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Linear Equations

De�nition

A linear equation in n-variables x1, x2, ..., xn is one that can be written in

the form

a1x1 + a2x2 + ...+ anxn = b

for coe�cients ai , i = 1, ...n and b all constants.

A linear equation in three variables corresponds to a plane in three

dimensional space.

Solutions to a system of three equations are points that lie on all three

planes
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Linear Equations

We can have the following type of solutions:

Unique solution.

No solution.

Many solutions
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Linear Equations: Example

Consider the following system of equations:

x1 + x2 + x3 = 2

2x1 + 3x2 + x3 = 3

x1 − x2 − 2x3 = −6

By substitution we can see that the solution to this system is

x := (x1, x2, x3) = (−1, 1, 2).

Christos Michalopoulos Linear Algebra September 24, 2011 4 / 93



Matrices

De�nition

A matrix is a rectangular array of numbers. The numbers in each array are

called the elements of the matrix.

In the example above, we get the following augmented matrix:1 1 1 2

2 3 1 3

1 −1 −2 −6


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Elementary Transformations

Elementary transformations can be used to change a system of linear

equations into another system of linear equations that has the same

solution.

Elementary Transformations

Interchange two equations.

Multiply both sides of an equation by a non-zero constant.

Add a multiple of one equation to another equation.

Systems of equations that are related through elementary transformations

are called equivalent systems.
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Elementary Row Operations

Elementary Row Operations

Interchange two rows of a matrix.

Multiply the elements of a row by a non-zero constant.

Add a multiple of the elements of one row to the corresponding

elements of another row.

Matrices that are related through elementary row operations are called row

equivalent matrices.

Equivalence is indicated by the symbol ≈.
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Gauss-Jordan Elimination

De�nition

Gauss-Jordan Elimination is a method to solve a system of linear

equations and is based on the above elementary transformations.

To solve our system of three linear equations above by the Gauss-Jordan

method, we follow (in matrix form) the steps below:

Step 1: Create zeros in column 1: Operation needed: R2+(-2)R1 and

R3+(-1)R1. We get 1 1 1 2

0 1 −1 −1

0 −2 −3 −8


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Gauss-Jordan Elimination

Step 2: Create appropriate zeros in column 2: Operation needed:

R1+(-1)R2 and R3+(2)R2. We get1 0 2 3

0 1 −1 −1

0 0 −5 10


Step 3: Make the (3,3)-element 1 (normalizing element): Operation

needed: (-1/5)R3. We get1 0 2 3

0 1 −1 −1

0 0 1 2


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Gauss-Jordan Elimination

Step 4: Create zeros in column 3: Operation needed: R1+(-2)R3 and

R2+R3. We get 1 0 0 −1

0 1 0 1

0 0 1 2


Step 5: Get the corresponding solution:

x1 = −1, x2 = 1, x3 = 2.
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Gauss-Jordan Elimination

Gauss-Jordan Elimination

Write down the augmented matrix for the system of linear equations.

Derive the reduced echelon form of the augmented matrix using

elementary row operations. This is done by creating leading 1s, then

zero above and below each each leading 1, column by column, starting

with the �rst column.

Write down the system of linear equations corresponding to the

reduced echelon form. This system gives the solution.
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Homogeneous Systems of Linear Equations

De�nition

A system of linear equations is called homogeneous if all the constant

terms are zero, i.e. b = 0.

A homogeneous system of linear equations in n-variables has the trivial

solution when x1 = x2 = · · · = xn = 0.

A homogeneous system of linear equations that has more variables

than equations has many solutions. One of these solutions is the

trivial one.

Christos Michalopoulos Linear Algebra September 24, 2011 12 / 93



The vector space Rn

For vectors u = (u1, ..., un) ∈ Rn and v = (v1, ..., vn) ∈ Rn,we de�ne
the operations of addition and scalar multiplication as follows:

(i) Addition: u+ v = (u1 + v1, ..., un + vn);

(ii) Scalar multiplication: cu = (cu1, ..., cun).

Further Properties:

(a) Commutativity: u+ v = v + u.

(b) Assosiativity: u+ (v +w) = (u+ v) +w.

(c) Zero vector: u+ 0 = 0+ u = u.

(d) Negative vector: u+ (−u) = 0.

(e) Distributivity: c(u+ v) = cu+ cv, (c + d)u = cu+ du and

c(du) = (cd)u.

(f) Scalar multiplication by 1: 1u = u.
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Basis and Dimension

Example

Consider the vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) in R3. They have the

following two properties:

They span R3: we can write an arbitrary vector (x , y , z) as a linear

combination of those three vectors, i.e.

(x , y , z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).

They are linearly independent: the identity

p(1, 0, 0) + q(0, 1, 0) + r(0, 0, 1) = 0

for scalars p, q and r , has the unique solution p = q = r = 0.
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Basis and Dimension

Basis

A set of vectors that satis�es the above two properties is called a basis.

Spanning implies that every vector in R3 can be expressed in terms of

the above three vectors which are called the standard basis of R3.

Independence means that noone of the three vectors can be written as

a linear combination of the other two.

Standard Basis on Rn

The set {(1, 0, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ..., 1)} of n-vectors is the

standard basis of Rn and its dimension is n.
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Span, Linear Independence and Basis

De�nition

The vectors v1,v2 and v3 are said to span a space if every vector v in the

space can be expressed as a linear combination of them, i.e.

v = av1 + bv2 + cv3.

De�nition

The vectors v1,v2 and v3 are said to be linearly independent if the

identity

pv1 + qv2 + rv3 = 0

is only true for p = q = r = 0. Else they are linearly dependent.

De�nition

A basis for a space is a set that spans the space and is linearly independent.

The number of vectors in a basis is called the dimension of the space.
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Strategy for showing Linear Dependence/Independence

Strategy to show linear dependence/independence

For a set of vectors {v1,v2, . . .vn},

1. Write the equation c1v1 + c2v2 + · · ·+ cnvn = 0.

2. Express this equation as a system of simultaneous linear equations in

the unknowns c1, c2, . . . , cn.

3. Solve these equations.

If the only solution is ci = 0 all i , the set of vectors is linearly independent.

If in the solution at least one of ci , i = 1, . . . , n is not zero, then the set of

vectors is linearly dependent.
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Linear Dependence/Independence: Example

Example: Is the set of vectors {(2, 0, 0), (0, 0, 1), (−1, 2, 1)} in R3 linearly

independent?

Follow the strategy of the previous frame. Write,

a(2, 0, 0) + b(0, 0, 1) + c(−1, 2, 1) = (0, 0, 0)

which simpli�es to (2a − c , 2c , b + c) = (0, 0, 0).

Solve the simultaneous equations,

2a − c = 0

2c = 0

b + c = 0

The solution is a = b = c = 0, therefore this set of vectors in linearly

independent.
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Dot Product

De�nition

Let u = (u1, · · · , un) and v = (v1, · · · , vn) be two vectors in Rn. The dot

product of u and v is denoted by u · v and is de�ned by

u · v = u1v1 + u2v2 + · · ·+ unvn.

The dot product assigns a real number to each pair of vectors.
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Dot Product: Properties

Properties of the Dot Product

Let u,v and w be vectors in Rn and c a scalar. Then

(1) u · v = v · u.
(2) (u+ v) ·w = ·w + v ·w.

(3) cu · v = c(u · v) = u · cv.
(4) u · u ≥ 0 and u · u = 0 if and only if u = 0.
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Norm of a vector

De�nition

The norm of a vector u = (u1, · · · , un) in Rn is denoted by ‖u‖ and is

de�ned by

‖u‖ =

√
(u1)2 + (u2)2 + · · ·+ (un)2.

Norm and Dot Product

The norm of a vector can also be written in terms of the dot product

‖u‖ =
√
u · u.

Unit vector

A unit vector is a vector whose norm is one. If v is a nonzero vector, then

the vector u = 1
‖v‖v is the unit vector in the direction of v.
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Norm of a vector: Example

For the vector (2,−1, 3), its norm is

‖(2,−1, 3)‖ =

√
22 + (−1)2 + 32 =

√
14.

The normalized vector is

1√
14

(2,−1, 3) =

(
2√
14
,

−1√
14
,

3√
14

)
.
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Angle between vectors

De�nition

For two nonzero vectors u and v in Rn, the cosine of the angle θ between

these vectors is

cos θ =
u · v
‖u‖ ‖v‖

, 0 ≤ θ ≤ π.
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Angle between vectors

The law of cosines gives AB2 = OA2 + OB2 − 2(OA)(OB) cos θ. Solving

for cos θ gives

cos θ =
OA2 + OB2 − AB2

2(OA)(OB)
.

Then, we have

OA2 + OB2 − AB2 = ‖u‖2 + ‖v‖2 − ‖v − u‖2 = 2ac + 2db = 2u · v.

Furthermore 2(OA)(OB) = 2‖u‖ ‖v‖. Hence the angle θ between two

vectors in R2 is given by

cos θ =
u · v
‖u‖ ‖v‖

.

The Cauchy-Schwartz inequality (later) assures us that∣∣∣∣ u · v
‖u‖ ‖v‖

∣∣∣∣ ≤ 1.
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Some additional results

Orthogonality

Two nonzero vectors u and v are orthogonal if and only if u · v = 0.

From the above angle formula, this happens when θ = π
2
.

Orthonormal sets

A set of unit pairwise orthogonal vectors, is called an orthonornal set.

For example, the standard basis for Rn,

{(1, 0, · · · , 0), (0, 1, · · · , 0), · · · , (0, 0, · · · , 1)}

is an orthonormal set.
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Three Important Results

The Cauchy-Schwartz Inequality

For vectors u,v ∈ Rn, we have

|u · v| ≤ ‖u‖ ‖v‖.

Triangle Inequality

‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Pythogonean Theorem

If u · v = 0, then ‖u+ v‖2 = ‖u‖2 + ‖v‖2.
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Proof of Cauchy-Schwartz Inequality

Trivial when u = 0 so take u 6= 0. Consider the vector ru+ v, r ∈ R. By

dot product's properties we have

(ru+v) · (ru+v) = r2(u ·u)+2r(u ·v)+v ·v and (ru+v) · (ru+v) ≥ 0.

Therefore r2(u · u) + 2r(u · v) + v · v ≥ 0. De�ne a = u · u, b = 2u · v
and c = v · v. Then ar2 + br + c ≥ 0. This implies the quadratic function

f (r) = ar2 + br + c is never negative, its graph is a parabola and must

have either one zero or no zeros. Using the discriminant, we have,

no zeros : b2 − 4ac < 0, one zero : b2 − 4ac = 0.

We have, b2 − 4ac ≤ 0⇒ (2u · v)2 ≤ 4(u · u)(v · v)⇒ (u · v)2 ≤ ‖u‖2‖v‖2 and taking the square root on both sides

completes the proof.
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Proof of Triangle Inequality

By the properties of the norm

‖u+ v‖2 = (u+ v) · (u+ v) = u · u+ 2u · v + v · v

= ‖u‖2 + 2u · v + ‖v‖2 ≤ ‖u‖2 + 2|u · v| + ‖v‖2.

By the Cauchy-Schwartz inequality, we have

‖u+ v‖ ≤ ‖u‖2 + 2‖u‖ ‖v| + ‖v‖2 = (‖u+ v‖)2.

Taking the square root of each side completes the proof.
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Proof of the Pythagorean Theorem

By the properties of the dot product and the fact that u · v = 0, we have

‖u+ v‖2 = (u+ v) · (u+ v) = u · u+ 2u · v + v · v

= ‖u‖2 + ‖v‖2.

This completes the proof.
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Types of Matrices

Square 3× 3 matrix:

α11 α12 α13

α21 α22 α23

α31 α32 α33

.

Diagonal 3× 3 matrix:

α11 0 0

0 α22 0

0 0 α33

.

This is written as diag(α11, α22, α33).

Identity 3× 3 matrix:

1 0 0

0 1 0

0 0 1

.

Null 3× 3 matrix:

0 0 0

0 0 0

0 0 0

.
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Types of Matrices

Upper Triangular 3× 3 matrix:

α11 α12 α13

0 α22 α23

0 0 α33

.

Lower Triangular 3× 3 matrix:

α11 0 0

α21 α22 0

α31 α32 α33

.
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Complex Matrices

Take a complex number z = a + bi where i =
√

−1. Its conjugate is

z = a − bi . A complex matrix has complex elements.

De�nition

The conjugate of a matrix A, denoted by A is obtained by taking the

conjugate of each element of the matrix. The conjugate transpose is

de�ned by A∗ = A
ᵀ
. A square matrix A is called Hermitian, if A = A∗.

Example: Matrix C =

(
2 3 − 4i

3 + 4i 6

)
is Hermitian. We have,

C =

(
2 3 + 4i

3 − 4i 6

)
, C ∗ = C

ᵀ
=

(
2 3 − 4i

3 + 4i 6

)
= C .
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Complex Matrices: Properties

Properties of Conjugate Transpose

(a) (A + B)∗ = A∗ + B∗

(b) (zA)∗ = zA∗

(c) (AB)∗ = B∗A∗

(d) (A∗)∗ = A
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Matrix operations I

Two matrices A and B are equal if they have the have the same number

of rows and columns and if αij = βij for every i , j .

The transpose of an m × n matrix A, denoted as AT, is the n ×m matrix

whose (i , j)th element is the (j , i)th element of A.

A matrix A is said to be symmetric if A = AT. Note that a diagonal

matrix is symmetric while a triangular one is not.

Matrix addition works for matrices of the same size and it involves

element-by-element addition. Also matrix addition is commutative i.e.

A+B = B+A and associative i.e. A+ (B+C) = (A+B) +C. Also

A+ 0 = A for the matrix of zeros 0.

Furthermore, cA = Ac ∀c ∈ R, −A = −1×A and

A+ (−A) = A−A = 0.
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Matrix operations II

• The matrix multiplication is denoted by AB and this operation is valid

only when the number of columns of A is the same as the number of rows

of B. This is usually expressed by saying that the matrices are conformable

to multiplication.

• Take Am×n and Bn×p. Then AB works and the resulting matrix has

dimension m × p with elements de�ned by
∑n

k=1 αikβkj .

• Note that matrix multiplication is NOT commutative, i.e. AB 6= BA.

Actually BA may not even be de�ned in some cases.

• Assosiativity of matrix multiplication and distributivity with respect to

matrix addition hold, i.e.

A(BC) = (AB)C and A(B+C) = AB+AC.
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Matrix operations II: Econometrics example

Take the simple two-variable regression model,

Yi = β1 + β2Xi + ui .

With the help of matrix algebra this can be written as,

Y = Xβ + u

if we de�ne, Y =

Y1

...

Yn

, X =

1 X1

...
...

1 Xn

, β =

(
β1

β2

)
u =

u1
...

un

.

Here we see the matrix operations of summation and multiplication in

action.
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Matrix operations III

Take two d -dimensional vectors x and y. Their inner product is de�ned as

x · y = xTy =

d∑
i=1

xiyi = scalar.

For an m-dimensional vector x and an n-dimensional vector y, we de�ne

their outer product to be the matrix xyT.

Outer product example:

xyT =

x1x2
x3

 [y1 y2 y3
]

=

x1y1 x1y2 x1y3
x2y1 x2y2 x2y3
x3y1 x3y2 x3y3


3×3

.

Note that,

x · x = xTx =

d∑
i=1

x2i ≥ 0.

The above includes the standard Euclidean norm denoted as

‖ x ‖= (xTx)1/2.
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Transformations I

De�nition

A transformation (mapping) T : Rn → Rm is a rule that assigns to each

vector u ∈ Rn a unique vector v ∈ Rm. Rn is called the domain of T and

Rm is the codomain. We write T (u) = v and v is the image of u under T .

Dilation and Contraction

Consider the transformation

T

([
x

y

])
= r

[
x

y

]
, r ∈ R+.

If r > 1, T moves points away from the origin and is called a dilation of

factor r . If 0 < r < 1, T moves points closer to the origin and is called a

contraction of factor r .
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Transformations II

Re�ection

Consider the transformation

T

([
x

y

])
=

[
x

−y

]
.

T maps every point in R2 into its mirror image in the x-axis. T is called a

re�ection.

Rotation about the origin

Consider a rotation T about the origin through an angle θ. T is de�ned by

T

([
x

y

])
=

[
cos θ − sin θ

sin θ cos θ

] [
x

y

]
.
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Transformations III

Rotation of π/2 about the origin: Since cos(π/2) = 0 and sin(π/2) = 1,

we have

T

([
x

y

])
=

[
0 − 1

1 0

] [
x

y

]
.
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Transformations IV

De�nition

A translation is a transformation T : Rn → Rn de�ned by

T (u) = u+ v

for a �xed vector v.

De�nition

An a�ne transformation is a transformation T : Rn → Rn de�ned by

T (u) = Au+ v

for a �xed vector v and matrix A.
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Transformations: Examples
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Matrix Transformations

De�nition

Let A be an m × n matrix and x be an element of Rn written in column

matrix form. A de�nes a matrix transformation T (x) = Ax of Rn into

Rm with domain Rn and codomain Rm. The vector Ax is the image of x.

Matrix transformations map line segments into line segments (or points). If

the matrix is invertible the transformation also maps parallel lines into

parallel lines.

De�nition

A composite transformation T = T2 ◦ T1 is given by

T (x) = T2(T1(x)) = T2(A1x) = A2A1x

for matrix transformations T1(x) = A1x and T2(x) = A2x.
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Orthogonal Transformations

De�nition

An orthogonal matrix A is an invertible matrix with the property

A−1 = Aᵀ. An orthogonal transformation is a transformation

T (u) = Au where A is an orthogonal matrix.

Theorem

Let T be an orthogonal transformation on Rn and u,v ∈ Rn. Let P,Q be

points in Rn de�ned by u and v and let R, S be their images under T .

Then

‖u‖ = ‖T (u)‖

angle between u and v = angle between T (u) and T (v).

Orthogonal transformations preserve norms, angles and distances.
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Orthogonal Transformations

T is orthogonal, ‖u‖ = ‖T (u)‖, ‖v‖ = ‖T (v)‖, angle α = angle β and

d(P,Q) = d(R, S) where d(u,v) =
√

(u1 − v1)2 + · · ·+ (un − vn)2.
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The Hessian of a matrix I

Take a vector-valued function f = (f1, f2, . . . , fn) : Rm → Rn. Then, we

denote the m × n matrix of the �rst-order derivatives of f with respect to

the elements of x (x ∈ Rm) as,

∇xf(x) =


∂f1(x)
∂x1

∂f2(x)
∂x1

· · · ∂fn(x)
∂x1

∂f1(x)
∂x2

∂f2(x)
∂x2

· · · ∂fn(x)
∂x2

...
...

. . .
...

∂f1(x)
∂xm

∂f2(x)
∂xm

· · · ∂fn(x)
∂xm

 .
This becomes a column vector when n = 1 and is called the gradient

vector of f (x).
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The Hessian of a matrix II

The m × n Hessian matrix of the second derivatives of the real-valued

function f (x) is

∇2
xf (x) = ∇x(∇xf (x))


∂2f (x)
∂x1∂x1

∂2f (x)
∂x1∂x2

· · · ∂2f (x)
∂x1∂xm

∂2f (x)
∂x2∂x1

∂2f (x)
∂x2∂x2

· · · ∂2f (x)
∂x2∂xm

...
...

. . .
...

∂2f (x)
∂xm∂x1

∂2f (x)
∂xm∂x2

· · · ∂2f (x)
∂xm∂xm

 .

Notice that a Hessian matrix is a square matrix.
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The Kronecker product

This is a special type of matrix multiplication without being concerned

about matrices' dimension restrictions.

More speci�cally, de�ne A := (αij) and B := (βst). The Kronecker product

transforms these two matrices into a matrix containing all products αijβst .

A⊗B =

α11B . . . α1nB
...

...

αm1B . . . αmnB

.
The dimension of the above matrix is mp × nq for m × n matrix A and

p × q matrix B.
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The Kronecker product: Example

Let A =

[
2 5 2

0 6 3

]
and B =

[
2 4 1

3 5 0

]
. We have,

AT ⊗B =

2B 0

5B 6B

2B 3B

 =



4 8 2 0 0 0

6 10 0 0 0 0

10 20 5 12 24 6

15 25 0 18 30 0

4 8 2 6 12 3

6 10 0 9 15 0


.
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The Kronecker product: Properties

The Kronecker product satis�es the following properties:

Kronecker product properties

1. A⊗ (B+C) = A⊗B+A⊗C.

2. A⊗ (B⊗C) = (A⊗B)⊗C.

3. aA⊗ bB = ab(A⊗B) for scalars a,b.

4. (A⊗B)(C⊗D) = AC⊗BD.

5. (A⊗B)T = AT ⊗BT.

6. (A⊗B)−1 = A−1 ⊗B−1.

Christos Michalopoulos Linear Algebra September 24, 2011 50 / 93



The Kronecker product: Properties

The Kronecker product is NOT commutative, i.e.

A⊗B 6= B⊗A.

As an example, consider

(1 0)⊗ (0 1) = (0 1 0 0)

and

(0 1)⊗ (1 0) = (0 0 1 0).
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Basic vectors and matrix calculus

We give here the basic rules one needs to know.

For d -dimensional vectors x and y, we have,

∇y(xTy) = x.

For a symmetric matrix A we have,

∇x(x
TAx) = 2Ax (gradient), ∇2

x(x
TAx) = 2A (Hessian).

Notice that the form xTAx is called quadratic form.
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Di�erentiation of Linear Forms

Results

(1) ∂cᵀx
∂x = c for c a conformable vector.

(2) ∂qx
∂x = qᵀ for q a conformable matrix.

(3) ∂xᵀq
∂x = q for q a conformable matrix or vector.

(4) ∂x
∂xᵀ = ∂xᵀ

∂x = I.
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Di�erentiation of Quadratic Forms

Results

(1) ∂xᵀqx
∂x = 2qx if q is a symmetric matrix.

(2) ∂xᵀqx
∂x = (q+ qᵀ)x.

(3) ∂xᵀqx
∂x∂xᵀ = 2q if q is a symmetric matrix.

(4) ∂xᵀqx
∂x = q+ qᵀ.
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Matrix Determinant and Trace

De�nition

For a square matrix A, let Aij denote the submatrix obtained from A by

deleting its i th row and j th column. Then, the determinant of A is

det(A) =

m∑
i=1

(−1)i+jαij det(Aij),

for any j = 1, . . . , n where (−1)i+j det(Aij) is called the cofactor of αij .

Determinant of a 2× 2 matrix: α11α22 − α12α21.

Determinant of a 3× 3 matrix:

α11α22α33−α11α23α32+α12α23α31−α12α21α33+α13α21α32−α13α22α31.
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Matrix Determinant: Example

Consider matrix A =


2 3 0 5

1 4 0 2

5 4 8 5

2 1 0 5

. It is convenient to use cofactor

expansion by column 3 since then,

det(A) = α13C13 + α23C23 + α33C33 + α43C43 = 8C33

= (−1)3+3det

2 3 5

1 4 2

2 1 5

 = −16

by using the determinant of a 3× 3 matrix formula in the previous frame.
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Matrix Determinant and Trace: Properties I

It is clear that det(A) = det(AT).

Also, det(cA) = cn det(A) for scalar c and n × n matrix A.

Some more properties:

1. det(AB) = det(A) det(B) = det(BA).

2. det(A⊗B) = det(A)m det(B)p for m ×m matrix A and p × p

matrix B.

3. For an orthogonal matrix A we have det(I) = det(AAT) = [det(A)]2.

Such a determinant is either 1 or -1 since the determinant of the

identity matrix is always 1.
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Matrix Determinant and Trace: Properties II

De�nition

The trace of a square matrix is the sum of its diagonal elements i.e.

trace(A) =
∑

i αii .

Obviously trace(In) = n and trace(A) = trace(AT).

We list some more properties of the trace of a matrix.

1. trace(cA+ dB) = c trace(A) + d trace(B) for scalars c,d.

2. trace(AB) = trace(BA).

3. trace(A⊗B) = trace(A)trace(B).
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Matrix Inverse

De�nition

A matrix is called nonsingular if it has a non-sero determinant. A

nonsingular matrix A possesses a unique inverse A−1, calculated as,

A−1 =
1

det(A)
adj(A),

where the adjoint matrix adj(A) is the transpose of the matrix of cofactors.

For a 2× 2 matrix A we have the simple formula,

A−1 =
1

α11α22 − α12α21

[
α22 −α12

−α21 α11

]
.

More general, adj(A) =

C11 C21 . . . Cn1

...
...

. . .
...

C1n C2n . . . Cnn

, obtained from matrix A

by replacing each entry by its cofactor and then by transposing it.
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Matrix Inverse: Example

Example: Consider A =

1 −1 0

0 1 2

2 0 3

.
Then, the adjoint of A can be written as,

adj(A) =


det

(
1 2

0 3

)
− det

(
−1 0

0 3

)
det

(
−1 0

1 2

)
−det

(
0 2

2 3

)
det

(
1 0

2 3

)
− det

(
1 0

0 2

)
det

(
0 1

2 0

)
− det

(
1 − 1

2 0

)
det

(
1 − 1

0 1

)



=

 3 3 − 2

4 3 − 2

−2 − 2 1

 .
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Matrix Inverse: Properties

1. (A−1)−1 = A

2. (cA−1) = 1
c
A−1

3. (AB)−1 = B−1A−1

4. (An)−1 = (A−1)n

5. (Aᵀ)−1 = (A−1)ᵀ
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Matrix Span

De�nition

The space spanned by the column vectors of a matrix A is denoted as

span(A) and is known as the column space of A. The row space of A is

de�ned equivalently as span(AT).

We denote the span of a set of matrices S by 〈S〉.
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Matrix Span: Example

Suppose our space is that of all 2× 3 matrices denoted as M2,3. Can we

determine the span of 〈S〉 when

S =

{[
2 −1 0

0 0 0

]
,

[
1 0 3

0 0 0

]
,

[
0 −2 2

0 0 0

]}
?

Work as follows:

〈S〉 =

{
a

[
2 −1 0

0 0 0

]
+ b

[
1 0 3

0 0 0

]
+ c

[
0 −2 2

0 0 0

]
: a, b, c ∈ R

}
={[

2a + b −a − 2c 3b + 2c

0 0 0

]
: a, b, c ∈ R

}
.

We just considered all linear combinations of the above matrices.
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Matrix Span: Example

It is obvious that we have 〈S〉 ⊆

{[
α β γ

0 0 0

]
: α,β, γ ∈ R

}
and in fact, every 2× 3 matrix with zero entries in the second row belongs

to 〈S〉. To show this, we write[
α β γ

0 0 0

]
=

[
2a + b −a − 2c 3b + 2c

0 0 0

]
and by solving we get a = 1

7
(3α− β− γ), b = 1

7
(α+ 2β+ 2γ) and

c = −1
14

(3α+ 6β− γ).

Therefore 〈S〉 =

{[
α β γ

0 0 0

]
: α,β, γ ∈ R

}
.
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Matrix Rank

De�nition

The column/row rank of a matrix A is the maximum number of linearly

independent column/row vectors of A.

De�nition

If the column/row rank equals the number of column/row vectors, we say

that A has full column/row rank.

It can be shown that the column rank and the row rank of a matrix A are

equal (Lemma 1.3 in the lecture notes).

It follows that the rank of A is de�ned as the maximum number of linearly

independent column or row vectors of A and therefore

rank(A) = rank(AT).
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Matrix Rank: Example

Consider matrix A =

1 5 6

2 6 8

7 1 8

. We want to �nd its rank. The �rst two

rows of A are linearly independent hence rank(A) ≥ 2. Now, rank(A) < 3

because for vector u = (20,−17, 2)T we have ATu = 0. Also for vector

v = (1, 1,−1)T we also have Av = 0 which implies that if the row rank of

A is 2, the column rank of A is also 2.

We also know that rank(A) = rank(AT) and we can verify that we also

have

rank(AAT) = rank(ATA) = rank(A) = rank(AT).

Finally, we cannot construct a 3× 4 matrix of rank 4 because there are

only three rows and these cannot generate a four-dimensional space.
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Matrix Rank: Properties

For two n × k matrices A and B, the following relations hold:

1. rank(A+B) ≤ rank(A) + rank(B).

2. rank(A⊗B) = rank(A)rank(B).

For n × k and k ×m matrices A and B respectively we have,

rank(A) + rank(B) − k ≤ rank(AB) ≤ min[rank(A), rank(B)].

From this it follows that,

rank(AB) ≤ rank(B) = rank(A−1AB) ≤ rank(AB),

rank(BC) = rank(CTBT) = rank(BT) = rank(B),

i.e. the rank of a matrix is preserved under nonsingular transformations

(note that A and C are nonsingular).
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Eigenvalues and Eigenvectors

De�nition

Let A be any square matrix. A non-zero vector v is an eigenvector of A

if Av = λv for some number λ. The number λ is the corresponding

eigenvalue.

The system of equations Av = λv has a non-trivial solution if and only if

det(A− λI) = 0.

This is the characteristic equation of A.

Intuitively, we can consider the matrix A as a transformation of a vector v

i.e we have the transformation Av. Now, non-zero vectors that are

transformed to scalar multiples of themselves i.e. Av = λv are called

eigenvectors and the corresponding scalar multipliers, λ in our case, are

called eigenvalues.
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Eigenvalues and Eigenvectors

Characteristic equation: pA(λ) = det(A− λI) = 0.

The function pA(λ) is called the characteristic polynomial of A.

From the Fundamental Theorem of Algebra, we know that the nth-degree

equation pA(λ) = 0 has n roots which may be real or complex, multiple or

unique. We can write the factorization,

pA(λ) = p0 + p1λ+ · · ·+ pn−1λ
n−1 + pnλ

n = (λ− λ1)(λ− λ2) . . . (λ− λn).

The numbers λ1, λ2, . . . , λn denote the eigenvalues of A.
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Eigenvalues and Eigenvectors: Examples I

• Example 1: Take matrix A =

[
2 1

−1 0

]
. We need to compute the

determinant of

[
λ− 2 1

1 λ

]
which gives the characteristic polynomial

λ2 − 2λ+ 1. Solving this gives us the eigenvalues of A and having those,

we can compute the eigenvectors of A.

• Example 2: Suppose two matrices A and B have the same characteristic

polynomial. Is it necessarily true that A = B? The answer is NO. Take

A =

[
1 α

0 2

]
. Then pA(λ) = (λ− 1)(λ− 2) for every α. Therefore,

although the eigenvalues is a good way of characterizing a matrix, they do

NOT characterize a matrix completely.
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Eigenvalues and Eigenvectors: Examples II

• Example 3: Let's �nd the eigenvectors of A =

[
a 0

0 a

]
. The

characteristic equation is (a − λ)2 = 0 for which λ = a is a repeated root.

Therefore every vector x 6= 0 satis�es[
a 0

0 a

] [
x1
x2

]
=

[
ax1
ax2

]
,

and we can write the complete set of eigenvectors as,

x := k

[
1

0

]
+ l

[
0

1

]
,

with (k , l) 6= (0, 0).

We have two eigenvectors associated with the multiple eigenvalue.
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Eigenvalues and Eigenvectors: Examples II

Why we chose the above eigenvectors? Recall that the eigenvector

equations are

(a − λ)x1 = 0 and (a − λ)x2 = 0.

The eigenvector equations become 0 = 0 and 0 = 0 which are satis�ed for

all values of x1 and x2. So the eigenvectors are all non-zero vectors of the

form (k , l)T.

BUT since any non-zero vector is an eigenvector, it is possible to choose

two eigenvectors that are linearly independent, for example (1, 0)T and

(0, 1)T as above.
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Eigenvalues and Eigenvectors: Further notes

What the last example is telling us is that eigenvectors are NOT unique.

We can have two distinct vectors associated with the same eigenvalue.

As another example, take the identity matrix In. This matrix has 1 as its

only eigenvalue hence every n × 1 vector x 6= 0 is an eigenvector.

BUT an eigenvector cannot be associated with two distinct eigenvalues.

For suppose λ1 6= λ2 are eigenvalues of a matrix A and that x 6= 0 satis�es

Ax = λ1x and Ax = λ2x. Then λ1x = λ2x and therefore x = 0. But

x = 0 is not permitted as an eigenvector, so we have a contradiction.
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Eigenvalues and Eigenvectors

If a matrix A has n distinct eigenvalues, then it also has n distinct

eigenvectors unique up to scalar multiplication. Such eigenvectors also have

the property that they are linearly independent. This is stated as a theorem.

Theorem

If p1, . . . ,pn are eigenvectors of A corresponding to distinct eigenvalues

λ1, . . . , λn, then {p1, . . . ,pn} is a linearly independent set.

Let V denote the matrix of all the eigenvectors and Λ the diagonal matrix

with the eigenvalues as their diagonal elements. We can write, AV = VΛ.

Since V is nonsingular, we can write,

V−1AV = Λ or A = VΛV−1.

We say that A is similar to Λ.
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Eigenvalues and Eigenvectors

The above can be written as a theorem.

Theorem

Let A be an n × n matrix with distinct eigenvalues. Then there exists a

nonsingular n × n matrix V and a diagonal n × n matrix Λ whose diagonal

elements are the eigenvalues of A such that V−1AV = Λ.

Proof: For distinct eigevalues λ1, . . . , λn of A, let Axi = λixi ,

i = 1, . . . , n. Let V := {x1, . . . ,xn}. Then

AV = (Ax1, . . . ,Axn) = (λ1x1, . . . , λnxn) = VΛ,

where V := diag(λ1, . . . , λn). The eigenvectors xi are linearly independent

because the eigenvalues are distinct by the previous theorem. Therefore V

is nonsingular and we get V−1AV = Λ. This concludes the proof.
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Eigenvalues and Eigenvectors

More properties:

When A has n distinct eigenvalues, we have,

det(A) = det(VΛV−1) = det(Λ)det(V)det(V−1) = det(Λ),

trace(A) = trace(VΛV−1) = trace(V−1VΛ) = trace(Λ).

Therefore we get the following important result:

Lemma

When A has n distinct eigenvalues λ1, . . . , λn, we have

det(A) = det(Λ) =

n∏
i=1

λi and trace(A) = trace(Λ) =

n∑
i=1

λi .
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Eigenvalues and Eigenvectors

• Note:
A = VΛV−1 ⇒ A−1 = VΛ−1V−1 : The eigenvectors of A−1 are the

same as those of A and the corresponding eigenvalues are the reciprocals

of the eigenvalues of A.

• Note:
A2 = (VΛV−1)(VΛV−1) = VΛ2V−1 : The eigenvectors of A2 are the

same as those of A and the corresponding eigenvalues are the squares of

the eigenvalues of A.
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Symmetric Matrices I

Orthogonal eigenvectors with distinct eigenvalues

When our matrix A is symmetric, we can show that the eigenvectors

associated with distinct eigenvalues are orthogonal to each other (not only

linearly independent as we have seen before).

Take distinct eigenvalues λi , λj and corresponding eigenvectors vi and vj
of matrix A. We have,

Avi = λivi and Avj = λjvj.

Because A is symmetric, i.e. A = AT we have,

λivj
Tvi = vj

TAvi = vi
TATvj = vi

TAvj = λjvi
Tvj.

But this says that vi
Tvj = 0 since λi 6= λj (orthogonal eigenvectors).
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Symmetric Matrices II

From the above we conclude that a symmetric matrix A is orthogonally

diagonalizable since,

VTAV = Λ or A = VΛVT.

Here V is the orthogonal matrix of associated eigenvectors.

Theorem

Let A be a square matrix. A is orthogonally diagonalizable if and only if it

is a symmetric matrix.

Take A = VΛVᵀ with diagonal matrix Λ. Then

Aᵀ = (VΛVᵀ)ᵀ = VΛVᵀ = A.

This completes the proof.
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Symmetric Matrices III

Some more results for a symmetric matrix A:

1. rank(A) = rank(Λ) which equals the number of non-zero eigenvalues

of A.

2. det(A) = det(Λ) =
∏n

i=1 λi .

3. trace(A) = trace(Λ) =
∑n

i=1 λi .

Therefore a symmetric matrix is non-singular if its eigenvalues are all

non-zero.

Also it can be proved that the eigenvalues of a symmetric matrix are real

(for proof notice that the discriminant of the characteristic equation cannot

be negative).
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Symmetric Matrices IV

De�nition

A symmetric matrix A is said to be positive de�nite if xTAx > 0 for all

vectors x 6= 0.

If we also have equality in the above condition, we talk about A being a

positive semi-de�nite matrix.

Reversing the above inequalities, we get negative de�nite and negative

semi-de�nite matrix A.
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Symmetric Matrices V

Since we have seen that we can diagonalize a matrix A as VTAV = Λ, we

have that for any x 6= 0

xTΛx = xT(VTAV)x = �xTA�x ≥ 0,

where �x = Vx. Therefore, Λ is also positive semi-de�nite and its diagonal

elements are non-negative. This is stated as a lemma.

Lemma

A symmetric matrix is positive de�nite (positive semi-de�nite) if and only if

its eigenvalues are all positive (non-negative).
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Orthogonal Projection

Idempotent matrices: A2 = A.

Take a vector x in the Euclidean space X. The projection of x onto (i.e.

range = codomain, f (X) = S) a subspace S of X, is a linear

transformation of x to S. The resulting projected vector is written as Px

where P is the projection/transformation matrix.

Since a further projection of x onto S should have no e�ect on Px, we

deduce that the projection/transformation matrix P must be idempotent.

P(Px) = P2x = Px.
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Orthogonal Projection

A projection of x onto S is orthogonal if the projection Px is orthogonal to

the di�erence between x and Px, i.e.

(x−Px)TPx = xT(I−P)TPx = 0.

Since we have equality i� (I−P)TP = 0, we deduce that P must be

symmetric i.e. P = PTP and PT = PTP.

Note that the orthogonal projection must be unique.
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Orthogonal Projection

Notice that I−P is also idempotent and symmetric therefore it is an

orthogonal projection. By symmetry we know that (I−P)P = 0 and

therefore the projections Px and (I−P)x must be orthogonal.

We deduce that any vector x can be uniquely decomposed into two

orthogonal components:

x = Px+ (I−P)x.

Notice that (I−P)x is the orthogonal projection of x onto S⊥, where S⊥

is the orthogonal complement of a subspace S i.e.

S⊥ = {x ∈ X : xTs = 0, all s ∈ S}
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Orthogonal Projection

Intuitively, the orthogonal projection Px can be interpreted as the "best

approximation" of x in S in the sense that Px is the closest to x in terms

of the Euclidean norm. We have for any s ∈ S,

‖ x− s ‖2=‖ x−Px+Px− s ‖2

=‖ x−Px ‖2 + ‖ Px− s ‖2 +2(x−Px)T(Px− s)

=‖ x−Px ‖2 + ‖ Px− s ‖2 .

We therefore get the following lemma.
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Orthogonal Projection

Lemma

Let x be a vector in X and Px its orthogonal projection onto S ⊆ X.

Then, for any s ∈ S,
‖ x−Px ‖≤‖ x− s ‖ .
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Orthogonal Projection: More results

As we have seen before, there exists an orthogonal matrix V that

diagonalizes a symmetric and idempotent matrix A to Λ. Now we can get,

Λ = VTAV = VTA(VVT)AV = Λ2,

which is possible i� the eigenvalues of A are zero and one. This gives the

following lemma:

Lemma

A symmetric and idempotent matrix is positive semi-de�nite with

eigenvalues 0 and 1.
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Orthogonal Projection: More results

Since the trace of Λ is the number of non-zero eigenvalues we have that

trace(Λ) = rank(Λ).

We have also seen before that rank(A) = rank(Λ) and

trace(A) = trace(Λ). This gives us the following lemma:

Lemma

For a symmetric and idempotent matrix A, rank(A) = trace(A), the

number of non-zero eigenvalues of A.
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Orthogonal Projection: More results

It can be shown (see lecture notes) that the orthogonal complement of the

row space of A is the same as the orthogonal complement of the row space

of ATA and that the column space of A is the same as the column space

of AAT. This gives the following property:

rank(A) = rank(ATA) = rank(AAT).

Also if A of dimension n × k is of full column rank k < n, then ATA is

k × k and hence of full rank while AAT is n × n and singular, therefore,

Lemma

If A of dimension n × k is a matrix of full column rank k < n, then ATA

is symmetric and positive de�nite.
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Orthogonal Projection: More results

For an n × k matrix A with full column rank k < n, the matrix

P = A(ATA)−1AT is symmetric and idempotent therefore is an

orthogonal projection matrix.

Also,

trace(P) = trace(ATA(ATA)−1) = trace(Ik) = k ,

and we deduce from the previous lemmas (1.11 and 1.12 in lecture notes)

that also rank(P) = k , the k eigenvalues that equal one. Similarly,

rank(I−P) = n − k .
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Orthogonal Projection: More results

For any vector x ∈ span(A) we can write x as Ab for any non-zero vector

b such that,

Px = A(ATA)−1AT(Ab) = Ab = x,

which implies that P projects vectors onto span(A).

Equivalently for x ∈ span(A)⊥, we can see that I−P must project vectors

onto span(A)⊥. Therefore we have the following lemma.

Lemma

Let A be an n × k matrix with full column rank k. Then, A(ATA)−1AT

orthogonally projects vectors onto span(A) and has rank k.

On the other hand, In −A(ATA)−1AT orthogonally projects vectors onto

span(A)⊥ and has rank n − k.
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