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Weak Stationarity

{yt} is said to be weakly stationary or covariance stationary if its

mean is time invariant: IE(yt) = µ, and its autocovariances:

IE[(yt − µ)(yt−j − µ)] = γj , j = 0,±1,±2, . . . ,

depend on j but not on t; γ0 = var(yt) is also time invariant.

As a result, the autocorrelations of yt ,

ρj = γj/γ0, j = 0,±1,±2, . . . ,

are also independent of t, and ρj = ρ−j .

Example: A white noise is a series with zero mean, constant variance,

and zero autocorrelations. Hence, it is weakly stationary.
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Strict Stationarity

{yt} is said to be strictly stationary if its finite dimensional

distributions are invariant under time displacements, i.e., for each s,

Ft1,...,tn(c1, . . . , cn) = Ft1+s,...,tn+s(c1, . . . , cn).

A strict stationary series need not be weak stationary, unless it has

finite second moment.

i.i.d. random variables are strictly stationary, but i.i.d. Cauchy (or t(2))

random variables are not. (Why?)

A series is Gaussian if its finite dimensional distributions are all

Gaussian. A weakly stationary, Gaussian series is strictly stationary.
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Difference Equations

Consider the first-order difference equation:

yt = ψ1yt−1 + ut , t = 0, 1, 2, . . .

By recursive substitution,

yt = ψ1

(
ψ1yt−2 + ut−1

)
+ ut

= ψ2
1yt−2 + ψ1ut−1 + ut

= ψ3
1yt−3 + ψ2

1ut−2 + ψ1ut−1 + ut

...
...

= ψt+1
1 y−1 + ψt

1u0 + ψt−1
1 u1 + · · ·+ ψ1ut−1 + ut .
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Similarly, yt+j = ψj+1
1 yt−1 + ψj

1ut + ψj−1
1 ut+1 + · · ·+ ψ1ut+j−1 + ut+j .

The impulse response (dynamic multiplier) of yt is the effect of one

unit change of ut to the future observation yt+j :

∂yt+j

∂ut
= ψj

1,

which depends only on j but not on t.

A system is said to be stable if the impulse response eventually

vanishes as j tends to infinity. It is explosive if the impulse response

diverges.

The first-order difference equation is stable (explosive) when |ψ1| < 1

(|ψ1| > 1).
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The accumulated response (interim multiplier) of yt is

j∑
i=0

∂yt+j

∂ut+i

= ψj
1 + ψj−1

1 + · · ·+ ψ1 + 1.

For |ψ1| < 1,

lim
j→∞

j∑
i=0

ψj−i
1 =

1

1− ψ1

,

which represents the long-run effect (total multiplier) of a permanent

change in u.
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The pth-order difference equation,

yt = ψ1yt−1 + ψ2yt−2 + · · ·+ ψpyt−p + ut ,

can be expressed as a first-order vector difference equation:

yt
yt−1
yt−2

...

yt−p+1


︸ ︷︷ ︸

ηt

=



ψ1 ψ2 · · · ψp−1 ψp

1 0 · · · 0 0

0 1 · · · 0 0
...

... · · · ...
...

0 0 · · · 1 0


︸ ︷︷ ︸

F



yt−1
yt−2
yt−3

...

yt−p


︸ ︷︷ ︸
ηt−1

+



ut
0

0
...

0


︸ ︷︷ ︸
νt

.

That is, ηt = Fηt−1 + νt . Then,

ηt+j = Fj+1ηt−1 + Fjνt + Fj−1νt+1 + · · ·+ Fνt+j−1 + νt+j .
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The impulse response of ηt is

∇νt
ηt+j = Fj ,

and the impulse response of yt+j is ∂yt+j/∂ut = f j11, the (1, 1)

element of Fj .

The long-run effect of ν is

lim
j→∞

j∑
i=0

Fj−i = (Ip − F)−1,

and its (1, 1) element is

1

1− ψ1 − · · · − ψp

,

which is the long-run effect of a change of u on y .
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By diagonalization, C−1FC = Λ, where C is nonsingular and Λ is

diagonal with all the eigenvalues of F on its main diagonal. Then,

Fj = (CΛC−1)(CΛC−1) · · · = CΛjC−1,

which converges to a zero matrix when all the eigenvalues of F are

less than one in modulus (inside the unit circle).

A pth-order difference equation is stable if all the eigenvalues of F are

less than one in modulus. It is explosive if there is at least one

eigenvalue greater than one in modulus.

The eigenvalues of F are the roots of the characteristic equation:

λp − ψ1λ
p−1 − · · · − ψp−1λ− ψp = 0,

and hence are also known as characteristic roots.
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Example: Consider the second-order difference equation with

F =

[
ψ1 ψ2

1 0

]
.

Its eigenvalues are the roots of:

det(F− λI2) = −(ψ1 − λ)λ− ψ2 = λ2 − ψ1λ− ψ2 = 0.

These two roots are

λ1 =
ψ1 +

√
ψ2
1 + 4ψ2

2
, λ2 =

ψ1 −
√
ψ2
1 + 4ψ2

2
.

And λ = a + bi is less than one in modulus if |λ| = (a2 + b2)1/2 < 1; that

is, λ is inside the unit circle on the complex plane.
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Back-Shift Operator

Theback-shift operator B: Byt = yt−1, B2yt = B(Byt) = yt−2, etc.

First-order difference equation is

yt = ψ1Byt + ut , or (1− ψ1B)yt = ut .

Pre-multiplying both sides of this equation by

(1 + ψ1B + ψ2
1B2 + · · ·+ ψt

1Bt) we have

(1 + ψ1B + ψ2
1B2 + · · ·+ ψt

1Bt)ut
= (1 + ψ1B + ψ2

1B2 + · · ·+ ψt
1Bt)(1− ψ1B)yt

= (1− ψt+1
1 Bt+1)yt ,

which is approximately yt when t is large and |ψ1| < 1.
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Passing to the limit we can define, for |ψ1| < 1,

(1− ψ1B)−1 = lim
t→∞

(1 + ψ1B + ψ2
1B2 + · · ·+ ψt

1Bt),

so that (1− ψ1B)(1− ψ1B)−1 = I, the identity operator.

Recall: (1− ψ1B − ψ2B2)yt = ut is stable if λ2 − ψ1λ− ψ2 = 0 has

all the roots inside the unit circle.

Setting λ = z−1 and multiplying both sides by z2, we obtain

(1− ψ1z − ψ2z
2) = (1− λ1z)(1− λ2z) = 0,

which has roots: z1 = 1/λ1 and z2 = 1/λ2.

A second-order difference equation is stable if all the roots of

(1− ψ1z − ψ2z
2) = 0 are outside the unit circle.

A pth-order difference equation is stable if all the roots of

1− ψ1z − . . .− ψpz
p = 0 are outside the unit circle.
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Moving Average Series

{yt} is a moving average (MA) series if

yt = µ+ Π(B)εt ,

where {εt} is a white noise with mean zero and variance σ2ε .

For the MA(1) series: yt = µ+ εt − π1εt−1, IE(yt) = µ and

γ0 = IE[(εt − π1εt−1)2] = (1 + π21)σ2ε ,

γ1 = IE[(εt − π1εt−1)(εt−1 − π1εt−2)] = −π1σ2ε ,

γj = 0, j = 2, 3, . . . .

Hence, ρ1 = −π1/(1 + π21) and ρj = 0 for j = 2, 3, . . ..

It is weakly stationary regardless of the value of π1.
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Figure: White noise (left) and MA series with π1 = 0.2 (right).
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Figure: MA series with π1 = 0.5 (left) and π1 = 0.8 (right).
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Extending to the MA(q) series:

yt = µ+ εt − π1εt−1 − π2εt−2 − · · · − πqεt−q,

we have IE(yt) = µ, γ0 = (1 + π21 + · · ·+ π2q)σ2ε , and

γj =

(
q−j∑
k=1

πkπk+j − πj

)
σ2ε ,

with π0 = −1 and πj = 0 if j > q.

As γj = 0 and ρj = 0 for j = q + 1, q + 2, . . ., an MA(q) series has

only a fixed “memory” of q periods.

It is also weakly stationary regardless of the values of its MA

coefficients.
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Consider now the MA(∞) series:

yt = µ+ εt −
∞∑
j=1

πjεt−j .

Then, IE(yt) = µ and

γj =

( ∞∑
k=1

πkπk+j − πj

)
σ2ε , j = 0, 1, 2, . . .

By the Cauchy-Schwartz inequality,

∞∑
k=0

πkπk+j ≤
( ∞∑

k=0

π2k

)1/2( ∞∑
k=0

π2k+j

)1/2

<∞.

Hence, all γj are well defined when
∑∞

j=0 π
2
j <∞.

MA(∞) series is weakly stationary provided that its MA coefficients

πj are square summable.
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Autoregressive Series

An autoregressive (AR) series is:

Ψ(B)yt = c + εt ,

where {εt} is again a white noise.

For Ψ(B) = 1− ψ1B, yt = c + ψ1yt−1 + εt . When |ψ1| < 1, this

AR(1) series has an MA(∞) representation:

yt = (1− ψ1B)−1(c + εt)

= (1 + ψ1 + ψ2
1 + · · · )c + (1 + ψ1B + ψ2

1B2 + · · · )εt
= c/(1− ψ1) + (1 + ψ1B + ψ2

1B2 + · · · )εt ,

where 1/(1− ψ1) is just Ψ(1)−1.
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The AR(1) series with |ψ1| < 1 is weakly stationary. (why?)

The weakly stationary AR(1) series with IE(yt) = c/(1− ψ1).

Utilizing the result

γj =

( ∞∑
k=1

πkπk+j − πj

)
σ2ε ,

and noting πk = −ψk
1 , we obtain

γj = ψj
1

σ2ε
1− ψ2

1

= ψ1γj−1 = ψj
1γ0, j = 0, 1, 2, . . . ,

and hence ρj = ψ1ρj−1 = ψj
1. The autocovariances and

autocorrelations of an AR(1) series have the same AR(1) structure.
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Figure: White noise (left) and AR series with ψ1 = 0.2 (right).
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Figure: AR series with ψ1 = 0.5 (left) and ψ1 = 0.8 (right).
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An AR(p) series with Ψ(B) = 1− ψ1B − ψ2B2 − · · · − ψpBp is

yt = c + ψ1yt−1 + ψ2yt−2 + · · ·+ ψpyt−p + εt .

It is weakly stationary if Ψ(z) = 0 has all roots outside the unit circle.

A weakly stationary AR(p) series has an MA(∞) representation:

yt = Ψ(1)−1c + Ψ(B)−1εt .

so that µ = Ψ(1)−1c = c/(1− ψ1 − ψ2 − · · · − ψp), and

γj = ψ1γj−1 + ψ2γj−2 + · · ·+ ψpγj−p, j = 1, 2, . . . ,

and γ0 = ψ1γ1 + ψ2γ2 + · · ·+ ψpγp + σ2ε .

For autocorrelations, we have the Yule-Walker equations:

ρj = ψ1ρj−1 + ψ2ρj−2 + · · ·+ ψpρj−p, j = 1, 2, . . . ,

which form a pth-order difference equation in ρj .
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Autoregressive Moving Average Series

An ARMA(p, q) series is:

Ψ(B)yt = c + Π(B)εt ,

where Ψ(B) and Π(B) are pth- and qth-order polynomial in B. It is

weakly stationary if all the roots of Ψ(z) = 0 are outside the unit

circle.

Letting Φ(B) = Ψ(B)−1Π(B), we have

yt = Ψ(1)−1c + Φ(B)εt = Ψ(1)−1c +
∞∑
j=0

φjεt−j ,

with φ0 = 1. Its mean is µ = c/(1− ψ1 − · · · − ψp).
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The autocovariances and autocorrelations are of complex forms; We

omit the details.

In terms of the deviations from the mean, we have

Ψ(B)(yt − µ) = Π(B)εt .

For j = q + 1, q + 2, . . .,

Ψ(B)(yt − µ)(yt−j − µ) = Π(B)εt(yt−j − µ),

and IE[Π(B)εt(yt−j − µ)] = 0, so that

γj = ψ1γj−1 + · · ·+ ψpγj−p.

That is, the autocovariances for j > q obey the AR(p) structure.
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Invertibility of MA Series

The MA series yt = µ+ Π(B)εt is invertible if all the roots of

Π(z) = 0 are outside the unit circle.

An invertible MA(1) series has the following AR(∞) representation:

(1− π1B)−1(yt − µ) =
∞∑
j=0

πj1Bj(yt − µ) = εt .

Each innovation εt can be expressed as a weighted sum of current

and all past observations yt .

Similarly, each innovation εt of an invertible MA(q) series can also be

expressed as a weighted sum of current and all past yt .
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An MA(1) series with |π1| > 1 is non-invertible, as

(1 + π1B + π21B2 + · · · ) can not be defined as (1− π1B)−1.

Consider the forward-shift operator B−1, where B−1 is such that

B−1yt = yt+1 and B−1B = I. Then, (1− π−11 B−1) has all the roots

inside the unit circle, and its inverse is

(1− π−11 B−1)−1 = (1 + π−11 B−1 + π−21 B−2 + · · · ).

Straightforward calculation shows that

−π−11 B−1(1 + π−11 B−1 + π−21 B−2 + · · · )(1− π1B) = I,

where the second term in parentheses is (1− π−11 B−1)−1.
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For |π1| > 1, we can define

(1− π1B)−1 = −
(
1− π−11 B−1

)−1(
π−11 B−1

)
,

which is in terms of the forward-shift operator.

A non-invertible MA(1) series is thus

−π−11 B−1(1 + π−11 B−1 + π−21 B−2 + · · · )(yt − µ) = εt ,

so that εt is a weighted sum of all future yt .

For a non-invertible MA(q) series, each innovation εt also depends on

all future observations yt+j , j > 0. As far as forecasting is concerned,

a non-invertible MA series does not make much sense.
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Orthogonal Projection

Let xt = (1, yt , yt−1, . . . , yt−m+1)′, an (m + 1)× 1 vector.

IE(yt+1|xt) minimizes the mean squared error (MSE):

IE[yt+1 − g(xt)]2,

among all measurable functions of xt , such that

IE
{

[yt+1 − IE(yt+1|xt)]g(xt)
}

= 0.

IE(yt+1|xt) is the orthogonal projection of yt+1 onto the space of

functions of xt in the MSE sense, also known as the best L2-predictor

of yt+1.
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Linear Projection

P̂(yt+1|xt) = x′tα is the linear projection of yt+1 if it minimizes

IE[yt+1 − `(xt)]2,

among all linear functions of xt , such that

IE[xt(yt+1 − x′tα)] = 0.

Analogous to the OLS estimator, α = [IE(xtx
′
t)]−1 IE(xtyt+1).

Note that the orthogonal projection need not be a linear function of

xt and that the linear projection is not the orthogonal projection,

except in some special cases.
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Forecasts: Infinite Observations

Consider the MA(∞) series: yt = µ+ εt −
∑∞

j=1 πjεt−j , so that

yt+s = µ+ εt+s −
∞∑
j=1

πjεt+s−j

= εt+s − π1εt+s−1 − · · · − πs−1εt+1︸ ︷︷ ︸
yt+s − P̂(yt+s |εj , j≤t)

+µ− πsεt − πs+1εt−1 − πs+2εt−2 − · · ·︸ ︷︷ ︸
P̂(yt+s |εj , j≤t)

,

provided we observe all εj , j ≤ t, and know µ and all πj . Clearly,

yt+s − P̂(yt+s |εj , j ≤ t) is uncorrelated with any εj , j ≤ t, and

MSE
(
P̂(yt+s |εj , j ≤ t)

)
= (1 + π21 + · · ·+ π2s−1)σ2ε .
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As an example, suppose that yt is an MA(q) series. We have

P̂(yt+s |εj , j ≤ t) = µ−
q∑

j=s

πjεt+s−j , s = 1, 2, . . . , q,

and P̂(yt+s |εj , j ≤ t) = µ, s = q + 1, q + 2, . . .. The resulting MSEs are:

σ2ε , s = 1,

(1 + π21 + · · ·+ π2s−1)σ2ε , s = 2, 3, . . . , q,

(1 + π21 + · · ·+ π2q)σ2ε , s = q + 1, q + 2, . . .

Thus, to predict an MA(q) series more than q periods ahead, the optimal

linear forecast is the unconditional mean µ, and the MSE remains

constant. (What is the intuition?)
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For MA(∞) series,

Π(B) = 1− π1B − π2B2 − · · · − πsBs − πs+1Bs+1 − · · · .

Letting [B−sΠ(B)]+ denote the polynomial with only non-negative power

of B we have

[B−sΠ(B)]+ = −πs − πs+1B − πs+2B2 − · · · .

It follows that

P̂(yt+s |εj , j ≤ t) = µ+ [B−sΠ(B)]+εt .
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When the MA series is invertible, we have Ψ(B)(yt − µ) = εt such that

Ψ(B) = [Π(B)]−1. Hence, εt can be constructed from current and lagged

yt , so that

P̂(yt+s |εj , j ≤ t) = P̂(yt+s |yj , j ≤ t)

= µ+ [B−sΠ(B)]+Ψ(B)(yt − µ)

= µ+ [B−sΠ(B)]+[Π(B)]−1(yt − µ).

The last expression is known as the Wiener-Kolmogorov prediction formula

which relies solely on the observed values: yt and its lagged values.
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Example: Forecasting AR(1) Series

Consider (1− ψ1B)(yt − µ) = εt so that

Π(B) = 1 + ψ1B + ψ2
1B2 + · · · = [1− ψ1B]−1.

Then,

[B−sΠ(B)]+ = ψs
1+ψs+1

1 B+ψs+2
1 B2+· · · = ψs

1/(1−ψ1B) = ψs
1Π(B).

Consequently, the Wiener-Kolmogorov prediction formula is

P̂(yt+s |yj , j ≤ t) = µ+[B−sΠ(B)]+[Π(B)]−1(yt−µ) = µ+ψs
1(yt−µ),

which tends toward µ geometrically as s increases.
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Example: Forecasting MA(1) Series

Consider (yt − µ) = (1− π1B)εt . For s = 1, [B−sΠ(B)]+ = −π1 and

P̂(yt+s |yj , j ≤ t) = µ+ [B−sΠ(B)]+[Π(B)]−1(yt − µ)

= µ− π1(yt − µ)− π21(yt−1 − µ)− · · · .

For s = 2, 3, . . ., [B−sΠ(B)]+ = 0 and P̂(yt+s |yj , j ≤ t) = µ.

Writing εt = (1− π1B)−1(yt − µ), we can express εt using a recursion:

ε̂t = (yt − µ) + π1ε̂t−1 = (yt − µ) + π1(yt−1 − µ) + · · · .

It follows that for s = 1,

P̂(yt+s |yj , j ≤ t) = µ− π1ε̂t .
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Example: Forecasting MA(q) Series

Consider (yt − µ) = (1− π1B − · · · − πqBq)εt . For s = 1, 2, . . . , q,

[B−sΠ(B)]+ = −πs − πs+1B − · · · − πqBq−s

Using the recursion: ε̂t = (yt − µ) + π1ε̂t−1 + · · ·+ πq ε̂t−q, The

Wiener-Kolmogorov prediction formula now reads

P̂(yt+s |yj , j ≤ t) = µ− πs ε̂t − πs+1ε̂t−1 − · · · − πq ε̂t+s−q.

For s = q + 1, q + 2, . . ., [B−sΠ(B)]+ = 0 and P̂(yt+s |yj , j ≤ t) = µ.
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Forecasts: Finite Observations

Given finitely many observations, we may approximate P̂(yt+s |yj , j ≤ t) by

P̂(yt+s |yt , . . . , yt−m+1, εt−m = 0, εt−m−1 = 0, . . .).

For an MA(q) series, set ε̂t−m = ε̂t−m−1 = · · · = ε̂t−m−q+1 = 0. Using

the recursion, ε̂t = (yt − µ) + π1ε̂t−1 + · · ·+ πq ε̂t−q, we obtain

ε̂t−m+1 = (yt−m+1 − µ),

ε̂t−m+2 = (yt−m+2 − µ) + π1ε̂t−m+1,

ε̂t−m+3 = (yt−m+3 − µ) + π1ε̂t−m+2 + π2ε̂t−m+1,

and so on. These ε̂t values are then used to compute the approximation.
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Exact Finite-Sample Forecasts

We may also compute the projection of yt+s on m lagged values. For

s = 1, we want to compute:

x′tα
(m) = α

(m)
1 (yt − µ) + α

(m)
2 (yt−1 − µ) + · · ·+ α

(m)
m (yt−m+1 − µ).

The projection coefficients are
α
(m)
1

α
(m)
2
...

α
(m)
m

 =


γ0 γ1 · · · γm−1
γ1 γ0 · · · γm−2
...

...
. . .

...

γm−1 γm−2 · · · γ0


−1 

γ1
γ2
...

γm

 .
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The results are readily generalized for s = 2, 3, . . .. We want to compute

P̂(yt+s |yt , . . . , yt−m+1)

= α
(m,s)
1 (yt − µ) + α

(m,s)
2 (yt−1 − µ) + · · ·+ α

(m,s)
m (yt−m+1 − µ),

where the projection coefficients are
α
(m,s)
1

α
(m,s)
2
...

α
(m,s)
m

 =


γ0 γ1 · · · γm−1
γ1 γ0 · · · γm−2
...

...
. . .

...

γm−1 γm−2 · · · γ0


−1 

γs
γs+1

...

γs+m−1

 .
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Wold’s Decomposition

Any zero-mean, covariance-stationary series yt can be expressed as:

yt =
∞∑
j=0

πjεt−j + κt ,

with π0 = 1 and πj square summable, where εt is a white noise, and κt
can be predicted arbitrarily well using lagged yt .

yt is the sum of two components: an MA(∞) component and a

linearly deterministic component.

We need to find (identify) a model that can properly represent the

MA(∞) component.
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The standard Box-Jenkins approach consists of the following steps:

1 Transform the original time series to a covariance stationary series.

2 Identify a preliminary ARMA(p, q) model for the transformed series.

3 Estimate unknown parameters in this preliminary model.

4 Conduct diagnostic tests to check model adequacy and re-estimate an

ARMA model when the preliminary model is found inappropriate.

The steps 2–4 may be repeated until a suitable model is found.
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Differencing

When the series ηt exhibits trending pattern, its trend may be removed by

differencing:

yt = ηt − ηt−1 = (1− B)ηt .

In other words, ηt are integrated yt .

If yt is an ARMA series, ηt is known as an ARIMA (autoregressive,

integrated, moving average) series.

If yt is a sequence of i.i.d. random variables, ηt is an ARIMA(0, 1, 0)

series and also known as a random walk.
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Figure: The time paths of a Gaussian random walk.
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When (1− B)ηt = yt and yt is a weakly stationary AR(1) series:

yt = ψ1yt−1 + εt , ηt is also an ARMA(2, 0) series:

(1− ψ1B)(1− B)ηt = [1− (1 + ψ1) + ψ1B2]ηt = εt .

Here, the AR polynomial Ψ(z) = 0 has a root on the unit circle, also

known as a unit root.

Similarly, when yt is a stationary ARMA(p, q) series, ηt is an

ARIMA(p, 1, q) series or an ARMA(p + 1, q) series with an AR unit

root. An ARIMA(p, 1, q) series is also known as an integrated series,

or simply an I (1) series.
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When yt are obtained by differencing ηt twice:

yt = (ηt − ηt−1)− (ηt−1 − ηt−2) = (ηt − 2ηt−1 + ηt−2),

ηt is an ARIMA(p, 2, q) series or an I (2) series.

An ARIMA(p, d , q) series is an I (d) series, and it must be differenced

d times to yield a stationary ARMA representation.

Seasonal pattern may be eliminated by seasonal differencing:

yt = ηt − ηt−4 = (1− B4)ηt .

Note that (1− z4) = 0 contains four unit roots because

(1− z4) = (1− z2)(1 + z2) = (1− z)(1 + z)(1 + iz)(1− iz);

each unit root accounts for the behavior of ηt at some frequency.

C.-M. Kuan (Finance & CRETA, NTU) Intro to Time Series Analysis January 3, 2011 49 / 213



Other approaches for removing deterministic components:

Eliminating a deterministic trend by regressing ηt on the time trend

variable t and/or higher orders of t: t, t2, . . . , tp.

Eliminating quarterly pattern by regressing ηt on quarterly dummies:

D1,t = 1 if t is in the first quarter and D1,t = 0 otherwise;

D2,t = 1 if t is in the second quarter and D2,t = 0 otherwise;

D3,t = 1 if t is in the third quarter and D3,t = 0 otherwise.

Eliminating the day-of-week effect by regressing η on a daily dummy.

There are other “filters” in the literature or even in some statistics

softwares.

C.-M. Kuan (Finance & CRETA, NTU) Intro to Time Series Analysis January 3, 2011 50 / 213



Identification

Sample autocovariances:

γ̂j =
1

T

T∑
t=j+1

(yt − ȳ)(yt−j − ȳ),

with ȳ =
∑T

t=1 yt/T , and Sample autocorrelations:

ρ̂j = γ̂j/γ̂0.

Under regularity conditions,

ρ̂j
IP−→ γj/γ0 = ρj ,

and
√
T ρ̂j are asymptotically normally distributed.
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ρ̂j can help to identify an MA model because ρj of an MA(q) series

has an abrupt cut-off at j = q with ρj = 0 for j > q.

For those j such that ρj ≈ 0,

var(ρ̂j) ≈
1

T

∞∑
i=−∞

ρ2i .

In particular, for an MA(q) series,

var(ρ̂j) ≈
1

T

(
1 + 2ρ21 + · · ·+ 2ρ2q

)
, j = q + 1, q + 2, . . . .

The 95% confidence intervals of ρ̂j , j = q + 1, q + 2, . . ., are

±1.96√
T

(
1 + 2ρ̂21 + · · ·+ 2ρ̂2q

)1/2
.
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For a white noise,

var(ρ̂j) ≈ 1/T , j = 1, 2, . . . ,

so that ±1.96/
√
T form the 95% confidence interval.

Many programs plot ρ̂j against j and use ±1.96/
√
T (or ±2/

√
T ) as

the 95% confidence interval. This is appropriate only for checking the

autocorrelations of a white noise, however.

Even it is appropriate, this confidence interval is for checking a single

sample autocorrelation but not for checking m sample

autocorrelations jointly.
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Partial Autocorrelations

The partial autocorrelation α
(m)
m of yt are

α
(1)
1 = corr(yt , yt−1) = ρ1,

α
(m)
m = corr

[
yt − P̂(yt | Yt−1

t−m+1), yt−m − P̂(yt−m | Yt−1
t−m+1)

]
,

for m = 2, 3, . . .. By the Frisch-Waugh-Lovell Theorem, α
(m)
m is also

the last coefficient of the linear projection of yt on 1, yt−1, . . . , yt−m.

For an AR(p) series yt , it is correlated with yt−m for m ≤ p, so that

the last coefficient of the linear projection of yt on 1, yt−1, . . . , yt−m
should be different from zero. For m > q, the last coefficient of the

linear projection above must be zero. Thus, the partial

autocorrelations can help to identify an AR(p) model.

C.-M. Kuan (Finance & CRETA, NTU) Intro to Time Series Analysis January 3, 2011 54 / 213



The first m sample partial autocorrelations α̂
(m)
m are the coefficient

estimates of a
(m)
m of the following regressions:

yt = a
(1)
0 + a

(1)
1 yt−1 + et ,

yt = a
(2)
0 + a

(2)
1 yt−1 + a

(2)
2 yt−2 + et ,

yt = a
(3)
0 + a

(3)
1 yt−1 + a

(3)
2 yt−2 + a

(3)
3 yt−3 + et ,

yt = a
(m)
0 + a

(m)
1 yt−1 + a

(m)
2 yt−2 + · · ·+ a

(m)
m yt−m + et .

It can be shown that var
(
α̂
(m)
m

)
≈ 1/T and for an AR(p) series:

√
T α̂

(m)
m

D−→ N (0, 1). m = p + 1, p + 2, . . . .

We may plot α̂
(m)
m against m and use the confidence interval (±1.96/

√
T )

to evaluate α̂
(m)
m .
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Model Estimation

When a preliminary ARMA(p, q) model Ψ(B)yt = c + Π(B)εt is chosen,

we must estimate θ, the parameter vector that includes ψ1, . . . , ψp in the

AR polynomial, π1, . . . , πq in the MA polynomial, c, and the variance σ2ε .

Quasi-Maximum Likelihood Estimation (QMLE): We maximize a

postulated (log-) likelihood function with respect to θ. This likelihood

function, which may or may not be correctly specified for the true

density function underlying the data, is known as a quasi-likelihood

function; the resulting maximizer is thus know as a QMLE, θ̃T .

The log-likelihood function for ARMA models is nonlinear in

parameters in general and hence must be solved via some nonlinear

optimization algorithms.
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Estimation of AR Models

Consider the AR(p) model: Ψ(B)yt = c + εt . Let Yt = {y1, y2, . . . , yt}
and f (Yt ;θ) be its joint density function. Also let f (yt | Yt−1;θ) be the

conditional density. The joint quasi-likelihood function of Yt is

LT (YT ;θ) = f (yT | YT−1;θ)f (YT−1;θ)

= f (yT | YT−1;θ)f (yT−1 | YT−2;θ)f (YT−2;θ)

= · · · =
( T∏

j=p+1

f (yj | Yj−1;θ)
)
f (Yp;θ).

and LT (YT ;θ), the average of the log-quasi-likelihood function, is

1

T
ln LT (YT ;θ) =

1

T

(
ln f (Yp;θ) +

T∑
j=p+1

ln f (yj | Yj−1;θ)
)
.

C.-M. Kuan (Finance & CRETA, NTU) Intro to Time Series Analysis January 3, 2011 57 / 213



Conditional QMLE for AR Models

Assuming conditional normality for f (yt | Yt−1;θ):

1√
2πσ2ε

exp

(
−(yt − c − ψ1yt−1 − · · · − ψpyt−p)2

2σ2ε

)
.

Take the initial y1, . . . , yp as given, we can ignore f (Yp;θ) and maximize

LcT (YT ;θ) =
1

T

T∑
j=p+1

ln f (yj | Yj−1; θ)

= −T − p

2T
log(2π)− T − p

2T
log σ2ε

− 1

T

T∑
j=p+1

(
yt − c − ψ1yt−1 − · · · − ψpyt−p

)2
2σ2ε

.
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Conditional on the initial values y1, . . . , yp, the QMLEs of c , ψ1, . . . , ψp are

the OLS estimators based on the data yp+1, . . . , yT . The QMLE of σ2ε is

σ̃2 =
1

T − p

T∑
j=p+1

ê2t ,

with êt the OLS residuals. Such estimators are known as the conditional

QMLEs of the AR(p) model.
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Exact QMLE for AR Models

With the joint normality assumption on Yp,

f (Yp;θ) = (2πσ2ε)−p/2 det(Vp)−1/2

exp

[ −1

2σ2ε

(
Yp − c

1− ψ1 − · · · − ψp

`
)′

V−1p(
Yp − c

1− ψ1 − · · · − ψp

`
)]
,

where Vp = var(Yp) and ` is the p-dimensional vector of ones.
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Letting γj denote the autocovariances as before, we have

σ2εVp =


γ0 γ1 · · · γp−1
γ1 γ0 · · · γp−2
...

...
. . .

...

γp−1 γp−2 · · · γ0

 .

Note that V−1p can be expressed in terms of AR parameters; see

Hamilton (1994, p. 125). For example, for p = 1, V−1p = 1−ψ2
1; for p = 2,

V−1p =

(
(1− ψ2

2) −(ψ1 + ψ1ψ2)

−(ψ1 + ψ1ψ2) (1− ψ2
2)

)
.
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The log-likelihood function LT (YT ;θ) now reads:

− 1

2
log(2π)− 1

2
log σ2ε +

1

2
log
(
det(V−1p )

)
− 1

2Tσ2ε

(
Yp − c

1− ψ1 − · · · − ψp

`
)′

V−1p

(
Yp − c

1− ψ1 − · · · − ψp

`
)

− 1

T

T∑
j=p+1

(
yt − c − ψ1yt−1 − · · · − ψpyt−p

)2
2σ2ε

,

which is now a complex nonlinear function in parameters. The resulting

maximizers are the exact QMLEs.
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Estimation of MA Models

Consider the MA(1) model: yt = µ+ εt − π1εt−1. Then,

εt = yt − µ+ π1εt−1,

so that for ε0 = 0, ε1 = y1−µ, ε2 = y2−µ+π1(y1−µ), and so on. Given

f (yt |Yt−1, ε0 = 0;θ) = f (yt |εt−1, ε0 = 0;θ)

=
1√

2πσ2ε
exp

(−(yt − µ+ π1εt−1)2

2σ2ε

)
,

the quasi-log-likelihood function conditional on ε0 = 0 is

L(YT |ε0 = 0;θ)

= −1

2
log(2π)− 1

2
log(σ2ε)− 1

T

T∑
t=1

(yt − µ+ π1εt−1)2

2σ2ε
.
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Q: Why ε0 = 0?

Ans: It is common to set ε0 to its expected value 0.

Plugging the recursive formulae of εt into L(YT |ε0 = 0;θ) results in a

highly nonlinear function in parameters. The maximizer of this

log-likelihood function is the conditional QMLE of the MA(1) model.

Similarly, the conditional QMLE of the MA(q) model is obtained

conditional on ε0 = ε−1 = · · · = ε−q+1 = 0. Here, εt are computed via

the following recursions:

εt = yt − µ+ π1εt−1 + · · ·+ πqεt−q.
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Estimation of ARMA Models

To compute the conditional QMLE of the ARMA(p,q), we need p initial

values of y0, y−1, . . . , y−p+1 and q initial values of ε0, ε−1, . . . , ε−q+1.

Here, εt are computed via

εt = yt − c − ψ1yt−1 − · · · − ψpyt−p + π1εt−1 + · · ·+ πqεt−q.

It is typical to set the initial ε’s to zero and the initial y ’s to the expected

value c/(1− ψ1 − · · · − ψp).

Remark: The exact and conditional QMLEs have different ways to handle

initial values. Under weak stationarity, the effect of initial values eventually

dies out, so that these two QMLEs are asymptotically equivalent.
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Asymptotic Properties of the QMLE

The QMLE θ̃T maximizes the average of the quasi-log-likelihood function

LT (YT ;θ). Let θ∗ denote the unknown parameter vector that maximizes

IE
[
LT (YT ;θ)

]
.

Consistency: Under suitable conditions, θ̃T
IP−→ θ∗. When LT (YT ;θ) is

“close” to IE
[
LT (YT ;θ)

]
on the parameter space in a proper sense, the

maximizer of the former, θ̃T , will also be “close” to the maximizer of the

latter, θ∗.

Asymptotic Normality: As θ̃T solves the average of the score:

∇LT (YT ;θ) = 0, we have from the mean-value expansion that

0 = ∇LT (YT ; θ̃T ) = ∇LT (YT ;θ∗) +∇2LT (YT ;θ†)(θ̃T − θ∗).
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Under a weak uniform law of large number ensures,

√
T (θ̃T − θ∗) = −HT (θ∗)−1

√
T∇LT (YT ;θ∗) + oIP(1),

where HT (θ) = IE[∇2LT (YT ;θ)]. This shows that T 1/2(θ̃T − θ∗) and

−HT (θ∗)−1
√
T∇LT (YT ;θ∗) are asymptotically equivalent. If√

T∇LT (YT ;θ∗) obeys a central limit theorem such that

BT (θ∗)−1/2
√
T∇LT (YT ;θ∗)

D−→ N (0, I),

with BT (θ) = var(
√
T∇LT (YT ;θ)), we immediately have

CT (θ∗)−1/2
√
T (θ̃T − θ∗)

D−→ N (0, I),

where CT (θ∗) = HT (θ∗)−1BT (θ∗)HT (θ∗)−1.
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When the likelihood is correctly specified, we have the information matrix

equality:

HT (θ∗) + BT (θ∗) = 0.

Then, CT (θ∗) = −HT (YT ;θ∗)−1 = BT (θ∗)−1.

Remark: The information matrix equality may break down when the

conditional normality assumption is invalid and/or when important

dynamic structures are ignored in model specification.

Without the information matrix equality, CT (θ∗) can not be simplified,

and both HT (θ∗) and BT (θ∗) must be estimated. Clearly, HT (θ∗) can be

estimated using its sample counterpart: H̃T = ∇2LT (YT ; θ̃T ). For

BT (θ∗), a Newey-West-type estimator is usually needed to accommodate

potential correlations and heterogeneity in the data.
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Model Diagnostic Tests

Consider a joint test of ρm =
(
ρ1, . . . , ρm

)′
= 0, where ρi are the

autocorrelations of the raw series yt . Let ρ̂m =
(
ρ̂1, . . . , ρ̂m

)′
be the vector

of m sample autocorrelations. Under general conditions,

√
T
(
ρ̂m − ρm

) D−→ N (0,V),

so that

T
(
ρ̂m − ρm

)′
V−1

(
ρ̂m − ρm

) D−→ χ2(m).

As shown in Lobato et al. (2001), the (i , j) th element of V is

vij =
1

γ20

[
ci+1,j+1 − ρic1,j+1 − ρjc1,i+1 + ρiρjc1,1

]
, i , j = 1, . . . ,m.
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In the previous expression,

ci+1,j+1 =
∞∑

k=−∞
IE
[
(yt − µ)(yt+i − µ)(yt+k − µ)(yt+k+j − µ)

]
−

IE
[
(yt − µ)(yt+i − µ)

]
IE
[
(yt+k − µ)(yt+k+j − µ)

]
.

Under the null, V simplifies such that vij = ci+1,j+1/γ
2
0 with

ci+1,j+1 =
∞∑

k=−∞
IE
[
(yt − µ)(yt+i − µ)(yt+k − µ)(yt+k+j − µ)

]
.

Wtih an additional assumption: yt are serially independent,

ci+1,j+1 = γ20 for i = j and zero otherwise. (Check!) This shows that

V = I, and
√
T ρ̂m

D−→ N (0, I).
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Q Tests

Using the result above, Box-Pierce’s Q test is

QT = T ρ̂′mρ̂m = T
m∑
i=1

ρ̂2i
D−→ χ2(m).

A finite-sample correction of QT is Ljung-Box’s Q test:

Q̃T = T 2
m∑
i=1

ρ̂2i
T − i

D−→ χ2(m).

Fuller (1976, p. 242) shows that, when yt are serially independent

with mean zero, variance σ2, and finite 6 th moment,

cov
(√

T ρ̂i ,
√
T ρ̂j

)
=

{
T−i
T + O(T−1), i = j 6= 0,

O(T−1), i 6= j .
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Instead of serial independence, assume

IE
[
(yt − µ)(yt+i − µ)(yt+k − µ)(yt+k+j − µ)

]
= 0,

for each k when i 6= j and for k 6= 0 when i = j , we find ci+1,j+1 = 0

when i 6= j , and

ci+1,j+1 = IE
[
(yt − µ)2(yt+i − µ)2

]
, i = j .

Then, V is diagonal with the diagonal element vii = ci+1,i+1/γ
2
0 .

vii can be consistently estimated by

v̂ii =
1
T

∑T−i
t=1 (yt − ȳ)2(yt+i − ȳ)2

[ 1
T

∑T
t=1(yt − ȳ)2]2

.

The Q∗ test due to Lobato et al. (2001) is

Q∗T = T
m∑
i=1

ρ̂2i /v̂ii
D−→ χ2(m).
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Remarks:

1 The Box-Pierce and Ljung-Box Q tests are not really tests of serial

uncorrelatedness because they are based on the assumption of serial

independence. They are in fact tests of a stronger null hypothesis.

2 Under conditional homoskedasticity, it can be seen that

ci+1,j+1 = IE
[
(yt − µ)2(yt+i − µ)2

]
would be γ20 for i = j . Q∗ test

does not require this condition but instead relies on the estimates of

ci+1,j+1. Thus, this test ought to be more robust to conditional

heteroskedasticity.

3 When the Q-type tests are applied to the residuals of an ARMA(p,q)

model, the asymptotic null distribution becomes χ2(m − p − q) or

χ2(m − p − q − 1) if the model contains a constant term.
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Spectral Tests

In contrast with Q tests, we are interested in testing all autocorrelations:

H0 : ρ1 = ρ2 = ρ3 = · · · = 0.

The spectral density is the Fourier transform of the autocorrelations:

f (ω) =
1

2π

∞∑
j=−∞

ρje
−ijω, ω ∈ [−π, π],

where ω denotes frequency.

Periodogram is the sample counterpart of f (ω):

IT (ω) =
1

2π

T−1∑
j=−(T−1)

ρ̂je
−ijω.
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Under the null, f (ω) = (2π)−1 for all ω. We can then base a test on

the difference between IT (ω) and (2π)−1:

1

2π

( T−1∑
j=−(T−1)

ρ̂je
−ijω − 1

)
=

1

π

T−1∑
j=1

ρ̂j cos(jω),

because exp(−ijω) = cos(jω)− i sin(jω), sin is an odd function, and

cos is an even function.

Integrating this function with respect to ω on [0, a], 0 ≤ a ≤ π,

1

π

T−1∑
j=1

ρ̂j
sin(ja)

j
,

which should also be “close” to zero for all a under the null.
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The spectral test of Durlauf (1991) is based on:

DT (t) =

√
2T

π

m(T )∑
j=1

ρ̂j
sin(jπt)

j
,

where πt = a and m(T ) grows with T but at a slower rate.

A standard Brownian motion B can be approximated by

WT (t) = ε0t +

√
2

π

T∑
j=1

εj
sin(jπt)

j
⇒ B(t), t ∈ [0, 1],

where εt are i.i.d. N (0, 1) and ⇒ stands for weak convergence. Then,

WT (t)− tWT (1) =

√
2

π

T∑
j=1

εj
sin(jπt)

j
⇒ B0(t), t ∈ [0, 1],

where B0 denotes the Brownian bridge.
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Recall T 1/2ρ̂i
D−→ N (0, 1) under serial independence. Thus,

DT (t)⇒ B0(t), t ∈ [0, 1].

The spectral tests are based on various functionals of DT .
1 Anderson-Darling test:

ADT =

∫ 1

0

[DT (t)]2

t(1− t)
dt ⇒

∫ 1

0

[B0(t)]2

t(1− t)
dt.

2 Cramér-von Mises test:

CvMT =

∫ 1

0

[DT (t)]2 dt ⇒
∫ 1

0

[B0(t)]2 dt.

3 Kolmogorov-Smirnov test:

KST = sup |DT (t)| ⇒ sup |B0(t)|.

4 Kuiper test:

KuT = sup
s,t
|DT (t)− DT (s)| ⇒ sup |B0(t)− B0(s)|.
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Deo (2000) notes that when yt are conditionally heteroskedastic, the

asymptotic variance of T 1/2ρ̂j is IE(y2t y
2
t−j)/γ(0)2. Hence, DT is not

properly normalized and may converge to a different limit.

Similar to Q∗ test, Deo (2000) proposes a modification of DT :

Dc
T (t) =

√
2T

π

m(T )∑
j=1

ρ̂j√
v̂jj

sin(jπt)

j
,

√
v̂jj =

1

γ̂(0)

(
1

T − j

T−j∑
t=1

(yt − ȳ)2(yt+j − ȳ)2

)1/2

.

The modified Cramér-von Mises test is

CvMc
T =

∫ 1

0
[Dc

T (t)]2 dt ⇒
∫ 1

0
[B0(t)]2 dt.
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Variance-Ratio Test

The variance-ratio test of Cochrane (1988) is designed to check if the

series ηt is a random walk, or equivalently, if yt = ηt − ηt−1 are i.i.d.

Suppose yt (t = 0, 1, . . . , kT ) have mean zero and variance σ2 and

σ2k = var(yt + · · ·+ yt−k+1). Under the null, σ2k = kσ2.

Let ȳ = 1
kT

∑kT
t=1(ηt − ηt−1). The sample variance of yt is

σ̂2 =
1

kT

kT∑
t=1

(
ηt − ηt−1 − ȳ

)2
,

which is consistent and asymptotically efficient for σ2 under the null.
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Given σ2k = var(ηt − ηt−k), we can treat each block of k random

variables (i.e., ηkt − ηkt−k) as a whole and estimate σ2k by

σ̃2k =
1

T

T∑
t=1

(
ηkt − ηkt−k − kȳ

)2
=

1

T

T∑
t=1

[
k(ȳt − ȳ)

]2
,

where ȳt =
∑kt

kt−k+1 yi/k . Clearly, σ̃2k/k is consistent for σ2 under

the null, but it is not asymptotically efficient. (Why?)

The variance-ratio test check if the ratio of σ̃2k/k to σ̂2 is sufficiently

close to one.
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We now write

1√
k

√
T (σ̃2k − kσ2) =

√
kT

(
σ̃2k
k
− σ2

)
=
√
kT

(
σ̃2k
k
− σ̂2

)
+
√
kT
(
σ̂2 − σ2

)
.

By Hausman (1978), the two terms on the right-hand side are

asymptotically uncorrelated.

Under the null,
√
kT (σ̂2 − σ2)

D−→ N (0, 2σ4). (Check!)

Similarly, as σ2
k = kσ2 under the null,

√
T (σ̃2

k − kσ2)
D−→ N (0, 2k2σ4),

so that the left-hand side converges to N (0, 2kσ4).
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It follows that

√
kT

(
σ̃2k
k
− σ̂2

)
D−→ N

(
0, 2(k − 1)σ4

)
,

or alternatively,

√
kT

(
σ̃2k
kσ̂2
− 1

)
D−→ N

(
0, 2(k − 1)

)
.

Setting VR(k) := σ̃2k/(kσ̂2), we have

√
kT [VR(k)− 1]/

√
2(k − 1)

D−→ N (0, 1).

Clearly, this test depends on the choice of k .
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Model Selection Criteria

Model selection criteria are usually the Gaussian log-likelihood values

penalized by model complexity (in terms of number of parameters).

Akaike Information Criterion (AIC):

AIC = ln σ̃2
T +

2(p + q + 1)

T
.

Schwartz Information Criterion (SIC):

SIC = ln σ̃2
T +

(p + q + 1) lnT

T
.

The SIC is dimensionally consistent, in the sense that it can select the

correct ARMA orders when the sample is sufficiently large.

In practice, we usually estimate an array of ARMA models and choose

the one with the smallest AIC or SIC as the “best” model.
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Vector AR (VAR) Series

Let εt (d × 1) be a vector time series with mean zero, the covariance

matrix Σε, and cov(εt , εs) = 0 for t 6= s. A VAR series {yt} is:

Ψ(B)yt = c + εt ,

where Ψ(B) = Id −Ψ1B −Ψ2B2 − . . . is a matrix polynomial in B.

For a VAR(1) series, Ψ(B) = Id −Ψ1B. It is weakly stationary if all the

characteristic roots of Ψ1 are inside the unit circle. Let

(Id −Ψ1B)−1 = Id + Ψ1B + Ψ2
1B2 + · · · . The MA(∞) representation is

yt = (I−Ψ1)−1c +
∞∑
j=0

Ψj
1εt−j .
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VAR(p) Series

The VAR(p) series Ψ(B)yt = c + εt can be expressed as:

yt
yt−1
yt−2

...

yt−p+1


︸ ︷︷ ︸

Yt

=



c

0

0
...

0


︸︷︷︸

C

+



Ψ1 Ψ2 · · · Ψp−1 Ψp

Id 0 · · · 0 0

0 Id · · · 0 0
...

... · · · ...
...

0 0 · · · Id 0


︸ ︷︷ ︸

F



yt−1
yt−2
yt−3

...

yt−p


︸ ︷︷ ︸

Yt−1

+



εt
0

0
...

0


︸ ︷︷ ︸

Et

.

That is, Yt = C + FYt−1 + Et , and it is weakly stationary if all the

characteristic roots of F (pd × pd) are inside the unit circle.
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Given VAR(1) series yt = c + Ψ1yt−1 + εt , IE(yt) = (Id −Ψ1)−1c, and

the autocovariances are

Γj = cov(yt , yt−j) =
∞∑
i=0

Ψi+j
1 ΣεΨ

i ′
1 , j = 0, 1, 2, . . . ,

with Γ0 = var(yt) =
∑∞

i=0 Ψi
1ΣεΨ

i ′
1 . Note that Γj = Γ′−j . For Γ0, its k th

diagonal element is γkk,0, the variance of yk,t , and its (h, k) th element is

γhk,0, the contemporaneous covariance of yh,t and yk,t . (Explain the

elements of Γj .)

The multivariate Yule-Walker equations:

Γj = Ψ1Γj−1, j = 1, 2, . . . ,

and Γ0 = Ψ1Γ′1 + Σε.
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Let D denote the diagonal matrix with the k th diagonal element γkk,0.

The autocorrelations of yt are

Rj = D−1/2ΓjD
−1/2, j = 0, 1, 2, . . .

For the VAR(p) series Ψ(B)yt = c + εt , IE(yt) = Ψ(1)−1c, and the

multivariate Yule-Walker equations of autocovariances are

Γj = Ψ1Γj−1 + Ψ2Γj−2 + · · ·+ ΨpΓj−p, j = 1, 2, . . . ,

and Γ0 = Ψ1Γ′1 + Ψ2Γ′2 + · · ·+ ΨpΓ′p + Σε.
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Model Estimation

Consider a VAR(p) model: yt = c + Ψ1yt−1 + · · ·+ Ψpyt−p + εt . Given p

initial values: y1, . . . , yp and the conditional normality assumption,

LT (θ) =
1

T

T∑
j=p+1

ln f (yj | Yj−1;θ)

= −(T − p)d

2T
ln(2π) +

(T − p)

2T
ln(det(Σ−1))

− 1

2T

T∑
j=p+1

(yj − P′ηj)
′Σ−1(yj − P′ηj),

where ηj = (1 y′j−1 . . . y′j−p)′ is (pd + 1)× 1 and

P = (c Ψ1 Ψ2 . . . Ψp)′ is (pd + 1)× d .
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QMLE of P

The QMLE of P is:

P̂T =

 T∑
j=p+1

ηjη
′
j

−1 T∑
j=p+1

ηjy
′
j

 ,

and the k th column of P̂ is the OLS estimates of regressing of yk,t on ηt : T∑
j=p+1

ηjη
′
j

−1 T∑
j=p+1

ηjyk,j

 .

That is, the coefficients of a VAR(p) model can be estimated by separately

estimating each autoregression via OLS.
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Let Let êt = yt − P̂
′
Tηt denote the residuals. We can write

T∑
j=p+1

(yj − P′ηj)
′Σ−1(yj − P′ηj)

=
T∑

j=p+1

[
êj +

(
P̂T − P

)′
ηj
]′

Σ−1
[
êj +

(
P̂T − P

)′
ηj
]

=
T∑

j=p+1

ê′jΣ
−1êj +

T∑
j=p+1

η′j
(
P̂T − P

)
Σ−1

(
P̂T − P

)′
ηj .

because
∑T

j=p+1 η
′
j

(
P̂T − P

)
Σ−1êj = 0. (Why?) The RHS can be

minimized when the second term is zero (i.e., P = P̂T ).
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QMLE of Σ

To estimate Σ, we maximize LT (P̂T ,Σ) with respect to Σ−1 and obtain

∂LT (P̂T ,Σ)

∂Σ−1
=

(T − p)

2T
Σ′ − 1

2T

T∑
j=p+1

êj ê
′
j .

This yields the QMLE of Σ:

Σ̂T =
1

T − p

T∑
j=p+1

êj ê
′
j ,

with the i th diagonal element and (i , j) th off-diagonal element:

σ̂ii =
1

T − p

T∑
t=p+1

ê2i ,t , σ̂ij =
1

T − p

T∑
t=p+1

êi ,t êj ,t .
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Asymptotic Properties

Consistency: Under suitable conditions, P̂T
IP−→ P and Σ̂T

IP−→ Σ.

Asymptotic Normality: Let p = vec(P) and Q = IE(ηtη
′
t). Then,

√
T (p̂T − p)

D−→ N (0, Σ⊗Q−1),

when the information matrix equality holds. For the i th regression,

√
T (p̂i ,T − pi )

D−→ N (0, σ2iiQ
−1), i = 1, . . . , d .

Wald Test: Under the null hypothesis Rp = r,

WT = T (Rp̂T − r)′[R(Σ̂T ⊗Q−1)R]−1(Rp̂T − r)
D−→ χ2(q).
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Impulse Response Functions

Consider the VAR(p) series Ψ(B)yt = c + εt . Its MA representation is

yt = Φ(1)c + Φ(B)εt = Φ(1)c +
∞∑
j=0

Φj εt−j ,

where the polynomial Φ(B) = Ψ(B)−1 with Φ0 = Id .

The impulse response of yt to one unit shock of εi ,t−j is the i th

column of Φj , i.e., Φjei , with ei the i th Cartesian unit vector.

The accumulated response over n periods is

Anei =
( n∑

j=0

Φj

)
ei ;

the long-run effect is A∞ei , where A∞ = Φ(1) = Ψ(1)−1.
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Orthogonalized Impulse Response

Σε is not a diagonal matrix in general. When εi ,t−j and εk,t−j are

correlated for some i , k, a shock of εi ,t−j may come with shocks of

other innovations. As such, the impulse response of yt to a shock of

εi ,t−j may involve the response to shocks of other innovations.

Cholesky decomposition: Σε = LL′, where L is a lower triangular

matrix with non-zero diagonal elements. The elements of vt = L−1εt
are uncorrelated and var(vt) = L−1ΣεL

−1′ = Id . These are known as

orthogonalized innovations.

Alternatively, write Σε = LDL′, where D is diagonal and L is lower

triangular with the diagonal elements being 1s. Then, vt = L−1εt are

also orthogonalized innovations because var(vt) = D.
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The MA representation of the VAR(p) series yt in terms of vt is

yt = Φ(1)c +
∞∑
j=0

ΦjL vt−j = Φ(1)c +
∞∑
j=0

Θj vt−j ,

where Θj = ΦjL. The i th column of Θj , Θjei , is the orthogonalized

impulse response of yt to one unit shock of vi ,t−j . This impulse

response is not contaminated by the effect of other innovations.

Advantage: There is no “scaling” problem, because var(vt) = Id so

that one unit shock is also a shock of one standard deviation.

Drawback: The orthogonalized impulse responses are not uniquely

defined because the decomposition of Σε depends on the ordering of

the elements of yt .
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Generalized Impulse Response

Pesaran and Shin (1998) define the generalized impulse response of yt to

the shock εi ,t−j = δ as

IE
(
yt | εi ,t−j = δ,F t−j−1)− IE

(
yt | F t−j−1),

where F t is the info. set up to time t. From the MA representation,

IE
(
yt |εi ,t−j = δ,F t−j−1) = Φ(1)c +

∞∑
k=j+1

Φkεt−k

+ Φj IE(εt−j |εi ,t−j = δ).

This differs from IE
(
yt |F t−j−1) by the last term, Φj IE(εt−j |εi ,t−j = δ),

which is the generalized impulse response to the shock εi ,t−j = δ.
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When εt has a multivariate normal distribution,

IE(εk,t |εi ,t = δ) =
σki
σii

δ,

where σki is the (k , i) th element of Σε.

Using this result we have the generalized impulse response:

Φj IE(εt−j |εi ,t−j = δ) = ΦjΣεeiδ/σii .

Setting δ = σ
1/2
ii , a shock of one standard deviation to the i th

equation, the generalized impulse response of yt is ΦjΣεei/σ
1/2
ii .

This impulse response does not depend on the ordering of the

elements of yt but requires the normality assumption on εt .
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Forecast Error Variance Decomposition

As yt = Φ(1)c +
∑∞

j=0 Θj vt−j , the optimal h-step ahead forecast is

ŷt(h) := IE
(
yt+h|F t

)
= Φ(1)c +

∞∑
j=h

Θj vt+h−j ,

and the forecast error is
∑h−1

j=0 Θj vt+h−j .

The h-step forecast error variance of yi ,t+h is defined as

IE
[
yi ,t+h − ŷi ,t(h)

]2
=

h−1∑
j=0

d∑
k=1

θ2ik,j =
d∑

k=1

h−1∑
j=0

(e′iΘjek)2,

where
∑h−1

j=0 (e′iΘjek)2 is the forecast error variance due to the k th

innovation.
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Noting that
∑d

k=1 eke′k = I, the forecast error variance of yi ,t+h is

h−1∑
j=0

d∑
k=1

e′iΘjeke′kΘjei =
h−1∑
j=0

e′iΘjΘ
′
jei .

In terms of the original coefficient matrices, we have

IE
[
yi ,t+h − ŷi ,t(h)

]2
=

h−1∑
j=0

e′iΦjΣεΦ
′
jei .

The orthogonalized forecast error variance decomposition is the

proportion of the total forecast error variance of yi ,t+h that can be

attributed to the k th innovation:∑h−1
j=0 (e′iΘjek)2∑h−1

j=0

∑d
k=1(e′iΘjek)2

=

∑h−1
j=0 (e′iΘjek)2∑h−1

j=0 e′iΦjΣεΦ
′
jei
.
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The ratios of the decomposition above sum to one (over k). Hence,

each ratio signifies the relative importance of a particular

(orthogonalized) innovation.

As the generalized impulse response of yi ,t to the shock of k th

innovation is eiΦjΣεek/σ
1/2
kk , we can define the generalized forecast

error variance decomposition as∑h−1
j=0 (e′iΦjΣεek)2/σkk∑h−1

j=0 e′iΦjΣεΦ
′
jei

.

Note that these ratios do not sum to one. That is, each ratio does

not represent the relative importance of an innovation.
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Structural VAR Models

Consider a money demand function:

(mt − pt) = β0 + β1yt + β2rt + β3(mt−1 − pt−1) + vt ,

where mt is the log of nominal money balance held by the public, pt is the

log of price level, yt is the log of GNP, and rt is nominal interest rate.

With the assumption vt = ρvt−1 + ut ,

(mt − pt) = (1− ρ)β0 + β1yt − β1ρyt−1 + β2rt − β2ρrt−1
+(β3 + ρ)(mt−1 − pt−1)− β3ρ(mt−2 − pt−2) + ut .

This can be obtained from the model of (mt − pt) on yt , yt−1, rt ,

rt−1, (mt−1 − pt−1), and (mt−2 − pt−2) with parameter restrictions.

C.-M. Kuan (Finance & CRETA, NTU) Intro to Time Series Analysis January 3, 2011 101 / 213



The aforementioned general model can not be consistently estimated

by OLS because there is simultaneity bias when yt and rt are present.

Consider now a general structural VAR model for yt = (mt pt yt rt)
′:

B0yt = k + B1yt−1 + · · ·+ Bpyt−p + ut ,

where the diagonal elements of B0 are all 1s and var(ut) = D.

When B0 is invertible, we have the following VAR(p) model:

yt = c + Ψ1yt−1 + · · ·+ Ψpyt−p + εt ,

with c = B−10 k, Ψi = B−10 Bi , and εt = B−10 ut . This is a reduced

form, in the sense that yt depends only on predetermined variables.
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The reduced form does not depend on current variables and hence

can be estimated by OLS.

Q: Can the structural parameters k, Bi and D be identified from the

parameter estimates of the VAR(p) model:

yt = c + Ψ1yt−1 + · · ·+ Ψpyt−p + εt?

Q: Can we identify the impulse response to the structural innovations

ut? By construction, each element of εt is a linear combination of ut .

Hence, evaluating ∂yt+s/∂εi ,t or even orthogonzalized impulse

response may not be meaningful.
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Recursive Model

Consider the structural model:

B0yt = Gηt + ut ,

where G = (k B1 . . . Bp), B0 is lower triangular with 1s on the principal

diagonal, and D = var(ut) is diagonal with positive entries. This structural

model is recursive in the sense that the the elements of yt enter the model

recursively.

The reduced form is: yt = P′ηt + εt , where P′ = B−10 G contains

elements: c = B−10 k and Ψi = B−10 Bi , and εt = B−10 ut with

var(εt) = Σε = B−10 DB−1′0 .
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The system is just identified.

B0 is nonsingular such that B−10 is also lower triangular with 1s on

the principal diagonal.

Given that Σε can be decomposed as LD̃L′, the structural parameters

that satisfy Σε = B−10 DB−1′0 do exist.

The structural parameters Bi can be uniquely obtained as Bi = B0Ψi .
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Full Information Maximum Likelihood (FIML)

FIML estimation when the system is just identified:

1 Estimate P in the reduced form via OLS and estimate Σε using the

OLS residuals. Let the resulting estimates be P̂T and Σ̂T .

2 Triangularizing Σ̂T to get L̂D̂L̂
′
.

3 Computing the estimated structural parameters as k̂ = L̂
−1

ĉ and

B̂i = L̂
−1

Ψ̂i .

4 The estimated orthogonalized impulse response coefficients computed

from the estimated VAR model describes the dynamic response to

structural innovations ut = L−1ε.
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Non-Recursive Model

Without restriction, the log-likelihood function of the reduced from is

LT (B0,D,P) = −d

2
ln(2π)− 1

2
ln
(
det(B−10 DB−1′0 )

)
− 1

2T

T∑
t=1

(yt − P′ηt)
′[B−10 DB−1′0 )

]−1
(yt − P′ηt).

Let ε̂t = yt − P̂
′
Tηt be the OLS residuals. Then,

LT (B0,D, P̂T ) = −d

2
ln(2π)− 1

2
ln
(
det(B−10 DB−1′0 )

)
− 1

2T

T∑
t=1

ε̂′t
[
B−10 DB−1′0

]−1
ε̂t .
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It can be verified that

T∑
t=1

ε̂′t
[
B−10 DB−1′0 )

]−1
ε̂t = trace

(
T∑
t=1

ε̂t ε̂
′
t

[
B−10 DB−1′0 )

]−1)

= trace
(
T Σ̂TB′0D−1B0

)
,

and that ln
(
det(B−10 DB−1′0 )

)
= − log(det(B0)2) + ln(det(D)). Hence,

LT (B0,D, P̂T ) = −d

2
ln(2π) +

1

2
ln
(
det(B0)2

)
− 1

2
ln
(
det(D)

)
− 1

2
trace

(
Σ̂TB′0D−1B0

)
.

If there exist unique B0 and D satisfying B−10 DB−1′0 = Σε (i.e., B0 and D

are identified), maximizing LT (B0,D, P̂T ) yilds the QMLEs for B0 and D.
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Identification

How can the parameters in B0 and D be identified?

Order condition: The number of parameters in B0 and D is no more

than that of Σε. As Σε has d(d + 1)/2 parameter and D is diagonal

with d parameters, the order condition requires B0 to have at most

d(d − 1)/2 free parameters.

Rank condition: (to be completed)
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Brownian motion

The process {w(t), t ∈ [0,∞)} is the standard Wiener process (standard

Brownian motion) if it has continuous sample paths almost surely and

satisfies:

1 IP
(
w(0) = 0

)
= 1.

2 For 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ,

IP
(
w(ti )−w(ti−1) ∈ Bi , i ≤ k

)
=
∏

i≤k IP
(
w(ti )− w(ti−1) ∈ Bi

)
,

where Bi are Borel sets.

3 For 0 ≤ s < t, w(t)− w(s) ∼ N (0, t − s).

Note: w has independent and Gaussian increments.
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w(t) ∼ N (0, t) such that for r ≤ t,

cov
(
w(r), w(t)

)
= IE

[
w(r)

(
w(t)− w(r)

)]
+ IE

[
w(r)2

]
= r .

The sample paths of w are a.s. continuous but highly irregular

(nowhere differentiable).

To see this, note wc(t) = w(c2t)/c for c > 0 is also a standard

Wiener process. (Why?) Then, wc(1/c) = w(c)/c . For a large c

such that w(c)/c > 1, wc (1/c)
1/c = w(c) > c. That is, the sample path

of wc has a slope larger than c on a very small interval (0, 1/c).

The difference quotient:

[w(t + h)− w(t)]/h ∼ N (0, 1/|h|)

can not converge to a finite limit (as h→ 0) with a positive prob.
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The d-dimensional, standard Wiener process w consists of d mutually

independent, standard Wiener processes, so that for s < t,

w(t)−w(s) ∼ N (0, (t − s) Id).

1 w(t) ∼ N (0, t Id).

2 cov(w(r), w(t)) = min(r , t) Id .

The Brownian bridge w0 on [0, 1] is w0(t) = w(t)− tw(1). Clearly,

IE[w0(t)] = 0, and for r < t,

cov
(
w0(r), w0(t)

)
= cov

(
w(r)− rw(1), w(t)− tw(1)

)
= r(1− t) Id .
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Weak Convergence

IPn converges weakly to IP, denoted as IPn ⇒ IP, if for every bounded,

continuous real function f on S ,∫
f (s) dIPn(s)→

∫
f (s) d IP(s),

where {IPn} and IP are probability measures on (S ,S).

When zn and z are all Rd -valued random variables, IPn ⇒ IP reduces

to the usual notion of convergence in distribution: zn
D−→ z.

When zn and z are d-dimensional stochastic processes with the

distributions induced by IPn and IP, zn
D−→ z, also denoted as zn ⇒ z,

implies that all the finite-dimensional distributions of zn converge to

the corresponding distributions of z.
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Continuous Mapping Theorem

Continuous Mapping Theorem

Let g : Rd 7→ R be a function continuous almost everywhere on Rd , except

for at most countably many points. If zn ⇒ z, then g(zn)⇒ g(z).

Proof: Let S and S ′ be two metric spaces with Borel σ-algebras S and S ′ and

g : S 7→ S ′ be a measurable mapping. For IP on (S ,S), define IP∗ on (S ′,S ′) as

IP∗(A′) = IP(g−1(A′)), A′ ∈ S ′.

For every bounded, continuous f on S ′, f ◦ g is also bounded and continuous on

S . IPn ⇒ IP now implies that∫
f ◦ g(s) dIPn(s)→

∫
f ◦ g(s) d IP(s),

which is equivalent to
∫
f (a) dIP∗n(a)→

∫
f (a) dIP∗(a), proving IP∗n ⇒ IP∗.
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Functional Central Limit Theorem (FCLT)

ζi are i.i.d. with mean zero and variance σ2. Let sn = ζ1 + · · ·+ ζn
and zn(i/n) = (σ

√
n)−1si .

For t ∈ [(i − 1)/n, i/n), the constant interpolations of zn(i/n) is

zn(t) = zn((i − 1)/n) =
1

σ
√
n
s[nt],

where [nt] is the the largest integer less than or equal to nt.

From Lindeberg-Lévy’s CLT,

1

σ
√
n
s[nt] =

(
[nt]

n

)1/2 1

σ
√

[nt]
s[nt]

D−→
√
tN (0, 1),

which is just N (0, t), the distribution of w(t).
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For r < t, we have

(zn(r), zn(t)− zn(r))
D−→
(
w(r), w(t)− w(r)

)
,

and hence (zn(r), zn(t))
D−→ (w(r), w(t)). This is easily extended to

establish convergence of any finite-dimensional distributions and leads

to the functional central limit theorem (or invariance principle).

Donsker’s Invariane Principle

Let ζt be i.i.d. with mean µo and variance σ2o > 0 and

zT (r) =
1

σo
√
T

[Tr ]∑
t=1

(ζt − µo), r ∈ [0, 1].

Then, zT ⇒ w as T →∞.
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Non-i.i.d. random variables: Let ζt be r.v.s with mean µt and variance

σ2t . {ζt} is said to obey an FCLT if

zT (r) =
1

σ∗
√
T

[Tr ]∑
t=1

(
ζt − µt

)
⇒ w(r), r ∈ [0, 1],

where σ2∗ is the long-run variance of ζt :

σ2∗ = lim
T→∞

var

(
1√
T

T∑
t=1

ζt

)
.

Note that σ2∗ accommodates the correlations among ζt . When ζt are

i.i.d. with variance σ2o , σ2∗ = σ2o .
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Multivariate random variables: Let ζt be r.v.s with mean µt and

variance Σ2
t . {ζt} obeys an FCLT if

zT (r) =
1√
T

Σ
−1/2
∗

[Tr ]∑
t=1

(
ζt − µt

)
⇒ w(r), r ∈ [0, 1],

where w is the d-dimensional, standard Wiener process, and Σ∗ is the

long-run covariance matrix:

Σ∗ = lim
T→∞

1

T
IE

( T∑
t=1

(ζt − µt)

)(
T∑
t=1

(ζt − µt)

)′ .
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Example: yt = yt−1 + ut , t = 1, 2, . . ., with y0 = 0, where ut are i.i.d. with

mean zero and variance σ2u. By Donsker’s FCLT, the partial sum

y[Tr ] =
∑[Tr ]

t=1 ut is such that

1

T 3/2

T∑
t=1

yt = σu

T∑
t=1

∫ (t+1)/T

t/T

1√
Tσu

y[Tr ] dr ⇒ σu

∫ 1

0
w(r) dr ,

Similarly,

1

T 2

T∑
t=1

y2t =
1

T

T∑
t=1

( yt√
T

)2
⇒ σ2u

∫ 1

0
w(r)2 dr ,

so that
∑T

t=1 y
2
t is OIP(T 2).
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I (1) Series

{yt} is said to be an I (1) (integrated of order 1) series if yt = yt−1 + εt ,

with εt satisfying:

[C1] {εt} is a weakly stationary series with mean zero and variance σ2ε and

obeys an FCLT:

1

σ∗
√
T

[Tr ]∑
t=1

εt =
1

σ∗
√
T

y[Tr ] ⇒ w(r), 0 ≤ r ≤ 1,

where w is standard Wiener process, and σ2∗ is the long-run variance of εt :

σ2∗ = lim
T→∞

var

(
1√
T

T∑
t=1

εt

)
.
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Partial sums of an I (0) series (e.g.,
∑t

i=1 εi ) form an I (1) series,

while taking first difference of an I (1) series (e.g., yt − yt−1) yields an

I (0) series.

A random walk is I (1) with i.i.d. εt and σ2
∗ = σ2

ε .

When εt = yt − yt−1 is a stationary ARMA(p, q) series, y is an I (1)

series and known as an ARIMA(p, 1, q) series.

An I (1) series yt has mean zero and variance increasing linearly with

t, and its autocovariances cov(yt , ys) do not decrease when |t − s|
increases.

Many macroeconomic and financial time series are (or behave like)

I (1) series.
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ARIMA vs. ARMA Series
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Figure: Sample paths of ARIMA and ARMA series.
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I (1) vs. Trend Stationarity

Trend stationary series: yt = ao + bot + εt , where εt are I (0).
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Figure: Sample paths of random walk and trend stationary series.
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Autoregression of I (1) Series

Suppose {yt} is a random walk such that yt = αoyt−1 + εt with αo = 1

and εt i.i.d. random variables with mean zero and variance σ2ε .

{yt} does not obey a LLN, and
∑T

t=2 yt−1εt = OIP(T ) and∑T
t=2 y

2
t−1 = OIP(T 2).

Given the specification: yt = αyt−1 + et , the OLS estimator of α is:

α̂T =

∑T
t=2 yt−1yt∑T
t=2 y

2
t−1

= 1 +

∑T
t=2 yt−1εt∑T
t=2 y

2
t−1

= 1 + OIP(T−1),

which is T -consistent. This is also known as a super consistent

estimator.
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Asymptotic Properties of the OLS Estimator

Limits of Partial Sums: I

Let yt = yt−1 + εt be an I (1) series with εt satisfying [C1]. Then,

(i) T−3/2
∑T

t=1 yt−1 ⇒ σ∗

∫ 1

0
w(r) dr ;

(ii) T−2
∑T

t=1 y
2
t−1 ⇒ σ2∗

∫ 1

0
w(r)2 dr ;

(iii) T−1
∑T

t=1 yt−1εt ⇒
1

2
[σ2∗w(1)2 − σ2ε ] = σ2∗

∫ 1

0
w(r) dw(r) +

1

2
(σ2∗ − σ2ε ),

where w is the standard Wiener process.

Note: When yt is a random walk, σ2∗ = σ2ε .
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Model without a Constant Term

Let yt = yt−1 + εt be an I (1) series with εt satisfying [C1]. Given the

specification yt = αyt−1 + et , the normalized OLS estimator of α is:

T (α̂T − 1) =

∑T
t=2 yt−1εt/T∑T
t=2 y

2
t−1/T

2
⇒

1
2

[
w(1)2 − σ2ε /σ2∗

]∫ 1
0 w(r)2 dr

.

where w is the standard Wiener process. When yt is a random walk,

T (α̂T − 1)⇒
1
2

[
w(1)2 − 1

]∫ 1
0 w(r)2 dr

,

which does not depend on σ2ε and σ2∗ and is asymptotically pivotal.
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Limits of Partial Sums: II

Let yt = yt−1 + εt be an I (1) series with εt satisfying [C1]. Then,

(i) T−2
∑T

t=1(yt−1 − ȳ−1)2 ⇒ σ2∗

∫ 1

0
w∗(r)2 dr ;

(ii) T−1
∑T

t=1(yt−1 − ȳ−1)εt ⇒ σ2∗

∫ 1

0
w∗(r) dw(r) +

1

2
(σ2∗ − σ2ε ),

where w is the standard Wiener process and w∗(t) = w(t)−
∫ 1
0 w(r) dr .
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Model with a Constant Term

Let yt = yt−1 + εt be an I (1) series with εt satisfying [C1]. Given the

specification yt = c + αyt−1 + et , the normalized OLS estimators of α and

c are:

T (α̂T − 1)⇒
∫ 1
0 w∗(r)dw(r) + 1

2(1− σ2ε /σ2∗)∫ 1
0 w∗(r)2 dr

=: A,

√
TĉT ⇒ A

(
σ∗

∫ 1

0
w(r)dr

)
+ σ∗w(1).

In particular, when yt is a random walk,

T (α̂T − 1)⇒
∫ 1
0 w∗(r) dw(r)∫ 1
0 w∗(r)2 dr

.
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The limiting results for autoregressions with an I (1) series are not

invariant to model specification.

All the results here are based on the data with DGP: yt = yt−1 + εt .

intercept. These results would break down if the DGP is

yt = co + yt−1 + εt with a non-zero co ; such series are said to be I (1)

with drift.

For an I (1) series with a drift:

yt = co + yt−1 + εt = co t +
t∑

i=1

εi ,

which contains a deterministic trend and an I (1) series without drift.
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Tests of Unit Root

1 Given the specification yt = αyt−1 + et , the unit root hypothesis is

αo = 1, and a leading unit-root test is the t test:

τ0 =

(∑T
t=2 y

2
t−1
)1/2

(α̂T − 1)

σ̂T ,1
,

where σ̂2T ,1 =
∑T

t=2(yt − α̂T yt−1)2/(T − 2).

2 Given the specification yt = c + αyt−1 + et , a unit-root test is

τc =

[∑T
t=2(yt−1 − ȳ−1)2

]1/2
(α̂T − 1)

σ̂T ,2
,

where σ̂2T ,2 =
∑T

t=2(yt − ĉT − α̂T yt−1)2/(T − 3).
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Dickey-Fuller Tests

Dickey-Fuller Tests: Random Walk

Let yt be generated as a random walk. Then,

τ0 ⇒
1
2 [w(1)2 − 1][∫ 1
0 w(r)2 dr

]1/2 ,
τc ⇒

∫ 1
0 w∗(r) dw(r)[∫ 1
0 w∗(r)2 dr

]1/2 .
For the specification with a time trend variable:

yt = c + αyt−1 + β
(
t − T

2

)
+ et ,

the t-statistic of αo = 1 is denoted as τt .
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Dickey-Fuller distributions

Table: Some percentiles of the Dickey-Fuller distributions.

Test 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

τ0 −2.58 −2.23 −1.95 −1.62 −0.51 0.89 1.28 1.62 2.01

τc −3.42 −3.12 −2.86 −2.57 −1.57 −0.44 −0.08 0.23 0.60

τt −3.96 −3.67 −3.41 −3.13 −2.18 −1.25 −0.94 −0.66 −0.32

These distributions are not symmetric about zero and assume more

negative values.

τc assumes negatives values about 95% of times, and τt is virtually a

non-positive random variable.
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The Dickey-Fuller Distributions
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Figure: The limiting distributions of the Dickey-Fuller τ0 and τc tests.
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Implementation

In practice, we estimate one of the following specifications:

1 ∆yt = θyt−1 + et .

2 ∆yt = c + θyt−1 + et .

3 ∆yt = c + θyt−1 + β
(
t − T

2

)
+ et .

The unit-root hypothesis αo = 1 is now equivalent to θo = 0.

The weak limits of the normalized estimators T θ̂T are the same as

the respective limits of T (α̂T − 1) under the null hypothesis.

The unit-root tests are now computed as the t-ratios of these

specifications.
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Phillips-Perron Tests

Note: The Dickey-Fuller tests check only the random walk hypothesis and

are invalid for testing general I (1) series.

Dickey-Fuller Tests: General I (1) Series

Let yt = yt−1 + εt be an I (1) series with εt satisfying [C1]. Then,

τ0 ⇒
σ∗
σε

(
1
2 [w(1)2 − σ2ε /σ2∗][∫ 1

0 w(r)2 dr
]1/2

)
,

τc ⇒
σ∗
σε

(∫ 1
0 w∗(r)dw(r) + 1

2(1− σ2ε /σ2∗)[∫ 1
0 w∗(r)2 dr

]1/2
)
,
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Let êt denote the OLS residuals and s2Tn a Newey-West type

estimator of σ2∗ based on êt :

s2Tn =
1

T − 1

T∑
t=2

ê2t +
2

T − 1

T−2∑
s=1

κ
( s
n

) T∑
t=s+2

êt êt−s ,

with κ a kernel function and n = n(T ) its bandwidth.

Phillips (1987) proposed the following modified τ0 and τc statistics:

Z (τ0) =
σ̂T
sTn

τ0 −
1
2(s2Tn − σ̂2T )

sTn
(∑T

t=2 y
2
t−1/T

2
)1/2 ,

Z (τc) =
σ̂T
sTn

τc −
1
2(s2T − σ̂2T )

sTn
[∑T

t=2(yt−1 − ȳ−1)2
]1/2 ;

see also Phillips and Perron (1988).
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The Phillips-Perron tests eliminate the nuisance parameters by suitable

transformations of τ0 and τc and have the same limits as those of the

Dickey-Fuller tests.

Phillips-Perron Tests

Let yt = yt−1 + εt be an I (1) series with εt satisfying [C1]. Then,

Z (τ0)⇒
1
2

[
w(1)2 − 1

][∫ 1
0 w(r)2 dr

]1/2 ,
Z (τc)⇒

∫ 1
0 w∗(r) dw(r)[∫ 1
0 w∗(r)2 dr

]1/2 .
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Augmented Dickey-Fuller (ADF) Tests

Said and Dickey (1984) suggest “filtering out” the correlations in a weakly

stationary series by a linear AR model with a proper order. The

“augmented” specifications are:

1 ∆yt = θyt−1 +
∑k

j=1 γj∆yt−j + et .

2 ∆yt = c + θyt−1 +
∑k

j=1 γj∆yt−j + et .

3 ∆yt = c + θyt−1 + β
(
t − T

2

)
+
∑k

j=1 γj∆yt−j + et .

Note: This approach avoids non-parametric kernel estimation of σ2∗ but

requires choosing a proper lag order k for the augmented specifications

(say, by a model selection criteria, such as AIC or SIC).
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KPSS Tests

{yt} is trend stationary if it fluctuates around a deterministic trend:

yt = ao + bo t + εt ,

where εt satisfy [C1]. When bo = 0, it is level stationary. Kwiatkowski,

Phillips, Schmidt, and Shin (1992) proposed testing stationarity by

ηT =
1

T 2 s2Tn

T∑
t=1

(
t∑

i=1

êi

)2

,

where s2Tn is a Newey-West estimator of σ2∗ based on êt .

To test the null of trend stationarity, êt = yt − âT − b̂T t.

To test the null of level stationarity, êt = yt − ȳ .
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The partial sums of êt = yt − ȳ are such that

[Tr ]∑
t=1

êt =

[Tr ]∑
t=1

(εt − ε̄) =

[Tr ]∑
t=1

εt −
[Tr ]

T

T∑
t=1

εt , r ∈ (0, 1].

Then by a suitable FCLT,

1

σ∗
√
T

[Tr ]∑
t=1

êt ⇒ w(r)− rw(1) = w0(r).

Similarly, given êt = yt − âT − b̂T t,

1

σ∗
√
T

[Tr ]∑
t=1

êt ⇒ w(r) + (2r − 3r2)w(1)− (6r − 6r2)

∫ 1

0
w(s)ds,

which is a “tide-down” process (it is zero at r = 1 with prob. one).
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KPSS Tests
1 Let yt = ao + bo t + εt with εt satisfying [C1]. Then, ηT computed

from êt = yt − âT − b̂T t is:

ηT ⇒
∫ 1

0
f (r)2 dr ,

where f (r) = w(r) + (2r − 3r2)w(1)− (6r − 6r2)
∫ 1
0 w(s)ds.

2 Let yt = ao + εt with εt satisfying [C1]. Then, ηT computed from

êt = yt − ȳ is:

ηT ⇒
∫ 1

0
w0(r)2 dr ,

where w0 is the Brownian bridge.
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Table: Some percentiles of the distributions of the KPSS test.

Test 1% 2.5% 5% 10%

level stationarity 0.739 0.574 0.463 0.347

trend stationarity 0.216 0.176 0.146 0.119

These tests have power against I (1) series because ηT would diverge

under I (1) alternatives.

KPSS tests also have power against other alternatives, such as

stationarity with mean changes and trend stationarity with trend

breaks. Thus, rejecting the null of stationarity does not imply that

the series must be I (1).
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The KPSS Distributions
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Figure: The limiting distributions of the KPSS tests.
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Spurious Regressions

Given two independent random walks, Granger and Newbold (1974) found

that regressing one on the other typically yields a significant t-ratio. This

is known as the problem of spurious regression.

Let yt = yt−1 + ut and xt = xt−1 + vt be I (1) series, where ut and vt are

mutually independent series satisfying the following condition.

[C2] ut and vt are two weakly stationary series with mean zero and

variances σ2u and σ2v . They obey FCLT with the long-run variances:

σ2y = lim
T→∞

1

T
IE

(
T∑
t=1

ut

)2

, σ2x = lim
T→∞

1

T
IE

(
T∑
t=1

vt

)2

.
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Consider the regression: yt = α + βxt + et . Let α̂T and β̂T denote the

OLS estimators and tα = α̂T/sα and tβ = β̂T/sβ their t-ratios, where sα
and sβ are the OLS standard errors.

The results below are immediate:

1

T 3/2

T∑
t=1

yt ⇒ σy

∫ 1

0
wy (r) dr ,

1

T 2

T∑
t=1

y2t ⇒ σ2y

∫ 1

0
wy (r)2 dr ,

where wy is a standard Wiener processes. Similarly,

1

T 3/2

T∑
t=1

xt ⇒ σx

∫ 1

0
wx(r) dr ,

1

T 2

T∑
t=1

x2t ⇒ σ2x

∫ 1

0
wx(r)2 dr ,

where wx is a standard Wiener process which is independent of wy .
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It is also easy to show:

1

T 2

T∑
t=1

(yt − ȳ)2 ⇒ σ2y

∫ 1

0
wy (r)2 dr − σ2y

(∫ 1

0
wy (r) dr

)2

=: σ2ymy ,

1

T 2

T∑
t=1

(xt − x̄)2 ⇒ σ2x

∫ 1

0
wx(r)2 dr − σ2x

(∫ 1

0
wx(r) dr

)2

=: σ2xmx ,

where w∗y (t) = wy (t)−
∫ 1
0 wy (r) dr and w∗x (t) = wx(t)−

∫ 1
0 wx(r) dr are

two mutually independent, “de-meaned” Wiener processes. Similarly,

1

T 2

T∑
t=1

(yt − ȳ)(xt − x̄t)

⇒ σyσx

(∫ 1

0
wy (r)wx(r) dr −

∫ 1

0
wy (r) dr

∫ 1

0
wx(r) dr

)
=: σyσxmyx .
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Phillips (1986)

For the specification yt = α + βxt + et , we have:

1 β̂T ⇒
σy myx

σx mx

,

2 T−1/2α̂T ⇒ σy

(∫ 1

0
wy (r) dr −

myx

mx

∫ 1

0
wx(r) dr

)
,

3 T−1/2 tβ ⇒
myx

(mymx −m2
yx)1/2

,

4 T−1/2 tα ⇒
mx

∫ 1
0 wy (r) dr −myx

∫ 1
0 wx(r)dr[

(mymx −m2
yx)
∫ 1
0 wx(r)2 dr

]1/2 ,

where wx and wy are mutually independent, standard Wiener processes.

Remark: As tα and tβ both diverge, it is easy to obtain large t-ratios and

to conclude that these coefficients are significantly different from zero

based on the critical values from N (0, 1).
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Spurious correlation: When yt and xt are mutually independent I (1)

series, their sample correlation coefficient does not converge in

probability to zero but converges weakly to a random variable. (Show

the result!)

Spurious trend: Nelson and Kang (1984) also showed that, given the

time trend specification for a random walk yt :

yt = a + b t + et ,

it is likely to draw a false inference that the time trend is significant in

explaining yt . Phillips and Durlauf (1986) show the F test of bo = 0

diverges at the rate T ; this explains why spurious trend may arise.
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Co-Integration

Consider an equilibrium relation ay − bx = 0. With real data (yt , xt),

zt := ayt − bxt are equilibrium errors. When yt and xt are both I (1), a

linear combination of them is, in general, also I (1). Then, zt have growing

variance and wander away from zero (the equilibrium condition). As such,

the equilibrium condition places no empirical restriction on zt .

The equilibrium condition is empirically relevant when a linear combination

of I (1) series is I (0). Suppose yt and xt involve the same random walk qt :

yt = qt + ut and xt = cqt + vt , where ut and vt are two I (0) series. A

linear combination of yt and xt that annihilates the common trend is

zt = cyt − xt = cut − vt ,

which is clearly I (0).
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Granger (1981) and Engle and Granger (1987): Let yt (d × 1) be a

vector I (1) series. The elements of yt are co-integrated if there exists

a d × 1 vector, α, such that zt = α′yt is I (0). We say the elements

of yt are CI(1,1). The vector α is a co-integrating vector (CIV).

If α is a CIV, so is cα for any c 6= 0. Hence, we are interested in

CIVs that are linearly independent. The space spanned by linearly

independent CIVs is the co-integrating space, and its dimension is the

co-integrating rank.

If the co-integrating rank is r < d , putting the r CIVs together we

have the d × r matrix A such that zt = A′yt is a vector I (0) series.

The co-integrating rank is at most d − 1. (Why?)

More generally, let yt be I (n), if there exist α such that αyt is

I (n −m), the elements of yt are said to be CI(n,m).
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Characterization of Co-Integration

Suppose that yt (d × 1) is an I (n) series such that Ψ(B)yt = εt , where

Ψ(z) is a matrix of polynomials and det(Ψ(z)) = 0 has solutions on or

outside the unit circle. Let adj(Ψ(z)) denote the adjoint matrix of Ψ(z).

It is well known that adj(Ψ(z))Ψ(z) = det(Ψ(z)) Id , so that

det(Ψ(B))yt = adj(Ψ(B))Ψ(B)yt = adj(Ψ(B))εt .

Co-Integration: I

Given Ψ(B)yt = εt , where yt is I (n), any vector α such that

α′adj(Ψ(1)) = 0 is a CIV, and the CIV space is the null space (kernel) of

adj(Ψ(1))′. If the co-integrating rank is r , then rank(adj(Ψ(1))) = d − r .
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If Ψ(z) has n unit roots, det(Ψ(z)) = (1− z)nJ(z) with J(1) 6= 0. Then,

J(B)−1 is well defined and

(1− B)nyt = J(B)−1adj(Ψ(B))εt

is an I (0) series. If there is an α 6= 0 such that α′adj(Ψ(1)) = 0, then for

some m > 0 we can write α′adj(Ψ(z)) = (1− z)mh(z)′, where h is a

vector polynomial with h(1) 6= 0. It follows that

(1− B)nα′yt = J(B)−1α′adj(Ψ(B))εt = J(B)−1(1− B)mh(B)′εt ,

or equivalently,

(1− B)n−mα′yt = J(B)−1h(B)′εt ,

which is I (0). That is, α is a CIV and yt ∼ CI (n,m).
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Conversely, if α is a CIV,

(1− B)nα′yt = α′J(B)−1adj(Ψ(B))εt ,

such that the right-hand side is integrated of order less than n. As J(z)

does not have a unit root, it must be the case that α′adj(Ψ(z)) have at

least one unit root, i.e., α′adj(Ψ(1)) = 0.
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Co-Integration: II

Given Ψ(B)yt = εt , where yt is I (n), the CIV space is the row space of

Ψ(1), and rank(Ψ(1)) is the co-integrating rank.

Given that Ψ(1)adj(Ψ(1)) = det(Ψ(1)) Id = 0, Ψ(1) is also in the null

space of adj(Ψ(1))′ with rank r , the co-integrating rank, because

rank(adj(Ψ(1))) = d − r . Note that the j th row of Ψ(1) can be written as

cj1α
′
1 + cj2α2 + · · ·+ cjrαr = c′jA

′.

It follows that Ψ(1) = ΓA′, where Γ is the matrix with the j th row c′j .

Remark: If yt ∼ CI (1, 1), estimating an unrestricted VAR model will suffer

from efficiency loss because the matrix of AR coefficients, Ψ(1), should

satisfy the restriction of singularity.
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Example: Consider Ψ(B)yt = εt , where

Ψ(z) =

[
1− (1− ψ)z −ψz

ψz 1− (1 + ψ)z

]
, Ψ(1) =

[
ψ −ψ
ψ −ψ

]
.

Because det(Ψ(z)) = (1− z)2, we have

(1− B)2yt = adj(Ψ(B))εt =

[
1− (1 + ψ)B ψB
−ψB 1− (1− ψ)B

]
εt .

That is, yt is I (2). As

adj(Ψ(1)) =

[
−ψ ψ

−ψ ψ

]
,

we have α = [1 − 1]′ such that α′adj(Ψ(1)) = 0.
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Writing Ψ(z) = Ψ(1) + (1− z)Ψ(z)∗,[
1− (1− ψ)z −ψz

ψz 1− (1 + ψ)z

]
=

[
ψ −ψ
ψ −ψ

]
+(1−z)

[
a11 a12
a21 a22

]
.

It can be verified that a11 = 1− ψ, a12 = ψ, a21 = −ψ, and a22 = 1 + ψ.

That is,

Ψ(z)∗ =

[
1− ψ ψ

−ψ 1 + ψ

]
.

Writing adj(Ψ(z)) = adj(Ψ(1)) + (1− z)adj(Ψ(z))∗, we have

adj(Ψ(z))∗ =

[
1 + ψ −ψ
ψ 1− ψ

]
.
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It follows that

α′adj(Ψ(z)) = α′adj(Ψ(1)) + (1− z)α′adj(Ψ(z))∗

= (1− z)[1 − 1].

Thus,

(1− B)2α′yt = (1− B)α′εt ,

showing that yt ∼ CI (2, 1).
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For (1− B)yt = µ+ C(B)εt , using C(z) = C(1) + (1− z)C(z)∗ we have

yt = µt + C(1)
t∑

j=1

εj + C(B)∗εt .

Thus, if α is a CIV, we have α′µ = 0 and α′C(1) = 0.

Co-Integration: III

Suppose that yt is CI (1, 1) and (1− B)yt = µ+ C(B)εt . The CIV space

is the null space of C(1)′, and rank(C(1)) = d − r if the co-integrating

rank is r .

Remark: If yt ∼ CI (1, 1) and has an MA representation, the matrix of MA

coefficients, C(1), must also be singular.
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Other Representations

Common-trend representation of Stock & Watson (1988): When

yt ∼ CI (1, 1) with co-integrating rank r , the elements of yt contains

only d − r common (stochastic and deterministic) trends. Moreover,

a CIV that eliminates unit roots must also eliminate the time trend.

ARMA representation of Engle & Granger (1987): When

yt ∼ CI (1, 1), there exists a finite vector ARMA representation

Ψ(B)yt = d(B)εt ,

where d(B) is a scalar polynomial with d(1) finite, Ψ(0) = I,

rank(Ψ(1)) = r , and Ψ(1) = ΓA′ for some Γ. If d(B) = 1, this is just

a VAR representation.
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Error Correction Model

An error correction model (ECM): The change of one variable is related to

past changes of all variables in the system and past equilibrium errors:

Φ(B)(1− B)yt = −Γzt−1 + vt ,

where zt = A′yt , Γ 6= 0, vt is stationary, and Φ(0) = I. As the levels and

differences of yt appear in both sides of the equation, an ECM is

appropriate only if co-integration exists. Conversely, if yt ∼ CI (1, 1), using

the ARMA representation Ψ(B)yt = d(B)εt we have

(Ψ(1) + Ψ(B)∗)(1− B)yt = −Ψ(1)yt−1 + d(B)εt ,

by the fact that Ψ(z) = Ψ(1) + (1− z)Ψ(z)∗.
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Letting Φ(z) = Ψ(1) + Ψ(z)∗, we obtain

Φ(B)(1− B)yt = −ΓA′yt−1 + d(B)εt .

As I = Ψ(0) = Ψ(1) + Ψ(0)∗, and hence

Φ(0) = Ψ(1) + Ψ(0)∗ = I.

Error Correction Representation

If yt ∼ CI (1, 1), there exists an ECM: Φ(B)(1− B)yt = −Γzt−1 + vt with

zt = A′yt and Φ(0) = I.

Remark: If yt ∼ CI (1, 1), a VAR model in differences is misspecified

because it ignores the long-run equilibrium relationship. As a result, the

OLS estimates of such VAR model are inconsistent.
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Suppose that ∆yt = ut has a bounded and continuous spectral density

matrix fu(λ). If yt ∼ CI (1, 1), let the spectral density of α′yt = zt be

fz(λ). The following spectral characterization is due to Phillips and

Ouliaris (1988).

Spectral Characterization

yt ∼ CI (1, 1) is equivalent to α′fu(λ)α = |1− e iλ|2fz(λ) (only if

α′fu(0)α = 0).

Co-integration thus implies that the long-run variance,

Σ = lim
T→∞

1

T
IE

( T∑
t=1

ut

)(
T∑
t=1

ut

)′ = 2π fu(0),

is singular.
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Recall that for a stationary series vt with the spectral density of fv , the

spectral density of wt = Φ(B)vt is

fw (λ) = Φ(e iλ)fv (λ)Φ(e−iλ).

In the context of co-integration, α′ut = α′(∆yt) = zt − zt−1, and

α′fu(λ)α = |1− e iλ|2fz(λ).

For λ = 0, α′fu(0)α = 0. Let Zu(λ) be the spectral process of u which is

of orthogonal increments, with

IE(Zu(λ)) = 0, IE(Zu( dλ)Zu( dµ)∗) = δλ,µFu(dλ),

where δ is Kronecker delta, Z∗u is the complex conjugate of Zu, and Fu is

the spectral distribution function of u.
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The spectral representation of ut is:

ut =

∫ π

−π
e itλ Zu( dλ).

It follows that

zt − zt−1 = α′ut =

∫ π

−π
e itλα′Zu( dλ),

and

zt =

∫ π

−π
e itλ

α′Zu( dλ)

1− e iλ
.

This shows
∫ π
−π fz(λ) dλ is

IE(z2t ) =

∫ π

−π

∫ π

−π

α′ IE(Zu( dλ)Zu( dµ)∗)α

|1− e iλ||1− e iµ| =

∫ π

−π

α′fu(λ)α

|1− e iλ|2 dλ.
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Engle-Granger Two-Step Procedure

A natural way to estimate the CIV α is to minimize the sample variation

of α′yt . The two-step procedure of Engle and Granger (1987) is:

1 Co-integrating regression: y1t = c + a′y2t + ζt , with the normalized

CIV α = [1 − a′]′. The OLS estimator âT is T -consistent. Note

that the choice of dependent variable here is arbitrary.

2 For estimating ECM, replac ζt−1 with lagged OLS residuals ζ̂t−1:

Φ(B)(1− B)yt = −Γζ̂t−1 + vt .

The asymptotic properties of the resutling ECM coefficient estimates

are the same as those obtained in the ECM with ζt−1.
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Simultaneity: When the elements of yt are co-integrated, they must

be determined jointly, so that ζt are correlated with y2,t . This

correlation does not affect OLS consistency in co-integrating

regression but may cause finite-sample bias and efficiency loss.

Saikkonen (1991) considers the following projections:

ζt =
∞∑

j=−∞
u′2,t−jbj + et , u2,t = ∆y2,t ,

and estimates the modified co-integrating regression:

y1,t = c + a′y2,t +
k∑

j=−k
∆y′2,t−jbj + et .

The resulting estimates are asymptotically efficient in the sense of

Saikkonen (1991, Definition 2.2).
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For ut = ∆yt , let

Σ = lim
T→∞

1

T
IE

( T∑
t=1

ut

)(
T∑
t=1

ut

)′ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Denote the “correlation” between y1,t and y2,t as:

ρ2 = Σ12Σ−122 Σ21/Σ11,

assuming that Σ22 is p.d. (i.e., the elements of y2,t are not co-integrated).

If y1,t and y2,t are co-integrated, then it is necessary that ρ2 = 1.

This suggests that the choice of the dependent variable in a

co-integrating regression does not matter asymptotically.

If ρ2 < 1, y1,t and y2,t are not co-integrated, and the regression of

y1,t on y2,t is spurious in the sense of Granger & Newbold (1974).
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To see this, write

Σ = L′L =

[
L11 0

L21 L22

]′ [
L11 0

L21 L22

]
,

where L22 = Σ
1/2
22 , L21 = Σ

−1/2
22 Σ21, and

L11 = (Σ11 −Σ12Σ−122 Σ21)1/2 =: Σ
1/2
11.2.

Clearly, Σ11.2 = Σ11(1− ρ2). As

det(Σ) = (det(L))2 = L2
11(det(L22))2 = Σ11.2 det(Σ22),

det(Σ) = 0 if and only if Σ11.2 = 0, or equivalently, ρ2 = 1.
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Tests for Co-Integration

Engle and Granger (1987) suggest testing the null of no co-integration by

applying unit-root tests to the residuals ζ̂t of co-integrating regression.

That is, test ρ0 = 0 in the regressions below:

∆ζ̂t = ρ̂T ζ̂t−1 + êt ,

∆ζ̂t = ρ̂T ζ̂t−1 +

p∑
j=1

φ̂jT ∆ζ̂t−j + êt ;

other DF-type models can also be used.

Remark: The OLS residuals of a co-integrating regression are results of a

minimization problem and hence behave like a stationary series. Thus, the

DF critical values should not be used; see Engle and Granger (1987) and

Engle and Yoo (1987) for proper critical values.
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Similarly, by performing the auxiliary regression: ζ̂t = ρ̂T ζ̂t−1 + êt , we can

apply the Z -type tests for unit root:

Z (ρ̂T ) = T (ρ̂T − 1) +
1
2(s2Tn − s2e )

T−2
∑T

t=1 ζ̂
2
t−1

,

Z (τρ) =

(
T∑
t=1

ζ̂2t−1

)1/2
ρ̂T − 1

sTn
+

1
2(s2Tn − s2e )

sTn(T−2
∑T

t=1 ζ̂
2
t−1)1/2

,

where s2e = T−1
∑T

t=1 ê
2
t and

s2Tn =
1

T

T∑
t=1

ê2t +
2

T

n∑
τ=1

wτn

T∑
t=τ+1

êt êt−τ .

Empirical critical values of these tests are in Phillips & Ouliaris (1990).
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Phillips & Ouliaris (1990):

Under the alternative hypothesis of co-integration, the ADF τ -test

and Z (τρ) are Op(T 1/2), whereas Z (ρ̂T ) is Op(T ). That is, t-type

tests diverge slower under the alternative than other statistics.

If ∆ζ̂t are used to compute s2Tn in Z -type of tests, the resulting test

statistics are Op(1) and hence inconsistent, under the alternative

hypothesis. Therefore, residuals, rather than differences, should be

used to construct these test statistics.

If the null hypothesis is co-integration, we need to test whether Σ is

singular. They show that tests in this direction are inconsistent and

dependent on data; hence testing co-integration is not recommended.
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Fully-Modified Estimation

C.-M. Kuan (Finance & CRETA, NTU) Intro to Time Series Analysis January 3, 2011 172 / 213



Digression: Canonical Correlation

Let yt (n × 1) and xt (m × 1) be two stationary variables with zero mean

and covariance matrices Σyy and Σxx. Also, Σyx = IE(ytx
′
t) = Σ′xy. For A

(n × k) and B (m × k) with k = min(n,m), consider

ηt = A′yt , ξt = B′xt .

A and B are such that

A′ΣyyA = Ik , B′ΣxxB = Ik , A′ΣyxB = R,

where R is a diagonal matrix with ri = corr(ηi ,t , ξi ,t) being the diagonal

elements. Without loss of generality, the elements of y and x are arranged

such that ri in R are in descending order. Note that ηt and ξt are known

as canonical covariates and that ri is the i th canonical correlation.
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For Σ−1yy ΣyxΣ−1xx Σxy, let λi , i = 1, . . . , n, denote its eigenvalues in

descending order, and ai the corresponding eigenvectors, i.e.,

Σ−1yy ΣyxΣ−1xx Σxyai = λiai .

We normalize ai (in the metric of Σyy) such that a′iΣyyai = 1, instead of

a′iai = 1. Note that the eigenvalue problem is to solve

det
(
Σ−1yy ΣyxΣ−1xx Σxy−λI

)
= det

(
Σ−1yy

)
det(ΣyxΣ−1xx Σxy−λΣyy

)
= 0,

which is equivalent to solving det(ΣyxΣ−1xx Σxy − λΣyy

)
= 0.

Similarly, for Σ−1xx ΣxyΣ−1yy Σyx, let νi , i = 1, . . . , n, denote its eigenvalues

in descending order, and bi the corresponding eigenvectors, normalized as

b′iΣxxbi = 1.
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For A = [a1 . . . an] and B = [b1 . . . bn], we have 0 ≤ λi = νi < 1 and

A′ΣyyA = Ik , B′ΣxxB = Ik , A′ΣyxB = R,

with R2 = Λ, where Λ is the diagonal matrix with λi as the diagonal

elements. Thus, λi is the squared canonical correlations r2i .

Proof: To see λi = νi , note that

Σxy

(
Σ−1yy ΣyxΣ−1xx Σxy

)
ai = λiΣxyai .

This shows that λi are also eigenvalues of ΣxyΣ−1yy ΣyxΣ−1xx with

eigenvectors Σxyai .
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To see A′ΣyyA = Ik , note that

a′jΣyy

(
Σ−1yy ΣyxΣ−1xx Σxy

)
ai = λia

′
jΣyyai .

Also, a′iΣyxΣ−1xx Σxyaj = λja
′
iΣyyaj .

These indicate that (λi − λj)a′jΣyyai = 0. For i 6= j , a′jΣyyai = 0, so that

ai and aj are orthogonal in the metric of Σyy. For i = j , the normalization

gives a′iΣyyai = 1.

To show A′ΣyxB = R with R2 = Λ, note(
b′iΣxyΣ−1yy ΣyxΣ−1xx

)
Σxyaj = λib

′
iΣxyaj ,

b′iΣxy

(
Σ−1yy ΣyxΣ−1xx Σxyaj

)
= λjb

′
iΣxyaj .

Thus, (λi − λj)b′iΣxyaj = 0, implying b′iΣxyaj = 0 for i 6= j .
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For i = j ,

b′iΣxyΣ−1yy Σyxbi = b′iΣxyΣ−1yy Σyx(Σ−1xx Σxx)bi = λi (b′iΣxxbi ) = λi .

Suppose k = n, A is nonsingular, so that A′ΣyyA = Ik implies

Σyy = (A′)−1A−1. We thus have

b′iΣxy(AA′)Σyxbi = λi .

As b′iΣxyaj = 0 for i 6= j ,

r2i = (b′iΣxyai )
2 = λi .
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Johansen’s Maximum Likelihood Procedure

yt (d × 1) is CI (1, 1) with co-integrating rank r and has a VAR(p)

representation: Ψ(B)yt = εt , where εt are i.i.d. N(0,S). Writing

yt = Ψ1(∆yt−1 + · · ·+ ∆yt−p+1 + yt−p) +

Ψ2(∆yt−2 + · · ·+ ∆yt−p+1 + yt−p) + · · · + Ψp yt−p + εt ,

we then have

∆yt = Π1 ∆yt−1 + Π2 ∆yt−2 + · · ·+ Πp−1 ∆yt−p+1 + Πpyt−p + εt ,

where Πi = −I + Ψ1 + . . .+ Ψi , i = 1, . . . , p. Note that

−Πp = Ψ(1) = ΓA′ is subject to the restriction of singularity, but

Π1, . . . ,Πp−1, Γ, A, and S are not.
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Given Γ and A, the parameters Π1, . . . ,Πp−1 can be estimated from the

regression of ∆yt + ΓA′yt−p on ∆yt−1, . . . ,∆yt−p+1. The residuals of

this regression are r∗t and can be expressed as r0t + ΓA′rpt .

Let J0 denote the regression of of ∆yt on ∆yt−1, . . . ,∆yt−p+1 with

the residuals r0t .

Let Jp be the regression of yt−p on ∆yt−1, . . . ,∆yt−p+1 with the

residuals rpt .

Given Γ, A, and S, the concentrated (Gaussian) likelihood is

LT (Γ,A,S) = det(S)−T/2

exp

(
−1

2

T∑
t=1

(r0t + ΓA′rpt)
′S−1(r0t + ΓA′rpt)

)
.
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For each A, we can maximize over Γ and S and obtain

Γ(A) = −
(

1

T

T∑
t=1

r0tr
′
ptA

)(
1

T

T∑
t=1

A′rptr
′
ptA

)−1
= −M0pA(A′MppA)−1,

S(A) =

(
1

T

T∑
t=1

r0tr
′
0t

)
−

(
1

T

T∑
t=1

r0tr
′
ptA

)(
1

T

T∑
t=1

A′rptr
′
ptA

)−1(
1

T

T∑
t=1

A′rptr
′
0t

)

= M00 −M0pA(A′MppA)−1A′Mp0,

where Mij = T−1
∑T

t=1 ritr
′
jt for i , j = 0, p.
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Substituting Γ(A) and S(A) into LT (Γ,A,S), the concentrated likelihood

is now proportional to det(S(A))−T/2. Note that

det

([
M00 M0pA

A′Mp0 A′MppA

])
= det(M00) det(A′MppA− A′Mp0M−100 M0pA)

= det(A′MppA) det(M00 −M0pA(A′MppA)−1A′Mp0).

It follows that

det(S(A)) = det(M00)
det(A′MppA− A′Mp0M−100 M0pA)

det(A′MppA)
.

We would like to minimize the 2nd term on the right with respect to A.
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Let Λ denote the matrix of ordered eigenvalues λ1 ≥ . . . ≥ λn of

Mp0M−100 M0p in the metric of Mpp, i.e., the solutions of

det(λMpp −Mp0M−100 M0p) = 0.

Also let C denote the matrix of corresponding eigenvectors normalized as

C′MppC = I. Then,

Λ = C′Mp0M−100 M0pC.

By setting A = CU (U is d × r),

det(A′MppA− A′Mp0M−100 M0pA)

det(A′MppA)
=

det(U′U−U′ΛU)

det(U′U)
,

which should be minimized with respect to U.
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Analogous to Raleigh’s quotient, det(U′U−U′ΛU)/ det(U′U) is

minimized when U is the matrix of the first r Cartesian unit vectors. As

such, U′U = I and U′ΛU is the diagonal matrix with r largest eigenvalues

on the principal diagonal. The resulting minimum is

r∏
i=1

(1− λi ).

The MLE Â = CU is the matrix of the first r eigenvectors in C and is the

coefficient matrix of the first r canonical covariates of rp with respect to

r0, corresponding to the eigenvalues λi , i = 1, . . . , r . These eigenvalues

are squares of the r largest canonical correlations.
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Estimation of Co-Integrating Space

The MLE of span[A] is the space spanned by r canonical covariates

corresponding to the r largest squared canonical correlations between the

residuals from the regressions Jp and J0.

Clearly, A′MppA = U′C′MppCU = I. Γ and S can be estimated as

Γ̂ = Γ(Â) = −
(

1

T

T∑
t=1

r0tr
′
pt

)
Â,

Ŝ = S(Â) =

(
1

T

T∑
t=1

r0tr
′
0t

)
− Γ̂Γ̂

′
,

and Ψ̂(1) = Γ̂Â
′
. This analysis is closely related to the “reduced rank

regression” of Ahn & Reinsel (1987).
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Likelihood Ratio Test

When there are r CIVs and only r ′ < r CIVs are used in the ECM,

relevant equilibrium error terms are left out in the model.

If r ′ > r “CIVs” are used in the ECM, the model in effect contains

linear combinations of yt that are still I (1). Conventional inference

would be invalid in this case.

The maximum of the concentrated likelihood is LT (Â) such that

LT (Â)−2/T = det(Ŝ) = det(M00)
r∏

i=1

(1− λi ).

Without the constraint that rankΨ(1) ≤ r , the unconstrained likelihood is

LT (Ã)−2/T = det(M00)
d∏

i=1

(1− λi ).
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Null hypothesis: There are at most r CIVs. The LR test is

LRT (r) = −2(log LT (Â)− log LT (Ã)) = −T
d∑

i=r+1

log(1− λi ).

That is, we test whether the last d − r eigenvalues (squared canonical

correlations) are sufficiently close to zero simultaneously.

Likelihood Ratio Test: Johansen (1988)

Under the null, the estimates of A, S, and Ψ(1) are consistent, and

LRT (r)
D−→

trace

(∫ 1

0
dw(s)w(s)′

(∫ 1

0
w(s)w(s)′ ds

)−1 ∫ 1

0
w(s) dw(s)′

)
,

where w is a (d − r)-dimensional standard Wiener process.
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Remarks:

If r = d − 1, then the limit becomes(∫ 1
0 w(r) dw(r)

)2
∫ 1
0 w(r)2 dr

=
[12(w(1)2 − 1)]2∫ 1

0 w(r)2 dr
,

which is the square of the limit of Dickey-Fuller τ test.

Johansen (1988) tabulates the empirical distribution of the LR

statistic for d − r = 1, . . . , 5. This distribution can be approximated

by cχ2(q) for suitable values of c and q; setting q = 2(d − r)2,

Johansen suggests using c = 0.85− 0.58/q.

Johansen (1991) allows a constant term and seasonal dummies in the

VAR model. The corresponding empirical distribution is tabulated in

Johansen & Juselius (1990); see also Osterwald-Lenum (1992).
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Remarks (Cont’d):

In practice, one may sequentially perform LR tests:

LRT (1), . . . , LRT (d − 1).

That is, we first test at most one co-integrating relation, at most 2

co-integrating relations, and so on. Note that we need to control the

correct significance level of this sequential testing procedure.

Based on the same idea, one may construct a test of r co-integrating

relationships against the alternative of r + 1 co-integrating relations

using the statistic: −T log(1− λr+1).
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Summary of Johansen’s procedure

1 Perform regressions J0 and Jp to obtain residuals r0t and rpt and

compute cross-moment matrices M00, M0p, and Mpp based on r0t
and rpt .

2 Find the coefficient matrix of r canonical covariates of rp with respect

to r0, corresponding to the r largest squared canonical correlations.

This gives Â, the estimates of (the space of) CIVs, from which we

obtain Γ̂, Ŝ, and Ψ̂(1).

3 Compute LR statistic: −T∑d
i=r+1 log(1− λi ) to check if there are at

most r CIVs, where λi is the i th squared canonical correlation.

4 Regress ∆yt + Γ̂Â
′
yt−p on ∆yt−1, . . .∆yt−p+1 to get estimates

Π̂1, . . . , Π̂p−1 in the ECM system.
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Some Stylized Facts

Financial time series usually exhibit volatility clustering, in the sense

that large (small) changes are followed by large (small) changes, in

either sign.

A financial time series may have rather weak serial correlations, but a

function of this series (e.g., taking square or absolute value) may

exhibit much stronger correlations.

The number of outliers of these variables are more than what a

normal distribution can describe. That is, the marginal distributions

have thicker tails than a normal distribution.

Volatility asymmetry and changing volatility patterns are also quite

common in practice.
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ARCH Models

The AutoRegressive Conditional Heteroskedasticity (ARCH) model of

Engle (1982):

ARCH(1): yt =
√

ht ut , where ut are i.i.d. with mean zero and

variance one, and

ht = α0 + α1y
2
t−1, α0 > 0, α1 ≥ 0.

The conditional mean of yt is

IE(yt | F t−1) =
√
ht IE(ut | F t−1) =

√
ht IE(ut) = 0,

and the conditional variance is

IE(y2t | F t−1) = ht IE(u2t | F t−1) = ht IE(u2t ) = ht .
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In this case, {yt} is a white noise with IE(yt) = IE[IE(yt | F t−1)] = 0,

var(yt) = IE(ht) = α0 + α1 var(yt−1) = α0/(1− α1),

and

IE(ytyt−j) = IE

[√
htht−j ut−j IE(ut | F t−1)

]
= 0, j = 1, 2, . . . .

Yet, y2t are serially correlated with the AR(1) representation:

y2t = ht + (y2t − ht) = α0 + α1y
2
t−1 + ht(u

2
t − 1),

where ht(u
2
t − 1) are innovations with IE[ht(u

2
t − 1)] = 0 and

IE[htht−j(u
2
t−1)(u2t−j−1)] = IE(htht−j) IE(u2t−1) IE(u2t−j−1) = 0.
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Under conditional normality, IE(y4t | F t−1) = 3h2t , and

m4 = 3
[
α2
0 + 2α0α1 IE(ht) + α2

1 IE(y4t−1)
]

= 3α2
0

(
1 +

2α1

1− α1

)
+ 3α2

1m4

=
3α2

0(1 + α1)

(1− α1)(1− 3α2
1)
,

where we write m4 := IE(y4t ). Thus, 0 ≤ α2
1 < 1/3.

yt are leptokurtic because the kurtosis coefficient of yt is

m4

var(yt)
2

= 3
1− α2

1

1− 3α2
1

> 3,

so that the marginal distribution of yt has thicker tails than a normal

distribution.
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Extensions

ARCH(p): yt =
√

ht ut , with

ht = α0 + α1y
2
t−1 + · · ·+ αpy

2
t−p, α0 > 0, α1, . . . , αp ≥ 0.

{yt} is a white noise with var(yt) = α0/(1− α1 − · · · − αp).

y2
t have an AR(2) representation:

y2
t = α0 + α1y

2
t−1 + · · ·+ αpy

2
t−p + ht(u

2
t − 1).

An AR(p1)-ARCH(p2) model admits correlations among yt :

yt = c + ψ1yt−1 + · · ·+ ψp1yt−p1 + εt ,

where εt =
√

ht ut , with

ht = α0 + α1ε
2
t−1 + · · ·+ αp2ε

2
t−p2 , α0 > 0, α1, . . . , αp2 ≥ 0.
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GARCH Models

The Generalized ARCH (GARCH) model of Bollerslev (1986):

GARCH(1,1): yt =
√
ht ut , with

ht = α0 + α1y
2
t−1 + β1ht−1, α0 > 0, α1, β1 ≥ 0.

y2t have an ARMA(1,1) representation:

y2t = ht + (y2t − ht)

= α0 + (α1 + β1)y2t−1 + ht(u
2
t − 1)− β1ht−1(u2t−1 − 1),

with serially uncorrelated innovations ht(u
2
t − 1).
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yt have mean zero and

var(yt) = IE(ht) = α0 + α1 IE(y2t−1) + β1 IE(ht−1)

=
α0

1− (α1 + β1)
.

Thus, α1 + β1 must be less than one to ensure a finite variance.

The autocovariances of yt and yt−j , j = 1, 2, . . ., are also zero, so

that {yt} is still a white noise.

The kurtosis coefficient is, under conditional normality,

m4

var(yt)
2

= 3
1− (α1 + β1)2

1− (α1 + β1)2 − 2α2
1

> 3,

provided that 1− (α1 + β1)2 − 2α2
1 > 0.
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Extensions

GARCH(p, q): yt =
√

ht ut , with the conditional variance:

ht = α0 +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjht−j , α0 > 0, αi , βj ≥ 0.

y2
t have an ARMA representation:

y2
t = α0 +

max(p,q)∑
i=1

(αi +βi )y
2
t−i +ht(u

2
t −1)−

q∑
j=1

βjht−j(u
2
t−j −1),

where we set αi = 0 if i > p and βi = 0 if i > q.

We also have IE(yt) = 0, zero autocovariances and

var(yt) =
α0

1−∑max(p,q)
i=1 (αi + βi )

.
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AR(p1)-GARCH(p2, q) model admits correlations among yt :

yt = c + ψ1yt−1 + · · ·+ ψp1yt−p1 + εt , where εt =
√

ht ut , with

ht = α0 +

p2∑
i=1

αiε
2
t−i +

q∑
j=1

βjht−j , α0 > 0, αi , βj ≥ 0.

Extension to ARMA(p1, q1)-GARCH(p2, q2) is also possible.

For GARCH(1,1), it is quite common to observe that the sum of the

estimated α1 and β1 is close to one.

Integrated GARCH (IGARCH): yt =
√
ht ut , with

ht = α0 + (1− β1)y2t−1 + β1ht−1, α0 > 0, 0 < β1 < 1.

In this case, var(yt) is unbounded, and y2t has a unit root.
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GARCH-in-Mean Models

GARCH-in-Mean (GARCH-M) model of Engle, Lilien, and Robins (1987):

By noting that asset returns may also depend on their volatility, they

propose

yt = c + γht + εt ,

with εt =
√
ht ut and

ht = α0 + α1ε
2
t−1 + β1ht−1, α0 > 0, α1, β1 ≥ 0,

where γ is called the risk premium parameter.
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Drawbacks of GARCH Models

GARCH models are unable to represent volatility asymmetry, because

the positive and negative values of the lagged innovations exert the

same effect on the conditional variance. Black (1976) observed that

the volatility of stock returns tends to increase (decrease) when there

is “bad news” (“good news”).

To ensure positiveness of ht in the GARCH model, non-negative

constraints are imposed on the coefficients in the variance equation.

These constraints are convenient, yet they are not necessary.
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EGARCH Models

Weighted innovations:

g(ut) = θ1ut + γ1(|ut | − IE |ut |),

where |ut | − IE |ut | are also i.i.d. random variables with mean zero, so

that g(ut) have mean zero. When ut are normally distributed, for

example, we have IE |ut | =
√

2/π.

g(ut) can be represented as a threshold function:

g(ut) =

{
(θ1 + γ1)ut − γ1 IE |ut |, ut ≥ 0,

(θ1 − γ1)ut − γ1 IE |ut |, ut < 0.

It should be noted that the asymmetric response of g to ut is due to

θ1, rather than γ1. (Why?)
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Exponential GARCH (EGARCH) model of Nelson (1992): ht is an

exponential function of lagged ht and the weighted innovation

g(ut−1). An EGARCH(1,1) process is yt =
√

ht ut , with

ht = exp

[
α0 + β1 ln(ht−1) +

(
θ1

yt−1√
ht−1

+ γ1

∣∣∣∣∣ yt−1√
ht−1

∣∣∣∣∣
)]

.

θ1 is usually interpreted as a measure of the “leverage” effect of ut−1,

while γ1 is interpreted as the “magnitude” effect. The estimate of θ1
is usually found to be negative, while γ1 is found to be positive. This

shows that positive shocks have less impact on volatility.

Due to exponential function, an innovation with larger magnitude has

much larger impact on ht . Moreover, there is no constraint on the

coefficients in ht .
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News impact curve of Engle and Ng (1993): The relationship between

the conditional variance ht and ut−1, holding constant the

information on and before time t − 2 (lagged conditional variances are

evaluated at the unconditional variance). It is easy to see that the

news impact curve of a GARCH process is symmetric, but that of an

EGARCH process is asymmetric.

EGARCH(p, q): yt =
√
ht ut , with

ht = exp

α0 +

q∑
i=1

βi ln(ht−i ) +

p∑
j=1

(
θj

yt−j√
ht−j

+ γj

∣∣∣∣∣ yt−j√
ht−j

∣∣∣∣∣
) ,

where θj and γj characterize the asymmetry and magnitude effects of

the shock ut−j on the volatility ht .
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GJR-GARCH Models

Focusing on possibly different impacts of positive and negative shocks on

conditional variance, Glosten, Jegannathan, and Runkle (1993) propose a

threshold-type GARCH model, now known as the GJR-GARCH model.

GJR-GARCH(1,1): yt =
√
ht ut , with

ht = α0 + β1ht−1 + (α1 + θ1Dt−1)y2t−1,

where Dt−1 = 1 when yt−1 < 0 and Dt−1 = 0 otherwise.

This model is capable of capturing both volatility clustering and

volatility asymmetry without imposing the exponential function.

Non-negativity constraints on the coefficients in ht are still needed.

Extending to AR(p1)-GJR-GARCH(p2, q) models is straightforward.
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Estimating GARCH Models

To estimate GARCH models, one must make assumption on the

conditional distribution of yt (or εt). Conditional normality results in

a leptokurtic marginal distribution, but it can not fully account for the

outliers in real data.

WE may also postulate a t(ν) distribution which has variance

ν/(ν − 2) when ν > 2. Normalizing yt to have conditional variance

one yields the density:

f (u) =
Γ((ν + 1)/2)

Γ(ν/2)
√

(ν − 2)π

(
1 +

u2

ν − 2

)−(ν+1)/2

,

where Γ is the Gamma function such that Γ(a) =
∫∞
0 ya−1e−y dy .

Other flexible conditional distributions may also be employed.
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We may estimate an ARCH(p) model by maximizing

LT = −T − p

2T
ln(ht)−

1

2T

T∑
i=p+1

y2t
ht
,

where ht = α0 + α1y
2
t−1 + · · ·+ αpy

2
t−p.

For an AR(p1)-ARCH(p2) model, we maximize

LT = −T − p∗

2T
ln(ht)

− 1

2T

T∑
i=p∗+1

(yt − c − ψ1yt−1 − · · · − ψp1yt−p1)2

ht
,

where p∗ = max(p1, p2) and ht = α0 + α1y
2
t−1 + · · ·+ αpy

2
t−p2 .

We may substitute the t density function for the normal density.
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Another commonly used distribution is the generalized error distribution.

We may normalize yt to have conditional mean zero and conditional

variance one and obtain the following density of ut :

f (u) =
ν exp[−|u/λ|ν/2]

λ 21+1/ν Γ(1/ν)
, ν > 0,

where ν is the parameter characterizing the thickness of tails and

λ =
[
2−2/ν Γ(1/ν) Γ(3/ν)

]1/2
.

It is standard normal when ν = 2; for ν < 2 (ν > 2), the tails of this

distribution are thicker (thinner) than the standard normal distribution.

For example, it is double exponential when ν = 1 and uniform on

[−
√

3,
√

3] when ν →∞; see Nelson (1991).
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Stochastic Volatility Models

A simple stochastic volatility (SV) process is yt =
√

ht ut , with

ln(ht) = α0 + α1 ln(ht−1) + vt , |α1| < 1,

where vt are random variables such that {vt} and {ut} are independent of

each other. The inclusion of new innovations vt admits more flexibility in

the model but also renders model estimation much more difficult.

Assume ut are independent N (0, 1) and vt are independent N (0, σ2v ).

Then,

ln(ht) ∼ N
(

α0

1− α1

,
σ2v

1− α2
1

)
.
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Clearly, IE(yt) = 0. Knowing the mean and variance of the lognormal

random variable, we can calculate

IE(y2t ) = IE(ht) IE(u2t ) = exp

(
α0

1− α1

+
σ2v

2(1− α2
1)

)
,

IE(y4t ) = IE(h2t ) IE(u4t ) = 3 exp

(
2α0

1− α1

+
2σ2v

1− α2
1

)
.

Thus, yt are leptokurtic because

IE(y4t )/[IE(y2t )]2 = 3 exp

(
σ2v

1− α2
1

)
> 3.
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The estimation of an SV model is typically cumbersome; see e.g., Jacquier,

Polson, and Rossi (1994), Harvey, Ruiz, and Shephard (1994), and Harvey

and Shephard (1996). Let Y T denote the collection of all yt and hT the

collection of all conditional variances ht . Then, the density of Y T is

P(Y T ) =

∫
P(Y T , hT ) dhT =

∫
P(Y T |hT )P(hT ) dhT ,

which is a mixture over the density of hT . Difficulty in estimation arises

because a T -dimensional integral must be evaluated. The Markov chain

Monte Carlo (MCMC) method suggested by Jacquier, Polson, and

Rossi (1994) avoids this difficulty. There are other estimation methods,

e.g., the method of quasi-maximum likelihood and the generalized method

of moment.
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Realized Volatility

A major difficulty in studying volatility (conditional variance) is that it is

not observable.

Without a benchmark, it is difficult to determine the true volatility

pattern.

It is hard to compare the performance of different parametric models.

Note that squares yt or squared residuals can not serve as benchmark. As

such, a model-free estimate of conditional variance (volatility) is highly

desirable. The realized volatility (realized variance) proposed by Andersen,

Bollerslev, Diebold, and Ebens (2001) is such an estimate.
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A standard diffusion model:

dpt = µt dt + σt dWt ,

where µt is the drift term, σt is the diffusion, and W is a standard Wiener

process. Let rt,m = pt − pt−m; the conditional distribution of rt+1,1 is

N
(∫ 1

0
µt+s ds,

∫ 1

0
σ2t+s ds

)
.

Partition the time between t and t + 1 into m = [1/δ] non-overlapping

sub-periods, each with the length δ (say, 1 min or 5 mins). For example,

rt+1,1 is the one-day return and the sum of m δ-period returns:

rt+1,1 = rt+δ,δ + rt+2δ,δ + · · ·+ rt+1,δ =

[1/δ]∑
j=1

rt+jδ,δ.

C.-M. Kuan (Finance & CRETA, NTU) Intro to Time Series Analysis January 3, 2011 212 / 213



When the partition become finer (i.e., δ → 0, or m→∞), the quadratic

variations of r are such that

[1/δ]∑
j=1

r2t+jδ,δ →
∫ 1

0
σ2t+s

a.s.−→ s.

This suggests that
∑[1/δ]

j=1 r2t+jδ,δ serves as a natural estimate of the

conditional variance (integrated variance) of rt+1,1. For example, the

realized daily volatility can be computed as the sum of squared returns of

intraday data at a higher frequency (say, squared 5-minute returns). When

rt+1,1 are vectors of asset returns, one may also define the “realized

variance-covariance matrix” as

[1/δ]∑
j=1

(rt+jδ,δ)(rt+jδ,δ)
′.
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