufficient for the martingale difference hypothesis.

2. The Durlauf test compares the periodogram with the spectral density under the

null, i.e., (2π)−1. Other nonparametric tests may be constructed by comparing a

nonparametric estimate of f(ω) with (2π)−1.
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3 Tests of Martingale Difference

3.1 Martingale Difference

Let {F t} denote a sequence of information sets such that Fs ⊆ F t for all s < t. Such a

sequence is known as a filtration. A sequence of integrable random variables {yt} is said

to be a martingale difference sequence with respect to the filtration {F t} if, and only if,

IE(yt | F t−1) = 0 for all t. When {yt} is a martingale difference sequence, its cumulated

sums, ηt =
∑t

s=1 ys, are such that IE(ηt | F t−1) = ηt−1 and form the process known

as a martingale. By the law of iterated expectations, a martingale difference sequence

must have mean zero. This implication is not restrictive, as we can always evaluate the

“centered” series {yt − IE(yt)} when yt have non-zero means.

The concept of martingale difference can be related to time series non-predictability.

We say that {yt} is not predictable with respect to the filtration {F t} (in the mean-

squared-error sense) if, and only if, the conditional expectations IE(yt | F t−1) are the

same as the unconditional expectations IE(yt). That is, the conditioning variables in F t−1

do not help to improve on the forecast of yt, so that the best L2 forecast is not different

from the naive forecast. Clearly, this definition is equivalent to requiring {yt − IE(yt)}

being a martingale difference sequence with respect to {F t}.

In the time series analysis, it is quite common to choose the information sets F t as

the σ-algebras generated by Y t = {yt, yt−1, . . . , y1}. The martingale difference property

in this context is thus equivalent to the predictability of yt based on its past information

Y t−1. It should be noted that the predictability defined in this way is very restrictive,

because yt may not be predictable based on Y t−1 but may become predictable when the

information sets are expanded.

It is well known that {yt} is a martingale difference sequence if, and only if, yt are

uncorrelated with h(Y t−1) for any measurable function h, i.e.,

IE[yt h(Y
t−1)] = 0, ∀h. (3.1)

Taking h in (3.1) as the linear function, we immediately see that yt must be serially

uncorrelated with yt−1, . . . , y1. Thus, a martingale difference sequence must be serially

uncorrelated; the converse need not be true. For example, consider the following nonlinear
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3.2 Tests of Martingale Difference 10

moving average process:

yt = εt−1εt−2(εt−2 + εt + 1),

where εt are i.i.d. N (0, 1) random variables. It is clear that corr(yt, yt−j) = 0 for all j,

yet {yt} is not a martingale difference process. Recall that a white noise is a sequence

of uncorrelated random variables that have zero mean and a constant variance. Thus, a

martingale difference sequence need not be a white noise because the former does not have

any restriction on variance or other high-order moments.

If {yt} is a sequence of serially independent random variables with zero mean, we have

IE[yt h(Y
t−1)] = IE(yt) IE[h(Y t−1)] = 0,

for all measurable functions h. Thus, {yt} is necessarily a martingale difference sequence,

but the converse need not be true. Consider a simple ARCH process {yt} such that

yt = v
1/2
t εt, where εt are i.i.d. random variables with mean zero and variance 1, and

vt = a+ by2
t−1,

with a, b > 0. While {yt} is a martingale difference sequence, it is serially dependent due to

the correlations among y2
t . We thus conclude that serial independence implies martingale

difference which in turn implies serial uncorrelatedness.

3.2 Tests of Martingale Difference

We have seen that the martingale difference hypothesis is equivalent to (3.1). Testing

this hypothesis is not easy because it would be practically infeasible to test against all

measurable functions. A well known approach is to consider a class of functions, indexed by

a (nuisance) parameter, that are capable of spanning the space of functions on conditioning

variables. This approach is pioneered by Bierens (1982, 1984, 1990) and is based on

the exponential function, yet it leads to a test that is not asymptotically pivotal; see

also Bierens and Ploberger (1997). Kuan and Lee (2004) integrate out the the nuisance

parameter in the exponential function and obtain a new set of testing functions. Their

tests have a standard limiting distribution, but they check only a necessary condition

of the martingale difference hypothesis. Park and Whang (2005) base their test on the

indicator function. There are also various tests based on nonparametric approximations;

see, e.g., Hong (1999).
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4 Tests of Serial Independence

Testing serial independence is even more challenging because it is required to evaluate all

possible relations between the variable of interest and its lagged variables (or variables in

the conditioning set). In practice, diagnostic tests of serial independence typically focus

on certain aspects of the data, such as serial correlations or ARCH-type dependence (i.e.,

squared correlations). For example, McLeod and Li (1983) suggest testing whether the

first m autocorrelations of y2
t are zero using a Q test. That is, one computes (2.5) or its

variant where ρ̂(i) are the sample autocorrelations of y2
t :

ρ̂(i) =
1
T

∑T−i
t=1 (y2

t −m2)(y2
t+i −m2)

1
T

∑T
t=1(y

2
t −m2)2

,

with m2 the sample mean of y2
t . Under stronger conditions, the asymptotic null dis-

tribution of the resulting Q test remains χ2(m). Compared with other tests of serial

uncorrelatedness, this test checks another necessary condition of independence. In this

section, we shall introduce some commonly used tests of i.i.d. condition which is sufficient

for serial independence.

4.1 The Variance Ratio Test

The variance-ratio test of Cochrane (1988) is a convenient diagnostic test of the i.i.d.

hypothesis. Consider random variables yt. If these variables are i.i.d., ηt =
∑t

i=0 yi form

a random walk. Thus, the variance-ratio test is also used in applications to check the

random walk hypothesis.

Suppose that yt have mean zero and variance σ2, with t = 0, 1, . . . , kT for some k

and T . Let σ̂2 be the sample variance of yt and σ̃2
k an estimator of var(yt + · · ·+ yt−k+1)

which is kσ2 under the null hypothesis. As a result, σ̃2
k/k and σ̂2 should be close to each

other under the null. The variance ratio test is simply based on a normalized version of

σ̃2
k/(kσ̂

2). Define the sample average of y1, . . . , ykT as

ȳ =
1
kT

kT∑
t=1

(ηt − ηt−1) =
1
kT

(ηkT − η0).

The standard variance estimator of σ2 = var(ηt − ηt−1) is

σ̂2 =
1
kT

kT∑
t=1

(
ηt − ηt−1 − ȳ

)2
.
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4.1 The Variance Ratio Test 12

Under the i.i.d. null hypothesis, it can be shown that
√
kT (σ̂2 − σ2) D−→ N (0, 2σ4).

Consider the following estimator of σ2
k = var(ηt − ηt−k):

σ̃2
k =

1
T

T∑
t=1

(
ηkt − ηkt−k − kȳ

)2 =
1
T

T∑
t=1

[
k(ȳt − ȳ)

]2
,

where ȳt =
∑kt

kt−k+1 yi/k. Note that there are k observations for each t. Under the i.i.d.

hypothesis, σ2
k = kσ2, so that

√
T (σ̃2

k − kσ2) D−→ N (0, 2k2σ4).

While σ̂2 is both consistent and asymptotically efficient for σ2 under the null hypoth-

esis, σ̃2
k/k is consistent but not asymptotically efficient. Writing

1√
k

√
T (σ̃2

k − kσ2) =
√
kT

(
σ̃2

k

k
− σ2

)
=
√
kT

(
σ̃2

k

k
− σ̂2

)
+
√
kT
(
σ̂2 − σ2

)
,

(4.1)

the two terms on the right-hand side must be asymptotically uncorrelated by Haus-

man (1978).2 The fact that the left-hand side of (4.1) is distributed as N (0, 2kσ4) thus

implies

√
kT

(
σ̃2

k

k
− σ̂2

)
D−→ N

(
0, 2(k − 1)σ4

)
.

It follows that

√
kT

(
σ̃2

k

kσ̂2
− 1
)

D−→ N
(
0, 2(k − 1)

)
.

Denoting the ratio σ̃2
k/(kσ̂

2) as VR(k), we obtain the variance ratio test:

√
kT [VR(k)− 1]/

√
2(k − 1) D−→ N (0, 1),

under the null hypothesis that the data are i.i.d. It is clear that this tests depends on k.

In practice, one may employ other estimators for the variance ratio test. For example,

σ2
k may be estimated by

σ̃2
k =

1
kT

kT∑
t=k

(
ηt − ηt−k − kȳ

)2
.

2Let θ̂e be a consistent and asymptotically efficient estimator of the parameter θ and θ̂c a consistent

estimator but not asymptotically efficient. Writing θ̂c = θ̂c − θ̂e + θ̂e, Hausman (1978) showed that θ̂e

is asymptotically uncorrelated with θ̂c − θ̂e. For if not, there would exist a linear combination of θ̂e and

θ̂c − θ̂e that is asymptotically more efficient than θ̂e.
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One may also correct the bias of variance estimators and compute

σ̂2 =
1

kT − 1

kT∑
t=1

(
ηt − ηt−1 − ȳ

)2
,

σ̃2
k =

1
M

kT∑
t=k

(
ηt − ηt−k − kȳ

)2
,

where M = (kT − k+1)(1− 1/T ). See Taylor (2005) for the test with a different variance

estimator; Campbell, Lo, and MacKinlay (1997) provide detailed discussion of this test.

4.2 The BDS Test

The BDS test of serial independence also checks whether a sequence of random variables are

i.i.d. Let Y n
t = (yt, yt+1, . . . , yt+n−1). Define the correlation integral with the dimension

n and distance ε as:

C(n, ε) = lim
T→∞

(
T − n

2

)−1∑
∀s<t

Iε(Y
n
t ,Y

n
s ),

where Iε(Y n
t , Y

n
s ) = 1 if the maximal norm ‖Y n

t −Y n
s ‖ < ε and 0 otherwise. We may also

define

Iε(Y
n
t , Y

n
s ) =

n−1∏
i=0

1{|yt+i−ys+i|<ε},

where 1A is the indicator function of the event A. The correlation integral is a measure of

the proportion that any pairs of n-vectors (Y n
t and Y n

s ) are within a certain distance ε.

If yt are indeed i.i.d., Y n
t should exhibit no pattern in the n-dimensional space, so that

C(n, ε) = C(1, ε)n. The BDS test is designed to check whether the sample counterparts

of C(n, ε) and C(1, ε)n are sufficiently close. Specifically, the BDS statistic reads

BT (n, ε) =
√
T − n+ 1(CT (n, ε)− CT (1, ε)n)/σ̂(n, ε),

where

CT (n, ε) =
(
T − n

2

)−1∑
∀s<t

Iε(Y
n
t ,Y

n
s ),

and σ̂2(n, ε) is a consistent estimator of the asymptotic variance of
√
T − n+ 1CT (n, ε);

see Brock et al. (1996) for details. It has been shown that the asymptotic null distribution

of the BDS test is N (0, 1).
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The performance of the BDS test depends on the choice of n and ε. There is, however,

no criterion to determine these two parameters. In practice, one may consider several

values of n and set ε as a proportion to the sample standard deviation sT of the data,

i.e., ε = δsT for some δ. Common choices of δ are 0.75, 1, and 1.5. An advantage of the

BDS test is that, owing to the indicator function in the statistic, it is robust to random

variables that do not possess high-order moments. The BDS test usually needs a large

sample to ensure proper performance. Moreover, it has been found that the BDS test

has low power against certain forms of nonlinearity such as self-exciting threshold AR

processes (Rothman, 1992) and neglected asymmetry in volatility (Hsieh, 1991; Brooks

and Henry, 2000; Chen and Kuan, 2002); see also Hsieh (1989, 1993) and Brooks and

Heravi (1999).

5 Tests of Time Reversibility

A different type of diagnostic test focuses on the property of time reversibility. A strictly

stationary process {yt} is said to be time reversible if its finite-dimensional distributions

are all invariant to the reversal of time indices. That is,

Ft1,t2,...,tn(c1, c2, . . . , cn) = Ftn,tn−1,...,t1(c1, c2, . . . , cn).

When this condition does not hold, {yt} is said to be time irreversible. Clearly, indepen-

dent sequences and stationary Gaussian ARMA processes are time reversible. Rejecting

the null hypothesis of time reversibility thus implies that the data can not be serially

independent. As such, the test of time reversibility can also be interpreted as a test of

serial independence.

Time irreversibility indicates some time series characteristics that can not be described

by the autocorrelation function. When {yt} is time reversible, it can be shown that for

any k, the marginal distribution of yt − yt−k must be symmetric about the the origin. To

see this, let A(x) = {(a, b) : b− a ≤ x} and B(x) = {(a, b) : b− a ≥ −x}. Then,∫
B(x)

dFt,t−k(a, b) = 1−
∫

A(−x)
dFt,t−k(a, b),

As time reversibility implies Ft,t−k(a, b) = Ft,t−k(b, a), we have∫
B(x)

dFt,t−k(a, b) =
∫

B(x)
dFt,t−k(b, a) =

∫
A(x)

dFt,t−k(b, a) =
∫

A(x)
dFt,t−k(a, b).
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This shows that∫
A(x)

dFt,t−k(a, b) = 1−
∫

A(−x)
dFt,t−k(a, b),

so that yt − yt−k has a symmetric distribution for each k. See also Cox (1981) and Chen,

Chou, and Kuan (2000).

If this symmetry fails for some k, there is some asymmetric dependence between yt and

yt−k, in the sense that the effect of yt−k on yt is different from that of yt on yt−k. In view

of this symmetry property, we may infer that nonlinear time series are time irreversible in

general. Moreover, linear and stationary processes with non-Gaussian innovations are also

typically time irreversible. Compared with existing tests of serial independence, a test of

time reversibility has a different focus on time series properties and thus serves as a useful

diagnostic test.

Existing tests of time reversibility aim at checking symmetry of yt − yt−k for each k.

A necessary condition of distribution symmetry is its third central moment being zero.

One may then test time reversibility by evaluating whether the sample third moment is

sufficiently close to zero. Observe that by stationarity,

IE(yt − yt−k)
3 = IE(y3

t )− 3 IE(y2
t yt−k) + 3 IE(yty

2
t−k)− IE(y3

t−k)

= −3 IE(y2
t yt−k) + 3 IE(yty

2
t−k),

where the two terms on the right-hand side are referred to as the bi-covariances. Ramsey

and Rothman (1996) base their test of time reversibility on the sample bi-covariances.

Note that both the third-moment test and bi-covariance test require the data to possess

at least finite 6 th moment. Unfortunately, most financial time series do not satisfy this

moment condition. On the other hand, Chen, Chou and Kuan (2000) consider a different

testing approach that is robust to the failure of moment conditions.

It is well known that a distribution is symmetric if, and only if, the imaginary part of

its characteristic function is zero. Hence, time reversibility of {yt} implies that

hk(ω) := IE
[
sin
(
ω(yt − yt−k)

)]
= 0, for all ω ∈ R+. (5.1)

Note that (5.1) include infinitely moment conditions indexed by ω. Let g be a positive

function such that
∫
g(ω) dω < ∞. By changing the orders of integration, (5.1) implies

that ∫
R+

hk(ω)g(ω) dω =
∫

R

(∫
R+

sin
(
ω(yt − yt−k)

)
g(ω) dω

)
dF = 0,
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where F is the distribution function of yt. This condition is equivalent to

IE[ψg(yt − yt−k)] = 0, (5.2)

where

ψg(yt − yt−k) =
∫

R+

sin
(
ω(yt − yt−k)

)
g(ω) dω.

To test (5.2), Chen, Chou, and Kuan (2000) suggest basing a test on the sample average

of ψg(yt − yt−k):

Cg,k =
√
Tkψ̄g,k/σ̄g,k, (5.3)

where Tk = T − k with T the sample size, ψ̄g,k =
∑T

t=k+1 ψg(yt − yt−k)/Tk, and σ̄2
g,k is

a consistent estimator of the asymptotic variance of
√
Tkψ̄g,k. A suitable central limit

theorem then ensures that Cg,k is asymptotically distributed as N (0, 1) under the null

hypothesis (5.2).

A novel feature of this test is that, because ψg(·) is bounded between 1 and −1, no

moment condition is needed when the central limit theorem is invoked. Yet a major

drawback of Cg,k is that the null hypothesis (5.2) is only a necessary condition of (5.1).

Indeed, hk may be integrated to zero by some g function even when hk is not identically

zero. For such a g function, the resulting Cg,k test does not have power against asymmetry

of yt − yt−k. Choosing a proper g function is therefore crucial for implementing this test.

Chen, Chou, and Kuan (2000) observed that for absolutely continuous distributions, hk(ω)

is a damped sine wave and eventually decays to zero as ω → ∞; see Figure 1 for hk of

various “centered” exponential distributions. This suggests choosing g as a function that

takes large values for small ω but small values for large ω. A density function of a random

variable on R+ is a potential choice.

Chen, Chou, and Kuan (2000) set g as the density of the exponential distribution

(g = exp) with the parameter β > 0, i.e., g(ω) = exp(−ω/β)/β. This choice of g leads to

the following analytic expression for ψg:

ψexp(yt − yt−k) =
β(yt − yt−k)

1 + β2(yt − yt−k)2
. (5.4)

The closed form (5.4) renders the computation of Cexp,k test quite easy. One simply plugs

the data into (5.4) and calculates their sample average and a consistent estimator for the
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1

2

w

0

Figure 1: h(ω) of centered exponential distributions with β = 0.5 (line 0), β + 1 (line 1)

and β = 2 (line 2).

standard error. The test statistic is now readily computed as (5.3). It has been shown

that the Cexp,k test performs strikingly well in finite samples and is very robust to the data

without proper moments. The third-moment-based test and the bi-covariance test, on the

other hand, have little power when the data suffer from moment failure.

Chen and Kuan (2002) also demonstrated that the Cexp,k test is very powerful against

asymmetric dependence in data. In particular, it is shown that existing tests, such as

Q-type tests and the BDS test, fail to distinguish between EGARCH and GARCH models

when they are applied to examine the standardized model residuals. Yet, the Cexp,k test

is much more sensitive to the difference between symmetry and asymmetry in volatility.

Remarks:

1. One may consider testing a condition equivalent to (5.1). For example, a Cramér-von

Mises type condition is based on∫
R+

hk(ω)2g(ω) dω,

which is zero if, and only if, (5.1) holds. This condition, however, does not permit

changing the orders of integration. The resulting test is more difficult to implement

and usually has a data-dependent distribution.

2. The Cexp,k test is flexible in practice. By varying the value of β, Cexp,k is able to check

departures from (5.2) in different ways. When a small β is chosen, the resulting test
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focuses more on hk(ω) with smaller ωs. On the other hand, more hk(ω) can be taken

into account by setting β large. How to choose an optimal β remains an unsolved

problem, however.

3. Chen and Kuan (2002) noted that when model residuals are plugged into ψg, the

resulting standard error in the test (5.3) is more difficult to estimate, due to presence

of “estimation effect.” A convenient way is to compute a bootstrapped standard

error.

c© Chung-Ming Kuan, 2008, 2009



19

References

Bierens, Herman J. (1982). Consistent model specification tests, Journal of Econometrics,

20, 105–134.

Bierens, Herman J. (1984). Model specification testing of time series regressions, Journal

of Econometrics, 26, 323–353.

Bierens, Herman J. (1990). A consistent conditional moment test of functional forms,

Econometrica, 58, 1443–1458.

Bierens, Herman J. and Werner Ploberger (1997). Asymptotic theory of integrated con-

ditional moment tests, Econometrica, 65, 1129–1151.

Box, G. E. P. and David A. Pierce (1970). Distribution of residual autocorrelations in

autoregressive-integrated moving average time series models, Journal of the American

Statistical Association, 65, 1509–1526.

Brock, W. A., W. D. Dechert and J. A. Scheinkman (1987). A test for independence based

on the correlation dimension, Working paper, Department of Economics, University

of Wisconsin at Madison.

Brock, W. A., W. D. Dechert, J. A. Scheinkman, and B. LeBaron (1996). A test for

independence based on the correlation dimension, Econometric Reviews, 15, 197–

235.

Brooks, Chris and Saeed M. Heravi (1999). The effect of (mis-specified) GARCH filters

on the finite sample distribution of the BDS test, Computational Economics, 13,

147–162.
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